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ABSTRACT
Classical probabilistic information retrieval (IR) models, e.g.
BM25, deal with document length based on a trade-off be-
tween the Verbosity hypothesis, which assumes the indepen-
dence of a document’s relevance of its length, and the Scope
hypothesis, which assumes the opposite. Despite the effec-
tiveness of the classical probabilistic models, the potential
relationship between document length and relevance is not
fully explored to improve retrieval performance. In this pa-
per, we conduct an in-depth study of this relationship based
on the Scope hypothesis that document length does have its
impact on relevance. We study a list of probability density
functions and examine which of the density functions fits
the best to the actual distribution of the document length.
Based on the studied probability density functions, we pro-
pose a length-based BM25 relevance weighting model, called
BM25L, which incorporates document length as a substan-
tial weighting factor. Extensive experiments conducted on
standard TREC collections show that our proposed BM25L
markedly outperforms the original BM25 model, even if the
latter is optimized.

Categories and Subject Descriptors
H.4 [Information Search and Retrieval]: Retrieval mod-
els

General Terms
Algorithms, Experimentation, Theory

Keywords
Probabilistic IR, BM25, Document length, Normalization
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An Information Retrieval system receives a query from
user and returns the supposedly relevant documents. A
crucial issue underlying an IR system is to rank the re-
turned documents by decreasing order of relevance. Gener-
ally, ranking is based on a weighting model. The basic prob-
abilistic model proposed in [23] is one of the most popular
weighting models in modern IR systems, which is developed
from the Probability Ranking Principle [22]. This proba-
bilistic approach is refined based on the Verbosity hypothesis
[24] which assumes independence of document length from
relevance. In other words, long documents simply use more
words than short documents to cover similar scope [24].

An opposite assumption about document length is the
so-called Scope hypothesis, which states that some docu-
ments may contain more material than others if longer [24].
That is, long documents are more likely to be retrieved. In
practice, a document may be considered as a trade-off be-
tween the Verbosity hypothesis and the Scope hypothesis.
How to balance between these two hypotheses by model-
ing document length within the basic probabilistic weighting
paradigm remains a challenging research issue. The impact
of document length on relevance is particularly important
for ad-hoc retrieval, where relevance is defined in a binary
or graded manner. Compared to a short document, a long
document is likely to be relevant if it contains paragraphs
that meet the information need of the query, even if a large
part of the document is in fact non-relevant.

To address the effect of document length on relevance, the
basic probabilistic weighting function takes into account the
document length d as follows [24]:

w(x, d) = log
P (x, d|R)

P (x, d|R)

P (0, ∆|R)

P (0, ∆|R)
(1)

where w(x, d) is the relevance weight of a given document.
d is the document evidence for relevance, which is given by
document length. ∆ denotes the average document length of
the reference vector 0, and x represents all other information
about the document. R and R stand for the non-relevance
and relevance, respectively. This function measures the dif-
ference between the probabilities of document length and all
other information we have for the document when it is rel-
evant and when it is not relevant, respectively, in log scale.
The above equation also implies a relevant document should



receive a higher weight than a non-relevant document in or-
der to achieve a satisfying retrieval performance.

Equation 1 can be further decomposed into the three com-
ponents as follows [24]:

w(x, d) = w(x, d)1 + w(0, d)21 + w(0, d)22 (2)

where

w(x, d)1 = log
P (x, d|R)

P (x, d|R)

P (0, d|R)

P (0, d|R)
,

w(0, d)21 = log
P (0|d, R)

P (0|d, R)

P (0|∆, R)

P (0|∆, R)

and

w(d, ∆)22 = log
P (d|R)P (∆|R)

P (d|R)P (∆|R)
.

Under the Verbosity hypothesis, document length has been
considered as an independent evidence of relevance. This
hypothesis nullifies the component w(d, ∆)22 in Equation 2,
which as a consequence is set to zero [24]. Thus, the weight-
ing function becomes

w(x, d) = w(x, d)1 + w(0, d)21. (3)

The classical BM25 weighting model [10] is derived from
Equation 3, more specifically, wBM25 = w(x, d), where wBM25

is the relevance score of BM25, given by the following weight-
ing function [10]:

wBM25 =
(k1 + 1)tf

K + tf
∗ w(1) ∗ (k3 + 1)qtf

k3 + qtf
⊕ L (4)

where

K = k1 ∗
„

(1− b) + b ∗ dl

avdl

«
,

w(1) = log
(r + 0.5)/(R− r + 0.5)

(n− r + 0.5)/(N − n−R + r + 0.5)
,

L = k2 ∗ nq ∗ avdl − dl

avdl + dl
,

N is the number of indexed documents in the collection, n
is the number of documents containing the query term, R is
the number of known relevant documents to a specific topic,
r is the number of relevant documents containing the term,
tf is within-document term frequency, qtf is within-query
term frequency, dl is the document length (i.e. the docu-
ment evidence d in Equation 2), avdl is the average docu-
ment length, nq is the number of query terms, k′is and b are
tuning constants (whose setting depends on the dataset used
and is usually empirically determined), and ⊕ indicates that
its following component is added only once per document.
Particularly, b functions as a justification factor that adjusts
the relative importance between the two hypotheses [25].

The main focus of this research is to study the relation-
ship between document length and relevance in the context
of the Scope hypothesis by exploring a list of probability
density distribution for document length. The Scope hy-
pothesis suggests the existence of a relationship between
document length and relevance. It implies that the com-
ponent w(d, ∆)22 in Equation 2 may not be zero. In this
paper, we consider document length itself as a direct pre-
dictor of relevance. Our study of document length is based
on the intuition that long documents tend to have high re-
trieval probabilities, since long documents usually have a
large number of unique terms, which are likely to be picked
up by the query term matching [28]. Our experiments show
that long documents tend to have high frequencies of query
terms, which leads to high relevance scores. This provides

evidence supporting the Scope hypothesis that there exists a
dependency of relevance on document length. Particularly,
there are two extreme cases that need to be considered. One
is that the relevance of each document in a collection is in-
dependent of its length. This is the case of BM11 or b = 1
in BM25 [25]. The other one is BM15 or b = 0 in BM25 [25],
which implies that long documents are likely to be retrieved.
To balance between these two extreme cases, Robertson et
al. introduce a parameter b in BM25 to control the effect of
tf normalization [25]. In our study, we first use statistical
tools to learn the pattern of the relationship between the
document length and its relevance, investigate the behavior
of w(d, ∆)22 in Equation (2), and propose a new weight-
ing function incorporating this relationship, which is the re-
sult of a mixture of the two hypotheses. Our results show
that the retrieval performance of BM25 can be markedly
improved over different settings of the parameter b by ex-
ploiting the document length evidence.

The rest of the paper is organized as follows. Section 2
gives a brief survey in previous work. Then Section 3 in-
troduces the datasets and presents the idea of the length-
based weighting function, and proposes seven models based
on the density analysis. The proposed models are evaluated
through extensive experiments in Section 4. Finally, we con-
clude on the work and suggest future research directions in
Section 5.

2. RELATED WORK
The classical probabilistic models for IR rank documents

according to their relevance scores, assigned by matching
the query terms with adjustment for the relationship be-
tween document length and term frequency. This approach
is developed based on the Verbosity hypothesis which as-
sumes the document’s relevance is independent of its length
[24]. However, in practice, the impact of document length
on relevance may be a mixture of both the Scope hypothesis
and the Verbosity hypothesis [24].

Many previous studies have been conducted to investi-
gate the impact of document length on relevance. Singhal
et al. [28] suggest that long documents tend to have more
unique terms, and consequently, long documents have a bet-
ter chance to be retrieved than short documents. As the
document length increases, the number of times the query
terms occur in the documents also increases, which in turn
increases the matching score. For instance, Singhal et al.
illustrate that the probability of a document’s relevance in-
creases proportionally with document length in the early
TREC test collections [28, 29]. Similar results have also been
reported on the later “ad-hoc” test collections [15]. More-
over, a number of empirical studies have provided statistical
evidence supporting that the probability of a document’s rel-
evance to an information need is considered to be correlated
with the length of the document. Kraaij et al. show that the
probability of relevance is positively correlated with docu-
ment length on a number of TREC ad-hoc and Web collec-
tions [16]. Singhal et al. state that the documents retrieved
by a model produce a retrieval pattern by the distribution of
the document length [28]. Huang et al. use functional curve
to approximate the distribution of document length on the
TREC data sets and conclude that the retrieval system can
be improved through an appropriate document length func-
tion [12, 13]. Furthermore, proper term weighting strate-
gies based on document length can also improve retrieval



performance [31]. For example, normalization techniques
have been applied for each term in the query through the
length adjustment to avoid the bias introduced by document
length. Normalizing the document length within a retrieval
system could improve the performance [7]. By applying sta-
tistical regression of the similarity scores within the normal-
izing document length and query size, Lamprier et al. show
that a significant improvement can be made to IR systems
[17]. Blanco et al. device a probabilistic document length
prior for language modeling [4]. Losada et al. apply smooth-
ing techniques for document length in language modeling to
show the significant impact of document length on the in-
formation retrieval performance [19]. They also argue that
the relationship of document length and its relevance may
not exist when the test collections are incomplete, although
the evidence is not concrete enough to nullify the effect of
document length on relevance [20]. For the issue addressed
in [20], in this paper, we set up the experiments and use
Expectation-maximization (EM) algorithm and bootstrap-
ping method to avoid this problem [8].

3. DENSITY ANALYSIS AND LENGTH REL-
EVANCE WEIGHTING

Under the Scope hypothesis, w(d, ∆)22 in Equation 2 is
no longer zero since a dependence of relevance on document
length is assumed. To add the length information into the
weighting function w(x, d), we decompose the w(d, ∆)22 fur-
ther into

w(d, ∆)22 = log
P (d|R)

P (d|R)
+ log

P (∆|R)

P (∆|R)
(5)

The second component of Equation 5 is constant over a
given document collection. This is because the average doc-
ument length ∆ for the reference vector 0 in a document
collection is known and fixed. Therefore, for each docu-
ment in a collection, the second component of Equation 5
above is the same across the whole document collection and
does not affect the document ranking. For simplicity, we
refer w(d, ∆)22 to as the first component in the Equation
5. Thus, the relevance weight w(d, ∆)22 is given by the log-
odd of the relevance and non-relevance probabilities P (d|R)
and P (d|R). In other words, w(d, ∆)22 measures the dif-
ference between the probabilities of given document length
condition on relevance and non-relevance in the log scale.
We name Equation 5 as length relevance weighting. Our
ultimate goal is to calculate the w(d, ∆)22 in Equation 5,
this needs a way to estimate the probabilities P (d|R) and
P (d|R). By adding the measurement of document length
itself into the basic weighting function, the retrieval system
is expected to achieve high accuracy since the length infor-
mation brings more evidence of relevance. The estimation of
probability distribution function 1 of document length will
be discussed in the next subsections.

The density estimation has three parts. First, we study
the distributional pattern of document length on standard
TREC test collections using kernel density estimation method
[3, 27], which gives us a guidance in density estimation. In
the second part, we apply data transformation techniques
on the document length in order to get a better fitting of
the document length distribution. Finally, Maximum Likeli-
hood Estimation (MLE) is applied to obtain the distribution

1We use probability distribution function and probability
density function interchangeable in the rest of this paper.

parameters estimates of document length. Length relevance
weighting function is then derived based on the above den-
sity estimation.

In the rest of this paper, we use d to denote the document
length. As a general rule, we usually make an assumption
about observed d’s, i.e. d1, d2, ..., dN are independent and
identically distributed, N is the number of documents in
the collection. We first introduce the test collections we
used and then give the details of density estimation in the
following subsections.

3.1 The TREC Test Collections
We examine the impact of document length on relevance

using 4 standard TREC test collections. These four test
collections are the most recent TREC datasets, and provide
a good coverage on the a variety of commonly used datasets
in IR evaluation, and are used for different test purposes
and vary in size in term of the document length. Basic
information about the test collections and topics are given
in Table 1.

Table 1: Information about the test collections.
Coll. TREC Task Topics # Docs
disk1&2 1-3, Ad-hoc 51-200 741,856
WT10G 9, 10 Web 451-550 1,692,096
.GOV2 2004-2006 Terabyte Ad-hoc 701-850 25,178,548
ClueWeb B 2009 Relevance Feedback rf.01-rf.50 49,375,681

The disk1&2 collection contains newswire articles from
various sources, such as Association Press (AP), Wall Street
Journal (WSJ), Financial Times (FT), etc., which are usu-
ally considered as high-quality text data with little noise.
It usually used for ad hoc test. The WT10G collection is
a medium size crawl of Web documents, which was used in
the TREC 9 and 10 Web tracks. It contains 10 Gigabytes of
uncompressed data. The .GOV2 collection, which has 426
Gigabytes of uncompressed data, is a crawl from the .gov
domain. This collection has been employed in the TREC
14 (2004), 15 (2005) and 16 (2006) Terabyte tracks. The
ClueWeb collection is a very large crawl of the Web, and
is currently the largest TREC test collection. We use the
category B of ClueWeb, which contains about 50 million En-
glish Web pages, and its associated topics used in the TREC
2009 Relevance Feedback track. We index all documents in
the above four collections. For all four test collections used,
each term is stemmed using Porter’s English stemmer, and
standard English stopwords are removed.

3.2 Kernel Density Analysis
Kernel density estimation (or Parzen window method) is

a non-parametric way of estimating the probability density
function of a random variable. It can be used to extrapolate
the data to the entire population as follows [27]:

cfh(d) =
1

nh

nX
i=1

K(
d− di

h
) (6)

where di, i = 1, . . . , n is the independent and identically-
distributed sample from some unknown distribution, n is
the number of samples we draw from the population, K
is the kernel function and h is the bandwidth (also called
smoothing parameter). We can obtain the smoothing curve
by adjusting the parameter h. Usually K is instantiated by
a standard Gaussian function with a mean of zero and a
variance of 1:

K(
d− di

h
) =

1√
2π

exp(− (d− di)
2

2h2
) (7)
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(c) .GOV2
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(d) ClueWeb B
Figure 1: Kernel density estimate constructed from the document length on four test collections. “dl” stands
for document length

Table 2: Basic statistical Information about the document length of four test collections. “rel” stands for
relevant document length, “non-rel” stands for non-relevant document length.

Dataset
Mean Standard Deviation Minimum Maximum

rel non-rel rel non-rel rel non-rel rel non-rel
disk1&2 534.22 716.16 3960.11 3498.03 4 3 252983 252983
WT10G 1213.29 1165.83 2392.08 3801.12 24 5 48363 214693
.GOV2 3153.02 2821.13 4844.15 5022.19 11 10 47815 59566

ClueWeb B 1563.18 1583.32 1806.17 1888.64 50 52 16088 16087

Kernel density estimation gives us a global picture of the
given dataset.

Figure 1 shows the distributional pattern of relevant and
non-relevant document length for the test collections disk1&2,
.GOV2, WT10G and ClueWeb B respectively using kernel
density estimation with the standard normal kernel func-
tion. In Figure 1, the length curves have been cut when
the document length is large than 1500 in x−axis in order
to visualize the difference between the relevant and non-
relevant document length because the long documents have
low probabilities to be retrieved. The length of non-relevant
and relevant documents from four test collections are both
positively skewed and have a long tail with different tail
shapes. Non-relevant document has higher frequency than
relevant documents when the document length is relatively
short. The curve on disk1&2 appears to have two distinct
peaks called bimodality. In contrast, there is only one mode
that arises on WT10G, .GOV2 and ClueWeb B.

We also list the basic statistics in Tables 2 for the length
of relevant and non-relevant documents on each of the four
test collections. At first glance, we may not see much dif-
ference between relevant and non-relevant documents from
these two tables. However, further looking into these two
tables, we observe that disk1&2 has the maximum relevant
document length among the four test collections, the rel-
evant and non-relevant document length of WT10G differ
most among the four test collections, and ClueWeb B has
the minimum length of both relevant and non-relevant doc-
uments.

We apply the data transformation techniques to visualize
the difference between the relevant and non-relevant docu-
ment length on each test collection used. By applying the
data transform technique, we can also obtain higher likeli-
hood distribution function and achieve more accurate esti-
mates of distribution parameters.

3.3 Data Transformation
The data transformation technique is widely used in data

processing or pre-processing for stabilizing the variance and
make the data more normal distribution-like. In our case, all
document lengths are positive, whose distribution is skewed
to the right as described in Figure 1, and document length
cannot be described by standard statistical methods because
of the skewness. Therefore, data transformation is required
to extract a better characteristic of the data. We initiate
it by applying central limit theory, i.e. transformation I, it
is also called standardization. By standardizing the data, it
forces the data to locate on the common scales to be com-
pared. Secondly, the Power transformation is from the fam-
ily of functions that are applied to create a rank-preserving
transformation of data which improves the correlation be-
tween variables and for other data stabilization procedures
[5]. Box-Cox power transformation is commonly used to al-
leviate heteroscedasticity when the distribution of the vari-
able of interest is not known, i.e transformations II and III.
Transformation II is the special case of transformation III
when θ = 0. We also transform the document length to be
within the scale of 0− 1 using transformation IV. The four
types of transformation is described as follows:

• Transformation I: Standardization

z =
d− d̄

sd
(8)

• Transformation II: Log transformation

z = log(d) (9)

• Transformation III: Box-Cox transformation

z =
dθ − 1

θ
(10)

Box-cox transformation is a parametric power trans-
formation technique in order to reduce anomalies such
as non-additivity, non-normality and heteroscedastic-
ity, θ 6= 0 is the transformation power.

• Transformation IV: Normalization

z =
d− dmin

dmax − dmin
(11)



where z is the document length after the transformation, d̄
is the average document length, sd is the standard deviation
of document length, dmin denotes the minimum document
length and dmax is the maximum document length.

Figure 2 plots the distributional pattern of transformed
relevant and non-relevant document length on four test col-
lections. In Figure 2, we examine length distribution pat-
terns of relevant and non-relevant documents on the four test
collections used. A major observation is that the the curves
of the transformed document length distribution have simi-
lar shapes before and after the transformation. That is, the
curves on disk1&2 remain bimodal, while the curves on the
other three test collections are still left-skewed, but not as
much as those of the original document length distribution,
thanks to the data transformation. Moreover, the curves on
.GOV2 and ClueWeb B become more symmetric after the
transformation. On disk1&2, .GOV2 and WT10g, the cen-
ter of the non-relevant document length distribution shifts
far away to the right of the relevant document length distri-
bution. From Figure 2(d), we can clearly see that relevant
and non-relevant document length on Clueweb B can be dis-
tinguished from their distributional frequencies. Note that
similar observations can also be drawn from other three col-
lections used, but the difference between relevant and non-
relevance document length distribution is not as obvious as
on ClueWeb B. This is an encouraging finding as it gives us
clue of differentiating between relevance and non-relevant
documents based on their length distribution. In the next
section, we propose to fit the document length distribution
with a list of statistical distributions, in order to find the
distributions that can match the characteristics of relevance
and non-relevant documents.

3.4 Distribution of Document Length
The criterion of selecting distributions is that the distri-

bution must be positive skewed with shape and rate param-
eters. With different shape and rate parameters, the prob-
ability distribution can describes as many different shapes
as possible that document length may have. The commonly
used distributions we applied to fit the transformed docu-
ment length are as follows:

• Gamma distribution with (γ > 0, β > 0)

f(z) =
zγ−1e−z/β

βγΓ(γ)
(12)

for z ≥ 0, where γ and β are shape and scale param-
eters respectively. Varying setting of γ can lead to
symmetrical or skewed figures.

• Normal distribution with (µ, σ), which is symmetric
with respect to its mean value (µ). A Normal dis-
tribution is bell shaped and the shape is independent
of its distribution parameters. The reason of choos-
ing normal distribution is that transformation I try to
standardize the document length. The Normal distri-
bution density function is given as follows:

f(z) =
1√

2πσ2
exp{− (z − µ)2

2σ2
} (13)

where σ is the standard deviation.

• Lognormal distribution with (µ, σ)

f(z) =
1

zσ
√

2π
exp{− (log z − µ)2

2σ2
} (14)

for z ≥ 0, where if Z is distributed lognormally with
parameters µ and σ, log(Z) is distributed normally
with a mean of µ and a standard deviation of σ. Log-
normal and gamma distribution can produce similar
graphs, but the curvature of lognormal distribution is
more steep than gamma distribution.

• Inverse Gaussian distribution (IGD) with (µ, λ)

f(z) =

r
λ

2πz3
exp{− λ

2µ2z
(z − µ)2} (15)

for z > 0, where µ > 0 is the mean and λ > 0 is the
shape parameter, changing λ changes the level of the
skewness for the IGD.

• Weibull distribution with (a, b)

f(z) =
b

a
(
z

a
)b−1exp{−(

z

a
)b} (16)

where a > 0 is the scale parameter and b > 0 is the
shape parameter. Weibull distribution can produce
the graph similar to Gamma distribution but with less
steep curve.

• Generalized Extreme Value distribution (GEV) (κ, µ, σ),

f(z) =
1

σ
∗ exp{−(1 + κ

(z − µ)

σ
)−

1
κ }

∗ (1 + κ
(z − µ)

σ
)(−1− 1

κ
)

(17)

where κ 6= 0 is the shape parameter, µ is the location
parameter and σ > 0 is the scale parameter. Com-
pared to the statistical distributions mentioned above,
GEV is a complicated distribution developed within
the extreme value theory [9].

Figure 3 illustrates the six distribution fittings for the rel-
evant document length of four test collections using Trans-
formation I. Similar plots can be obtained for the relevant
and non-relevant document length of all four test collections
using Transformation I, Transformation III and Transfor-
mation IV respectively. All six distributions fit the .GOV2,
WT10G and ClueWebB well, not disk1&2 since the bimodal-
ity. Inverse Gaussian ans GEV distribution fit the data best
on all test collections, Weibull distribution can preserve the
skewness better than the Lognormal, Gamma distribution,
but normal distribution performs very badly in this case
since skewness of the data. After the density functions are
fit to the actual length distribution, it is necessary to use
goodness of fit test to determine how well the distributions
fit to the actual data.

3.5 Parameter Estimation
We adopt two methods in distribution parameter estima-

tion for P (d|R) and P (d|R̄) in the Equation 2: bootstrap-
ping and expectation-maximization(EM) algorithm. These
are very simple but powerful statistical methods in param-
eter estimation.

Bootstrapping is a Monte Carlo method to learn about
the sample characteristics to infer the population by resam-
pling. It has been proved effective in reducing the bias of
samples [8]. Adèr recommend to use bootstrapping when
the sample size is insufficient for straightforward statistical
inference [1]. The bootstrapping procedure is described as
follows:
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Figure 2: Kernel density estimates constructed from the transformed document length of four test collections.
”rel-dl” stands relevant document length and ”non-dl” stands non-relevant document length.
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(d) ClueWebB
Figure 3: Distribution fittings for the relevant document length using transformation two z = log(d).

1. Construct an empirical probability distribution Ω from
the sample by placing a probability of 1/n at each
point, z1, z2, . . . , zn of the sample. This is the em-
pirical distribution function of the sample, which is
the nonparametric maximum likelihood estimate of the
population distribution, ω. Now, each sample’s ele-
ment has the same probability of being drawn.

2. From the empirical distribution function, Ω, draw a
random sample of size n with replacement. This step
is called resampling.

3. Calculate the statistic of interest, θ, for this resample,
yielding θ̂∗.

4. Repeat steps 2 and 3 for B times, where B is a large
number, in order to create B resamples. The setting
of B depends on the tests to be run on the data.

5. Compute
¯̂
θ∗ = 1

B

PB
j=1 θ̂∗j .

The Expectation-Maximization (EM) algorithm is a gen-
eral algorithm for maximum-likelihood estimation where the
data are “incomplete”. The EM algorithm is an iterative
method which seeks to find the MLE of the marginal likeli-
hood by iteratively applying the following two steps:

• Expectation step: Calculate the expected value of the
log likelihood function with respect to the conditional
distribution of y given z under the current estimate of
the parameters θ(t)

Q(θ|θ(t)) = EY |z,θ(t) [log L(θ; z, Y )]

• Find the parameter which maximizes following:

θ(t+1) = arg max Q(θ|θ(t))

where L(θ; z) is the likelihood function, θ is the parameter
vector, z is the transformed document length and y repre-
sents the unobserved data.

The estimates from two methods are very close. For sim-
plicity reason, we average the estimates from two methods
in the experiments.

3.6 Length Relevance Weighting
After we obtain the distribution function for transformed

document length Z, we apply the change variable technique
[26] to obtain the distribution function for the original docu-
ment length D, i.e. the document length before transforma-
tion. The theorem of change variable we used is as follows

Theorem 1. Let Z be a random variable with probability
density function (pdf) fZ(z) and support SZ . Let D = g(Z),
where g(z) is one to one differentiable function, on the sup-
port of Z, SZ . Denote the inverse of g by z = g−1(d) and

let ∂z
∂d

= ∂[g−1(d)]
∂d

. Then the pdf of D is given by

fD(d) = fZ(z−1(d)) |∂z

∂d
|, for d ∈ SD (18)

with the support of D which is the set SD = {d = g(z) :
z ∈ SZ}.
Where z−1(d) is equivalent to Equations 8, 9, 10 and 11
when transforming the document length, and | ∂z

∂d
| is the de-

terminant of Jacobian of the transformation [11].
Based on the discussion above, we initiate the pattern of

the document length by kernel density estimation. Based on
the findings in step one, second, we apply data transforma-
tion and the change variable techniques to find the distribu-
tion functions of relevant and non-relevant document length
and use MLE to obtain the parameter estimators. Two sta-
tistical methods, EM and bootstrapping are exploited to



prevent potential bias during parameter estimation, such
as incomplete test collection, randomness of sampling. Hy-
pothesis test employees to eliminate the distributions at 95%
significant level. Finally Equation 5 is used to construct the
following seven models:

1. In this model, transformed relevant and non-relevant
document length follow the Normal distribution using
same transformation I:standardization in Equation 8.
We call it ‘Normal’. Together, Using Equation 5 and
change variable technique in Equation 18, the length
relevance weighting function is as follows

w(d, ∆)22 ∝ − 1

2σ2
1

»„
d− d̄

sd

«
− µ1

–2
+

1

2σ2
2

»„
d− d̄

sd

«
− µ2

–2

(19)

where subscript 1 indicates that it is the estimates of
distribution for relevant document length, 2 is the es-
timates of non-relevant document length distribution.

2. In this model, transformed relevant and non-relevant
document length follow the Gamma distribution us-
ing transformation II:log transformation in Equation
9. We call it ‘Log-Gamma’.

w(d)22 ∝ (γ1 − γ2) ∗ log d− log d

β1
+

log d

β2
(20)

3. In this model, transformed relevant and non-relevant
document length follow the IGD distribution using trans-
formation II:log transformation in Equation 9. We call
it ‘Log-IGD’.

w(d)22 ∝ log

s
λ1

2 ∗ π ∗ (log d)3
− log

s
λ2

2 ∗ π ∗ (log d)3

− λ1 ∗ (log d− µ1)
2

2 ∗ µ2
1 ∗ log d

+
λ2 ∗ (log d− µ2)

2

2 ∗ µ2
2 ∗ log d

(21)

4. In this model, transformed relevant and non-relevant
document length follow the Inverse Gaussian distri-
bution distribution using transformation III:Box-Cox
transformation in Equation 10. We call it ‘Box-Cox-
IGD’.

w(d)22 ∝ log

vuut λ1

2 ∗ π ∗ ( dθ−1
θ )3

− λ1 ∗ (log( dθ−1
θ )− µ1)

2

2 ∗ µ2
1 ∗ log( dθ−1

θ )

− log

vuut λ2

2 ∗ π ∗ ( dθ−1
θ )3

+
λ2 ∗ (log( dθ−1

θ )− µ2)
2

2 ∗ µ2
2 ∗ log( dθ−1

θ )

(22)

5. In this model, transformed relevant and non-relevant
document length follow the GEV distribution using
transformation III:Box-Cox transformation in Equa-
tion 10. We call it ‘Box-Cox-GEV’.

w(d)22 ∝(−1− 1

κ1
) log(1 + κ1

V

σ1
)− (1 + κ1

V

σ1
)
− 1

κ1

− (−1− 1

κ2
) log(1 + κ2

V

σ2
) + (1 + κ2

V

σ2
)
− 1

κ2

(23)

where V = dθ−1
θ

.

6. In this model, transformed relevant and non-relevant
document length follow the Lognormal distribution us-
ing transformation IV:normalization in Equation 11.
We call it ‘Lognormal’.

w(d)22 ∝ − 1

2σ2
1

[log L− µ1]
2 +

1

2σ2
2

[log L− µ2]
2

(24)
where L = (d− dmin)/(dmax − dmin)

7. In this model, transformed relevant and non-relevant
document length follow the Weibull distribution using
transformation IV in Equation 11:normalization. We
call it ‘Weibull’.

w(d, ∆)22 ∝ (b1 − b2) log L− (
L

a1
)b1 + (

L

a2
)b2 (25)

where L = (d− dmin)/(dmax − dmin).

By adding w(d, ∆)22 into the weighting function w(x, d)
or BM25, we propose a new length-based weighting function
BM25L as follows:

w(x, d) = (1− β)wBM25 ⊕ β ∗ w(d, ∆)22 (26)

where wBM25 is the relevance score of BM25, ⊕ indicate that
the term w(d, ∆)22 is added only once for each document, β
is not only the interpolation factor which is empirically de-
termined and highly depends on the dataset used, but also
an adjust factor of the mixture of two hypotheses: Verbosity
and Scope hypothesis. A document could be either extreme
or of mixture of these two hypotheses as discussed in[24].
More over, the reason of adding β here is that we ignore the

constant term in the calculation of log P (∆|R)
P (∆|R)

, we need to

adjust the scale for the weights between wBM25 and w(x, d),
and the weights between two hypotheses because BM25L
consider the situation when both Verbosity and Scope hy-
pothesis are presented in the same document. For a given
query, each of the wBM25 or w(x, d) scores is normalized by
the maximum wBM25 or w(x, d) score. The parameter β is
obtained by Simulated Annealing [14] over a set of training
topics.

4. EVALUATION
We introduce our methodology for evaluating the BM25L

model in Section 4.1, and present the related evaluation re-
sults in Sections 4.2 and 4.3.

4.1 Evaluation Methodology
We evaluate our proposed BM25L model over the 4 test

collections used, namely disk1&2, WT10G, .GOV2, and ClueWeb
B. Each topic contains three topic fields, namely title, de-
scription and narrative. We only use the title topic field that
contains very few keywords related to the topic. The title-
only queries are usually short which is a realistic snapshot
of real user queries in practice.

On each collection, the associated topics are divided into
the odd-numbered and even-numbered topics. Over those
two topic subsets, our proposed model is evaluated by a 2-
fold cross-validation. In each fold, one of the topic subsets
is used for training, and the other subset is used for testing
purposes. More specifically, the half of the training topics
with lower topic numbers are used to train the length dis-
tribution estimation parameters, and the other half of the
training topics are used to train the score combination pa-
rameter β in Equation 26. Finally, our proposed BM25L
model is evaluated by its retrieval performance on average
over the two subsets of test topics. We use the TREC of-
ficial evaluation measures in our experiments, namely the



statMAP on ClueWeb B [30], and the Mean Average Preci-
sion (MAP) on the other three collections [31].

Our evaluation baseline is the classical BM25 model with
different settings of its parameter b. By varying the b value,
we investigate to which extent BM25L improves the retrieval
performance. In particular, we compare the retrieval perfor-
mance of BM25L to BM25 with b = 0, that is, BM25 without
tf normalization, and BM25 with its parameter b optimized.
All statistical tests are based on Wilcoxon Matched-pairs
Signed-rank test.

4.2 Comparison with BM25
Tables 3 and 4 compare the retrieval performance of BM25L

to the original BM25 without tf normalization (i.e. when
b = 0), and with the tf normalization with its parameter b
optimized, respectively.

From Tables 3 and 4, we see that modeling document
length distribution using GEV distribution leads to the most
stable retrieval performance of our proposed length-based
BM25L model. This is not of a surprise as we have shown
that the GEV density fits the best to the actual document
length distribution. Using the GEV density fitting of the
document length, BM25L appears to outperform the BM25
baseline, and the improvement is statistically significant in
most cases on all four test collections except WT10G.

The use of other distribution functions, in particular Gamma
distribution, also leads to retrieval performance over the
BM25 baseline on some of the test collections. However,
their retrieval performance does not appear to be as robust
as that obtained by GEV distribution. An extreme case
is Normal distribution, which does not improve the BM25
baseline on disk1&2, WT10G, and .GOV2 when the parame-
ter b is optimized. In contrast, on ClueWeb B, it provides an
MAP that is as high as 0.6340, which is 173% higher than
the BM25 baseline, even if its parameter b is optimized.
Similar observation can also be made with Gamma distri-
bution, which leads to a 130% improvement. One possible
explanation is that it has lightest skewness among other 3
test collections that could be observed in Figure 3. Another
possible reason for BM25L’s extremely high retrieval perfor-
mance with Gamma and Normal distribution on ClueWeb B
is the shallow pool depth of this collection. Out of the four
test collections used, ClueWeb B has the most incomplete
relevance assessments, for which only the top-10 documents
returned by the TREC participating runs are judged by hu-
man assessors [6]. As the top ranked documents are mostly
overlong, the biase towards long documents in the document
ranking could be so evident that the length distribution of
relevant and non-relevant documents fits very well with the
distribution functions on both training and testing topics.
As a consequence, BM25L leads to extremely high retrieval
performance on ClueWeb B.

To visualize the improvement brought the proposed length-
based BM25L model, we plot the results in Figures 4 and
5 for the comparison to BM25 with b = 0 and with b opti-
mized, respectively. As we can see on the WT10G collection,
although the improvement is not as much as that obtained
on other three test collections using all six distributions, the
increase in retrieval performance is the evidence of length ef-
fect in information retrieval. Using Weibull distribution and
normalization transformation has the best results, this may
due to that Weibull distribution does retain the skewness of
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Figure 4: Performance of BM25L over BM25 with
b=0
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Figure 5: Performance of BM25L over BM25 with
optimal b value

data between zero and one scale on all collections very well
as we can see from Figure 3.

By comparing the performance improvement by BM25L
over BM25 with b = 0 with the improvement over BM25
with the optimized b, we can see that the improvement over
the optimized b is overall of a less scale than that over BM25
without tf normalization. This is because optimizing the
parameter b in BM25 has exaggerated the length impact on
the relevance weighting of term frequency tf , and in return,
it reduces the impact of length relevance weighting itself on
improving the document ranking.

When comparing BM25L with the best known results, for
the WT10G, BM25L’s best MAP is 0.2143, and the best
published MAP is 0.2085. A possible explanation of the rel-
atively minor improvement is as follows: the data transfor-
mation on WT10G does not show much difference between
the length distribution of relevance and non-relevance doc-
uments. Compared to large-scale collections such as GOV2
and ClueWeb B, it leaves little room for the BM25L model
to further improve the retrieval performance by utilizing
such difference (in document length distribution). In other
words, the TREC pools are biased by the length distribu-
tion. Such bias is minor on WT10G, and becomes evident on
heterogeneous collections like GOV2 and ClueWeb B, which
is captured by BM25L to boost the ranking effectiveness.
For ClueWeb B, we believe the best statMAP in the TREC



Table 3: Evaluation results over the BM25 baseline with b=0. A star indicates a statistically significant
improvement over the baseline.

Coll. BM25 Normal Log-Gamma Log-IGD Box-Cox-IGD Box-Cox-GEV Lognormal Weibull
disk1&2 0.1698 0.1700 0.2195* 0.1821 0.1856* 0.2336 0.1685 0.2339*
WT10G 0.1571 0.1570 0.1663 0.1772* 0.1769 0.1647 0.1576 0.1604
.GOV2 0.1782 0.1812 0.2051* 0.2079* 0.2058* 0.1995 0.2058* 0.2564*

ClueWeb B 0.1930 0.2035 0.3192* 0.3084* 0.3265* 0.3117* 0.1931 0.2973*

Table 4: Evaluation results over the BM25 baseline with optimized setting of b. A star indicates a statistically
significant improvement over this baseline.

Coll. BM25 Normal Log-Gamma Log-IGD Box-Cox-IGD Box-Cox-GEV Lognormal Weibull
disk1&2 0.2324 0.2326 0.2421 0.2504* 0.2579* 0.2501* 0.2491* 0.2432*
WT10G 0.2090 0.2090 0.2115 0.2143 0.2101 0.2125 0.2111 0.2109
.GOV2 0.3044 0.3051 0.3121 0.3056 0.3321* 0.3227* 0.3134 0.3039

ClueWeb B 0.2322 0.2401 0.2722* 0.3350* 0.3561* 0.3612* 0.1586 0.3963*

2009 Relevance Feedback track, i.e. 0.2638, is achieved by
combining BM25 with relevance feedback [32], although the
overview paper is not available. Our model BM25L gives an
MAP of 0.3963. For GOV2, on top of the retrieval baselines,
e.g. BM25 and language model, the best run in TREC 2006
further improved the effectiveness by using pseudo relevance
feedback and term dependency [18, 21]. Since our model
only considers document length, the best MAP presented
in this paper, i.e. 0.3321, is not directly comparable to the
best known MAP of 0.3737. For disk1&2, there hasn’t been
known best result for all 150 topics used in the TREC 1-3 ad-
hoc tasks. According to evaluatir.org, the best known MAP
on each task is 0.2062, 0.2475 and 0.3231, respectively, with
an average of 0.2589. Note that the above best known re-
sults are achieved by stacking additional techniques such as
relevance feedback over the retrieval baseline. Therefore, the
results are not directly comparable. Even though, BM25L
provides an MAP of 0.2579.

4.3 Impact of Parameters
Experimental results in the previous section shows that,

on one hand, BM25L leads to more improvement over BM25
when tf normalization is disabled. This is expected since
there is no length information added to BM25 with b = 0
when compare to BM25L. On the other hand, BM25L pro-
vides higher MAP/statMAP values when the tf normal-
ization parameter b is optimized. From this observation,
a question arises: what is the impact of the setting of b
on BM25L’s effectiveness? To answer this question, Fig-
ure 6 plots the MAP/statMAP obtained by BM25L using
the 6 different statistics of the document length distribution
against different b values, from 0 to 1. BM25L and the orig-
inal BM25’s retrieval performance is seen to be correlated.
A better setting of BM25’s b leads to a better retrieval per-
formance of BM25L. The document length itself do have
a power as a stand-alone factor on the document relevance
weighting other than normalization adjustment. The results
for the full range of b are illustrated in Figure 6 for all 4 test
collections.

Another important factor that could heavily affect BM25L’s
retrieval performance is the parameter β in Equation 26.
Figure 7 plots the MAP/statMAP obtained by BM25L against
β on the four collections used. As we can see that length im-
pact on the relevance weighting increase first as β increase,
then either decrease or remain flat as β increase. This is no
coincidence because with only one factor, i.e. length, among

other many important factors that can affect document rel-
evance weighting, the improvement would be limited.

In summary, we have shown that the length information
can be used for leveraging the bias towards long documents
in the document ranking. The retrieval performance of the
classical well-established BM25 model can be marked im-
proved by incorporating a length-based weighting compo-
nent with different settings of BM25’s tf normalization pa-
rameter, including the optimal setting. Finally, we recom-
mend applying GEV distribution for modeling the document
length distribution as it has demonstrated effective and ro-
bust retrieval performance in our experiments. In our exper-
iments, all parameters are learned from the training data in
the two-fold cross-validation. It is therefore of note that our
proposed model is trained and tested with different queries.

5. CONCLUSION AND FUTURE WORK
Our research in this paper is based on the assumption that

a document may exhibit both Verbosity and Scope hypothe-
ses. We derive the relationship between document length
and its relevance through a list of probability density func-
tions, and propose a BM25L model that incorporates this
relationship into the classical BM25 model. The proposed
BM25L model is evaluated on standard large-scale TREC
collections. Our experiments demonstrate that BM25L is
able to markedly outperform the BM25 baseline even with
the optimized tf normalization. The results empirically con-
firm our assumption that the actual relationship between
document length and relevance is a mixture and compro-
mise between the Verbosity and Scope hypotheses.

In this paper, we have proposed a general method of utiliz-
ing the relationship between document length and relevance
for improving retrieval performance. The proposed method
is shown to be effective in its application to the classical
BM25 weighting model. In the future, we plan to apply our
proposed method to other state-of-the-art IR models, such
as language modeling, or the PL2 model [2]. In addition,
we also plan to investigate possible ways to balance between
the effectiveness and efficiency of our proposed method.
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Figure 6: The MAP/statMAP values obtained against the parameter b
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Figure 7: The MAP/statMAP values obtained against the parameter β
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