Equations and constants are provided. Please be sure that you <u>show units</u>. This is an important internal check, both for you and for me.

Equations relevant to Membrane Transport: Geometry, Diffusion and Flux

Sphere Area: $4 \cdot \pi \cdot r^2$ Sphere Volume: $\frac{4}{2} \cdot \pi \cdot r^3$ Cylinder Area: $4 \cdot \pi \cdot r \cdot h$ Cylinder Volume: $\pi \cdot r^2 \cdot h$ Cube Area: $6 \cdot h^2$ Cube Volume: h^3 Fick's Diffusion: $J=D \bullet \frac{dc}{dr}$ Fick's Diffusion: $\frac{dc}{dt}=D \bullet \frac{d^2c}{dr^2}$ Einstein's Random Walks: $D = \frac{1}{2} \cdot \frac{\Delta^2}{\tau}$, $\langle x^2 \rangle = 2 \cdot D \cdot t$, and $\langle r^2 \rangle = 6 \cdot D \cdot t$ Membrane Diffusion: $J = P \bullet (c_{outside} - c_{inside})$ Membrane Diffusion: $J = -(uRT) \cdot \frac{dc}{dr} - (zFuc) \cdot \frac{d\Psi}{dr}$ Membrane Diffusion: $J = -P \cdot \left(\frac{zF\Psi}{RT}\right) \cdot \left(\frac{c_o - c_i \cdot e^{zF\Psi/RT}}{1 - e^{zF\Psi/RT}}\right)$ Nernst Equation: $\Psi = \left(\frac{RT}{zF}\right) \cdot \ln\left(\frac{c_o}{c_o}\right)$ Ohm's Law: $V = I \bullet R$, $I = g \bullet V$, $R = \rho \bullet \left(\frac{l}{A} \right)$, and J = I / (zF)Radial Diffusion: $C(r) = C_{\infty} \cdot \left(1 - \frac{a}{r}\right)$, and $J(r) = -D \cdot C_{\infty} \cdot \left(\frac{a}{r^2}\right)$ Radial Currents: $I_m = 4 \bullet \pi \bullet a^2 \bullet \beta$, and $I_d = 4 \bullet \pi \bullet a \bullet D \bullet C_{\infty}$ Dimensionless relations $P_e = \frac{2 \cdot a \cdot v}{D}$ and $R_e = \frac{\rho \cdot v \cdot l}{n}$

Goldman - Hodgkin - Katz (GHK) equation

$$\Psi = \frac{RT}{F} \ln \left(\frac{P_H c_H^o + P_{Na} c_{Na}^o + P_K c_K^o + P_{Cl} c_{Cl}^i}{P_H c_H^i + P_{Na} c_{Na}^i + P_K c_K^i + P_{Cl} c_{Cl}^o} \right)$$

SC/BIOL4151 Second Term Test 18 November 2014 page 2 of 4 Equations and constants are provided. Please be sure that you <u>show units</u>. This is an important internal check, both for you and for me. Equations relevant to membrane capacitance

 $Q = C \cdot \Delta E$ (coulombs) = (coulombs/volt) (volt) Charge (Q) for a spherical cell of radius r: $Q = \frac{4}{3} \cdot \pi \cdot r^3 \cdot c \cdot F$

c is the concentration of net charge.

Capacitance of a spherical cell of radius r:

 $C = 4 \cdot \pi \cdot r^2 \cdot C'$ C' is the capacitance per unit area

(about 1 microFarad per square centimeter for cells).

Equations relevant to Bioenergetics

For the vectorial chemical reaction:

ATP +
$$n \bullet ion^i \leftrightarrow ADP + P_i + n \bullet ion^o$$

(n is the stoichiometry)

At equilibrium: $\Delta G_{\text{total}} = n \sum \Delta \mu_{ion} + \Delta G_{ATP}$

$$\Delta G_{ATP} = \Delta G_{ATP}^{o} + RT \ln \frac{[ADP][P_i]}{[ATP]}$$
$$\Delta \mu_{ion} = RT \ln \frac{c_{ion}^{o}}{c_{ion}^{i}} + zF \Delta \Psi$$

Note that ΔG_{ATP}^{o} varies with pH and [Mg²⁺]. For our purposes, specifying -10 kcal mole⁻¹ is a reasonable estimate.

Equations relevant to Membrane Transport: Water Fluxes

Volume Flow:
$$J_V \propto \frac{\partial P}{\partial x}$$

Flow through a Pipe: $J_V = -\frac{r^2}{8 \cdot \eta} \cdot \frac{\partial P}{\partial x}$

Flow into / out of a cell:

$$J_{V} = -\frac{1}{A} \cdot \frac{\partial V}{\partial t}$$

$$J_{V} = L_{p} \cdot [P - RT(c_{i} - c_{o})]$$

$$J_{V} = L_{p} \cdot \Delta \Psi$$
where $RT(c_{i} - c_{o}) = \pi_{i} - \pi_{o}$
when $J_{V} = 0$: $P = RT(c_{i} - c_{o})$
Cell volume, pressure and osmotic relations
$$\frac{\partial P}{\partial V} = \frac{\varepsilon}{V} \approx \frac{\Delta P}{\Delta V} = \frac{P - P_{0}}{V - V_{0}}$$

$$\frac{\partial \pi_i}{\partial V} \approx \frac{\Delta \pi_i}{\Delta V} = \frac{\pi_i - \pi_{i,0}}{V - V_0}$$
$$P(t) = \left(P - P_e\right) \bullet e^{\left(-L_p \cdot A \cdot \frac{\varepsilon + \pi_i}{V} \cdot t\right)}$$

SC/BIOL4151 Second Term Test 18 November 2014

Equations and constants are provided. Please be sure that you <u>show units</u>. This is an important internal check, both for you and for me.

Symbol	Value	Units	Comments
GAS CONSTANT			
R	8.314	J mol ⁻¹ K ⁻¹	R is the Boltzmann constant times
			Avogadro's Number (6.023•10 ²³)
	1.987	cal mol ^{-1} K ^{-1}	
	8.314	m^3 Pa mol ⁻¹ K ⁻¹	
RT	$2.437 \bullet 10^3$	J mol ⁻¹	At 20 °C (293 °K)
	$5.822 \bullet 10^2$	cal mol ⁻¹	At 20 °C (293 °K)
	2.437	liter MPa mol ⁻¹	At 20 °C (293 °K)
RT/F	25.3	mV	At 20 °C (293 °K)
2.303 • RT	5.612	kJ mol ⁻¹	At 20 °C (293 °K) used for \log_{10}
	1.342	kcal mol ⁻¹	At 20 °C (293 °K) used for log_{10}
FARADAY CONSTANT			
F	$9.649 \bullet 10^4$	coulombs mol ⁻¹	F is the electric charge times
			Avogadro's Number
	9.649 • 10 ⁴	$J \mod^{-1} V^{-1}$	
	23.06	kcal mol ⁻¹ V ⁻¹	
CONVERSIONS			
kcal	4.187	J (joules)	Joules is an energy unit (equal to
			1 Newton•meter)
Watt	1	J sec ⁻¹	
Volt	1	J coulomb ⁻¹	
Amperes	1	coulomb sec ⁻¹	
Pascal (Pa)	1	Newton meter ⁻²	Pascal is a pressure unit (equal to 10^{-5} bars)
Siemens	1	Ohm ⁻¹	Siemens (S) is conductance, the
			inverse of resistance (Ohm)
PHYSICAL PROPERTIES			
$\eta_{ m w}$	$1.004 \bullet 10^{-3}$	Pa sec	viscosity of water at 20 °C
\mathbf{v}_{w}	$1.004 \cdot 10^{-6}$	$m^2 \overline{sec^{-1}}$	kinematic viscosity of water at 20 °C (viscosity/density)

Source: Nobel, Park S (1991) Physicochemical and Environmental Physiology