¹ Einstein A (1906) On the Theory of the Brownian Motion. Ann. Phys 17:549.

(Continued on Back of Page)

² Berg HC (1993) Random Walks in Biology. Princeton University Press. pp. 77

Rotational diffusion co	efficient (D _r)	
hacterium stone swimmi	f 1 1141.1	11
would be (measured in ra	ng for 1 second, what would you pradians) ³ ?	edict the change in direction
		edict the change in direction
		edict the change in direction
		edict the change in direction
		edict the change in direction
		edict the change in direction
		edict the change in direction
		edict the change in direction
• Why is the rotational d		
• Why is the rotational d	iffusion coefficient (D _r) dependent of	
• Why is the rotational d	iffusion coefficient (D _r) dependent of	
• Why is the rotational d	iffusion coefficient (D _r) dependent of	
• Why is the rotational d	iffusion coefficient (D _r) dependent of	
• Why is the rotational d	iffusion coefficient (D _r) dependent of	

³ Saragosti J, Silberzan P and Buguin A (2012) Modeling *E. coli* tumbles by rotational diffusion, implications for chemotaxis. PLoS One 7(4):e35412.

Here are the constants and other values we require. Note that Pa·s is equal to kg/(m·s^2), Joules are equal to (kg·m^2)/s^2, and kB is joules/K.

>
$$k_B := 1.381 \cdot 10^{-23} \frac{ [\![kg]\!] [\![m]\!]^2}{ [\![s]\!]^2 [\![K]\!]} : T := 293 [\![K]\!] : \eta := 1.004 \cdot 10^{-3} \frac{ [\![kg]\!]}{ [\![m]\!] [\![s]\!]} : a := 0.5 \cdot 10^{-6} [\![m]\!] :$$

First, we solve for translational diffusion coefficient

> solve
$$\left(D = \frac{k_B \cdot T}{6 \cdot \pi \cdot \eta \cdot a}, D\right)$$

$$\frac{4.28 \times 10^{-13} \, [\![m]\!]^{2.00 \times 10^0}}{[\![s]\!]} \tag{1}$$

Then, for the rotational diffusion coefficient

> solve
$$\left(D_r = \frac{k_B \cdot T}{6 \cdot \pi \cdot \eta \cdot a^3}, D_r\right)$$

$$\frac{1.71 \times 10^0}{\llbracket s \rrbracket} \tag{2}$$

_in units of radians² per second.

Finally, the number of radians the bacterium will rotate (on average) in 1 second.

>
$$solve(radians = \sqrt{2 \cdot 1.71 \cdot 1}, radians)$$

$$1.85 \times 10^{0}$$
(3)

Or in degrees

>
$$solve\left(degrees = \frac{180}{\pi} \cdot 1.85, degrees\right)$$

$$1.06 \times 10^{2}$$
(4)

106 degrees (it will go backwards!)

For the final sub-question, there is no simple answer. Inertial forces are insignificant at low Reynolds number, so assuming that mass (density times volume) is the key factor (and would scale as a³) is unlikely. The problem is well-known from Landau and Lifshitz (1987) Fluid Mechanics (2d edition)(Pergamon Press). pages 235-237: "Determine the order of magnitude of the time τ during which a particle suspended in a fluid turns through a large angle of its axis.".

Solution: The required time τ is that during which a particle in Brownian motion moves over a distance of the order of its linear dimension a.

> From
$$< r^2 > = 6 \text{ D} \cdot \tau$$
, $\tau \sim \frac{a^2}{D}$

And since
$$D = \frac{R \cdot T}{6 \cdot a \cdot \pi \cdot \eta \cdot N}$$
, $D \sim \frac{T}{a \cdot \eta}$

And since
$$D = \frac{R \cdot T}{6 \cdot a \cdot \pi \cdot \eta \cdot N}$$
, $D \sim \frac{T}{a \cdot \eta}$

$$Combining, \tau \sim \frac{a^2}{\frac{T}{n \cdot a}} \sim \frac{\eta \cdot a^3}{T}$$

Hence, the a³ dependence.

Symbol	Value	Units	Comments	
GAS CONSTANT				
R	8.314	J mol ⁻¹ K ⁻¹	R is the Boltzmann constant times Avogadro's Number (6.023•10 ²³)	
	1.987	cal mol ⁻¹ K ⁻¹		
	8.314	m ⁻³ Pa mol ⁻¹ K ⁻¹		
RT	$2.437 \cdot 10^3$	J mol ⁻¹	At 20 °C (293 °K)	
	$5.833 \cdot 10^2$	cal mol ⁻¹	At 20 °C (293 °K)	
	2.437	liter MPa mol ⁻¹	At 20 °C (293 °K)	
RT/F	25.3	mV	At 20 °C (293 °K)	
2.303 • RT	5.612	kJ mol ⁻¹	At 20 °C (293 °K)	
	1.342	kcal mol ⁻¹	At 20 °C (293 °K)	
k_{B}	1.381 • 10 ⁻²³	J K ⁻¹	Boltzmann constant	
FARADAY CONSTANT				
F	9.649 • 10 ⁴	coulombs mol ⁻¹	F is the electric charge times Avogadro's Number	
	9.649 • 10 ⁴	J mol ⁻¹ V ⁻¹		
	23.06	kcal mol ⁻¹ V ⁻¹		
CONVERSIONS				
kcal	4.187	kJ (kiloJoules)	Joules is an energy unit (equal to 1 Newton•meter)	
Watt	1	J sec ⁻¹		
Volt	1	J coulomb ⁻¹		
Amperes	1	coulomb sec ⁻¹		
Pascal (Pa)	1	Newton meter ⁻²	Pascal is a pressure unit (equal to 10 ⁻⁵ bars)	
Radians	Radians•(180°/π)	degrees	Conversion of radians to degrees	
PHYSICAL PROPERTIES				
$\eta_{ m w}$	$1.004 \cdot 10^{-3}$	Pa sec	viscosity of water at 20 °C	
$ u_{\mathrm{w}} $	1.004 • 10 ⁻⁶	m ² sec ⁻¹	kinematic viscosity of water at 20 °C (viscosity/density)	
$V_{ m w}$	1.805 • 10 ⁻⁵	m ³ mol ⁻¹	partial molal volume of water at 20 °C	

Source: Nobel, Park S (1991) Physicochemical and Environmental Physiology