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ABSTRACT
Term proximity retrieval rewards a document where the
matched query terms occur close to each other. Although
term proximity is known to be effective in many Informa-
tion Retrieval (IR) applications, the within-document dis-
tribution of each individual query term and how the query
terms associate with each other, are not fully considered. In
this paper, we introduce a pseudo term, namely Cross Term,
to model term proximity for boosting retrieval performance.
An occurrence of a query term is assumed to have an impact
towards its neighboring text, which gradually weakens with
the increase of the distance to the place of occurrence. We
use a shape function to characterize such an impact. A Cross
Term occurs when two query terms appear close to each
other and their impact shape functions have an intersection.
We propose a Cross Term Retrieval (CRTER) model that
combines the Cross Terms’ information with basic proba-
bilistic weighting models to rank the retrieved documents.
Extensive experiments on standard TREC collections illus-
trate the effectiveness of our proposed CRTER model.

Categories and Subject Descriptors
H.3.3 [Information Storage & Retrieval]: Information
Search & Retrieval

General Terms
Performance, Experimentation

Keywords
Cross Term, Kernel, BM25, Proximity, Probabilistic IR

1. INTRODUCTION AND MOTIVATION
Most of the traditional Information Retrieval (IR) mod-

els are based on the assumption that query terms are inde-
pendent of each other, where a document is represented as a
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bag of words. Nevertheless this assumption may not hold in
practice. There might be some implied associations among
them. For example, given a query “Vancouver Olympics”,
there exists an association between the query terms. Users
are not looking for either other events in Vancouver or the
Olympic games in other cities.

• The Vancouver Olympics draw to a spectacular close
after 17 days of intense competition.

• Vancouver athletes ... 2012 London Olympics.

Given above two documents with both “Vancouver” and
“Olympics” occurring once each, a traditional IR model will
give them the same weights. Obviously the former docu-
ment contains more valuable information for users than the
later. The association between “Vancouver” and “Olympics”
reflects the distance between them. Therefore, it is neces-
sary to reward the document where the matched query terms
appear together/close.

Many researchers have been working on proximity met-
rics in information retrieval [4, 11, 12]. Whereas, the na-
ture of the associations among query terms still awaits fur-
ther study. Some proximity approaches only considers ad-
jacency [26, 27], while non-adjacent terms may also have
associations. N-gram models [1, 17] consider n word se-
quences, which expand the radius of matching. It is yet
hard to determine N, and complexity grows exponentially
with the growth of N. Also, redundant proximity informa-
tion may be led into the model, which may on the other
hand decreases the performance of the probabilistic weight-
ing models. Other proximity based probabilistic weighting
models, such as [5, 6], add proximity information into their
weighting functions in a heuristic manner. However, their
experiments are not conclusive and their retrieval functions
are not shown to be effective and robust enough [28].

In this paper, we present a Cross Term Retrieval model,
denoted as CRTER, to model the associations among query
terms in probabilistic retrieval models. A pseudo term,
Cross Term, is introduced for boosting retrieval performance.
A Cross Term is generated by two closely occurred query
terms.

We assume that an occurrence of a query term has an im-
pact towards its neighbouring text. This impact attenuates
when a position is farther away. If we try to characterize this
impact with a mathematic function, intuitively the function
should satisfy the following properties: Non-negative, Con-
tinuous, Symmetric, Monotonic, Identity (See detail in Sec-



tion 3). We use kernel functions that have been brought to
proximity retrieval [10, 16] to estimate the query term oc-
currence’s impact. In this paper, we investigated three more
kernel functions that satisfy the above properties: Quartic
Kernel, Epanechnikov Kernel, and Triweight Kernel. The
kernel functions are normalized with a minimum value of 0
and a maximum value of 1. When two query terms, qi and
qj , occur closely in a document, their impact shape functions
will have an intersection. We say qi and qj are generating
terms of a Cross Term qi,j , which occurs when qi and qj ’s
impact shape functions intersect.

The corresponding impact shape functions’ value at this
intersection is Cross Term qi,j ’s occurrence value, which
ranges from 0 to 1. The closer two query terms’ occurrences
are, their generated Cross Term has higher occurrence value,
according to the impact shape function’s properties. There-
fore, the Cross Term’s occurrence value indicates to which
extent two query terms are correlated.

The challenge we are facing is how to estimate a Cross
Term from a document collection, and integrate the Cross
Term into a probabilistic weighting model. In a probabilis-
tic weighting model, some variants change from term to
term, namely the within-document Cross Term frequency
(tf), the number of documents containing the Cross Term
(n), and the within-query Cross Term frequency (qtf), re-
spectively. We define the corresponding variants for Cross
Terms: tf(qi,j), n(qi,j), and qtf(qi,j). For tf(qi,j), as a
pseudo term, the traditional counting method of the occur-
rences in a document does not make much sense, especially
when we aim to reward more on the Cross Terms that the
generating query terms are closer. Instead of accumulating
the number of occurrences, we accumulate a Cross Term’s
occurrence value in a document as its tf(qi,j), which is small
when generating query terms are far away, and large when
generating query terms are close to each other. Please note
that tf(qi,j) is always smaller than the number of occur-
rences of a Cross Term in the document. In order to balance
with tf(qi,j), we define n(qi,j) and qtf(qi,j) correspondingly.
n(qi,j) is the accumulated Cross Term’s average value on
each document over the collection. In a query, since it is
normally short and only contains query terms, we assume
that terms in a query are densely distributed. If two terms
exist in a query, they are regarded as being adjacent. Then
qtf(qi,j) is a simplified case of within-document frequency
by treating the query as a document. With the defined
Cross Term variants, we integrate Cross Terms into tradi-
tional BM25 weighting model [25], by treating them as spe-
cial terms. Cross Terms’ weights are computed and linearly
combined with query terms’ weights.

The remainder of this paper is organized as follows. In
Section 2, we discuss the prior related work. In Section
3, we introduce the concept of Cross Term and define its
variants. In Section 4, we propose Cross Term Retrieval
(CRTER) model utilizing BM25 as basic weighting function.
In Section 5, we set up our experimental environment on
six TREC collections, and test the proposed CRTER model
and compare it with some existing models. In Section 6,
we conclude the paper with a discussion of our findings and
future work.

2. RELATED WORK
::
In

:::
the

::::::
1990s,

:::::
some

:::::
early

::::::::::
researchers

:::::::
started

::
to

::::::::::
investigate

:::
the

:::::::::::
effectiveness

::
of

:::::
term

:::::::::
proximity

::
in

:::::::::::
Information

:::::::::
Retrieval.

:::::
Allan

::::
and

::::::::::
Ballesteros

:::
[2]

::::::::
indexed

:::::::
phases

:::::::
instead

:::
of

:::::
terms

::::
with

::::::::
InQuery

:::
[7],

::::
and

::::::::
obtained

::::::::::::
improvements

::
in

:::::::
TREC

::::::::::
campaigns.

::::::
Clarke

::::
and

::::::::
Cormack

:::
[9]

:::::::::::
introduced

:
a
:::::::::
“NEAR”

::::::::
operator

::
to

:::::::
quantify

::::
the

:::::::::
proximity

::
of

:::::
query

::::::
terms.

::::::::
Hawking

::::
and

:::::::::::
Thistlewaite

::::
[12]

::::::::
evaluated

:::::::
“Span”

:::::::::
proximity

::::::::::
approaches

:::
on

::::::
TREC

:::::
data

::::
sets,

:::::
which

::
is,

::::
the

::::
text

::::::::
segments

::::::::::
containing

::
all

::::::
query

::::
term

:::::::::
instances.

:::::
Some

::::::
studies

::::::::::::
heuristically

:::::::::
integrated

:::::
word

:::::::::
proximity

::::
into

:::::::::::
probabilistic

:::::::::
weighting

:::::::
models,

::::
such

::
as

::::::::::::
[5, 6, 24, 28].

:::::::::
However,

:::
the

::::::
nature

::
of

::::::
query

::::
term

:::::::::
proximity

::::
still

::::::
awaits

:::::::
further

:::::
study.

N-gram IR models have been investigated as a proxim-
ity approach by researchers for years [1, 17, 18]. They are
recognized as having high complexity and may lead to re-
dundant information. Bigram models make a better balance
between effectiveness and complexity. Song and Croft [26]
proposed a general language model that combines bigram
language models with several smoothing techniques includ-
ing a Good-Turing estimate and corpus-based smoothing of
unigram probabilities. The relative contributions of the dif-
ferent models to the query generation probability are deter-
mined empirically. Srikanth and Rohini [27] approximated
the biterm probabilities using the frequency of occurrence of
terms. Biterm language models are similar to bigram lan-
guage models except that the constraint of order in terms is
relaxed. In [3], authors proposed a language modeling ap-
proach that incorporates word pairs, without a constraint on
adjacency or word order, where word pairs are determined
statistical relationships, or lexical affinities, between words.
Pickens [23] introduced an approach that uses non-adjacent
biterms, but the particular domain, musical documents, re-
quires an emphasis on the order of “words”. We also only
investigate the proximity between a pair of query terms,
whereas, our approach differs from the previous studies that
we propose the concept of a pseudo term, Cross Term, gen-
erated by two query terms to investigate how two query
terms’ occurrence change together. Cross Terms are nat-
urally integrated into basic retrieval models as new terms,
and therefore incorporate proximity into retrieval process.

Various proximity approaches integrating knowledge from
other realms were investigated. [11] introduced the linkage
of a query as a hidden variable, which expressed the term
dependencies within the query as an acyclic, planar, undi-
rected graph. A method of incorporating term dependence
in probabilistic retrieval model was proposed in [8] by adapt-
ing Bahadur-Lazarsfeld expansion (BLE), which was origi-
nally used in the pattern recognition field. In [4], authors
proposed a mathematical model based on a fuzzy proximity
degree of term occurrences particularly for boolean queries.
A retrieval model based on Markov random field [20] was
presented for developing a general framework for modeling
term dependencies.

Density functions based on proximity have been adopted
to characterize term influence propagation [10, 14, 16, 19,
22]. [10] is early work that proposed to propagate the tf ·idf
score of each query term to other positions, where triangle,
cosine, circle, and arc contribution functions were discussed
. The highest accumulated tf · idf score on all the positions
is adopted as the document’s score. [14] uses hanning (co-
sine) window function to characterize the density of terms.
Lv and Zhai [16] proposed a positional language model that
incorporates the term proximity in a model based approach
using four term propagation functions: gaussian, triangle,
cosine, and circle. We utilize the above term influence prop-



agation functions in measuring Cross Terms, and test more
potentially functions.

3. A NEW PSEUDO TERM: CROSS TERM
In this section, formally define the notion of Cross Term

and the method of computing a Cross Term. Suppose we
have a query, Q = {q1, q1, ..., qn} and a document D, where
pos is one of the positions of query term qi in document D.
The term qi will influence the positions between pos+k and
pos− k.

We assume that the impact of a matching term qi at posi-
tion pos can be captured by the value of an impact function
fi(pos, k).

Property 1. fi(pos, k) is the impact function of a query
term qi at position pos + k. And it must follow below 5
properties.

(1) Non-negative: fi(pos, k) > 0, the impact of a term to-
wards its neighborhood is always non-negative(We only focus
on the position influence between query terms).

(2) Continuous: |fi(pos, k)− fi(pos, k+ 1)| is small, i.e.,
there is a slight difference between two neighboring positions.

(3) Symmetric: fi(pos,−k) = fi(pos, k), the term has the
same impact towards two equal-distance positions.

(4) Monotonic: fi(pos, k) > fi(pos, k + 1), where k > 0.
The influence would decrease with the increasing of |k|.

(5) Identity: fi(pos, 0) = 1, set one as standard influence.

Gaussian Kernel, Circle Kernel, and Triangle Kernel are
widely used kernel function and satisfy all of above proper-
ties. We will discuss more about various kernel function in
Section 3.4. When two query terms are close enough, their
impact shape functions will join. Their point of intersection
reflects the association between these two query terms.

Definition 1. Given two query terms qi and qj , if there ex-
ists points of intersections for impact functions fi(pos1, k1)
and fj(pos2, k2), where pos1 +k1 equals to pos2−k2, we say
that a Cross Term occurs, denoted as qi,j . We call qi and
qj Generating Terms of qi,j .

Definition 2. When a Cross Term qi,j occurs, the Cross
Term’s value is the impact function’s value at the inter-
section.

Without previous domain knowledge of a query and a col-
lection, we assume that the query terms are identically dis-
tributed, i.e., the query terms have the same impact shape
functions. A Cross Term always locates in the middle of
its generating query terms, and has higher value when the
query terms occur closer.

0 5 10 15 20
0

0.5

1

Position in Document

 f
1
(pos) → ← f

2
(pos) 

← Cross Term q
1,2

Figure 1: An example of Cross Term

Figure 1 shows a Cross Term’s example. Two query terms,
q1 and q2, located at the 8th position and the 12th posi-
tion in the document. More intuitively, We adopt Gaus-
sian Kernel as impact shape function. Their impact’s shape
functions are f1(pos1, 2) and f2(pos2,−2), accordingly. We
can see that two shape functions cross over each other, and
there exists an intersection at the 10th position.

:::::
There

::
is

::
no

:::::::::
threshold

::::::::::::
incorporated

::
in

::::
the

::::::::::
definitions

::
of

::::::
Cross

:::::
Term

:::
and

:::
its

::::::
value.

::::
For

:
a
::::::::::
continuous

::::::
kernel

::::::::
function,

::::::
there

:::::
would

::::::
always

::
be

:::
an

::::::::::
intersection

::
if

::::
two

:::::
terms

:::::
occur

::
in

::::
one

::::::::::
document.

3.1 Within-Document Cross Term Frequency
Here we want to define the counting method for the fre-

quency. The within-document frequency is the rate at which
a term occurs in a document. For a single query term, its
frequency in document D equals how many times it occurs
in D. But for a Cross Term, to simply count its occurrence
might overestimate the frequency. We introduce a new es-
timation of a Cross Term’s within-document frequency. As
we can see from Figure 1 that q1.2’s value becomes higher if
q1 and q2 are close and lower if there is a farther distance
between q1 and q2. Naturally we adopt the Cross Term’s
value in estimating its within-document frequency.

Suppose the positions of qi in a document are {pos1,i, pos2,i,
..., postfi,i}, where tfi is the term frequency of qi. Corre-
spondingly, the positions of qj in the document are {pos1,j ,
pos2,j , ..., postfj ,j}, where tfj is the term frequency of qj .
Then the within-document term frequency of qi,j is defined
as follows.

Definition 3. The frequency of qi,j in D is the accumula-
tion of qi,j ’s value.

tf (qi,j , D)

=

tfiX
k1=1

tfjX
k2=1

Kernel

„
1

2
dist(posk1,i, posk2,j)

«
(1)

where tf is the term frequency of qi,j in D, Kernel(·) is the
kernel function adopted in query term’s impact function,
and dist(·) is the distance between two positions

dist(posk1,i, posk2,j) = |posk1,i − posk2,j |

Please note that the frequency of a Cross Term might not
be an integer. Meanwhile, various of kernel functions will
be studied in 3.4.

3.2 Number of Documents with A Cross Term
To evaluate the number of documents containing a Cross

Term qi,j , it is not reasonable to simply count how many
documents in which qi,j occurs. The contribution from a
query term and a Cross Term are different. For a query
term qi, an occurrence means its frequency accumulates 1,
and the number of documents containing qi is

n(qi) =
X

D∈Index

1{qi∈D}

where 1{qi∈D} is an indicator function, which equals to 1 if
qi ∈ Doci and equals to 0 otherwise. On the other hand,
an occurrence of a Cross Term adds a value less than 1 to
its frequency. A Cross Term’s value could be various, and
ranges from 0 to 1. Thus the difference of Cross Terms
should be shown in its variants.
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Figure 2: Kernel Functions

Definition 4. The number of documents containing a Cross
Term qi,j , is the sum of qi,j ’s average value on each docu-
ment, shown as follows

n(qi,j) =
X

D∈Index,Occur(qi,j ,D)6=0

tf(qi,j , D)

Occur(qi,j , D)
(2)

where Occur is the number of occurrence of qi,j , which is

Occur(qi,j , D) =

tfiX
k1=1

tfjX
k2=1

1{Kernel( 1
2 dist(posk1,i,posk2,j))6=0}

3.3 Within-Query Cross Term Frequency
To evaluate a Cross Term’s within-query term frequency,

we can track each positions of qi and qj the same way as
within-document frequency by the sum of all possible in-
tersections. Moreover, different from in documents, query
terms distribute densely in a query, so we can assume that
query terms are adjacent to each other.

Definition 5. The within-query frequency of qi,j is

qtf(qi,j) = Kernel(
1

2
) ·min (qtf(qi), qtf(qj)) (3)

where qtf(qi) and qtf(qj) are within query term frequencies
of qi and qj , and Kernel is the same kernel function utilized
in tf(qi,j , D).

3.4 Kernel Functions
We first apply four kernel functions that have been brought

into IR applications. Among them, the Gaussian kernel is
widely used in statistics and machine learning algorithms
such as the Support Vector Machines. Moreover, the Tri-
angle kernel, Circle Kernel, and Cosine Kernel come from
basic genomic graphics, which are applied to estimate the
proximity-based density distribution for the positional lan-
guage model [16]. below:

• Gaussian Kernel:

Kernel(u) = exp[
−u2

2σ2
] (4)

• Triangle Kernel:

Kernel(u) = (1− u

σ
) · 1{u≤σ} (5)

• Circle Kernel:

Kernel(u) =

r
1− (

u

σ
)2 · 1{u≤σ} (6)

• Cosine Kernel:

Kernel(u) =
1

2
[1 + cos(

uπ

σ
)] · 1{u≤σ} (7)

where σ is a normalization parameter, and 1{u≤σ} is indi-
cator function, which equals to 1 if u ≤ σ and equals to 0
otherwise.

Moreover, some other kernel functions satisfy the query
term impact function’s properties (Property 1). We also in-
troduce them into IR since the kernel functions are not ma-
turely applied in Information Retrieval. They are: Quartic
Kernel, Epanechnikov Kernel and Triweight Kernel, shown
as the following. The shape of the included kernel functions
are shown in Figure 2. The performance of using all the
kernel functions will be investigated in the experiments.

• Quartic Kernel:

Kernel(u) = (1− (
u

σ
)2)2 · 1{u≤σ} (8)

• Epanechnikov Kernel:

Kernel(u) = (1− (
u

σ
)2) · 1{u≤σ} (9)

• Triweight Kernel:

Kernel(u) = (1− (
u

σ
)2)3 · 1{u≤σ} (10)

4. CROSS TERM RETRIEVAL MODEL
We propose a Cross Term Retrieval (CRTER) model, uti-

lizing the Cross Term as a special term. A new combined
weighting model for a document is

CRTER(D) = (1−λ)·
X

1≤i≤K

w(qi, D)+λ·
X

1≤i<j≤K

w′(qi,j , D)

(11)
where w is the weighting function of query terms in Q, w′ is
the Cross Term qi,j ’s weight, and λ is a parameter balancing
the query terms and Cross Terms. When λ equals to 0, the
retrieval model uses query terms only, which is the standard



weighting model. When λ equals to 1, the retrieval model
uses Cross Terms only. Since the weights of query terms and
Cross Terms are normalized independently, the value of λ
reflects the influence of using Cross Terms. In this paper, we
use BM25 as the basic weighting model in CRTER. BM25 is
a classical weighting function employed by the Okapi system
[25]. As shown by previous TREC experimentation, BM25
usually provides very effective retrieval performance on the
TREC collections that are used in [29]

4.1 BM25
In BM25, the weight of a search term is assigned based

on its within-document term frequency and query term fre-
quency. The corresponding weighting function is as follows.

w(qi, D) =
(k1 + 1) ∗ tf
K + tf

∗ (k3 + 1) ∗ qtf
k3 + qtf

∗ log
N − n+ 0.5

n+ 0.5

(12)

where w is the weight of a query term qi in a document.
The variants in the above formula can be grouped into two
categories as follows:

• The first category of variants are query independent.
In this category, N is the number of indexed docu-
ments in the collection. k1 and k3 are tuning constants
which depend on the dataset used and possibly on the
nature of the queries. K equals to k1 ∗ ((1 − b) + b ∗
dl/avdl), dl is the length of the document, and avdl is
the average document length. In our experiments, the
values of k1, k3 are default to 1.2 and 8, respectively,
which is the recommended setting in [25].

• Values of the other group of variants change from query
to query. In this category, n is the number of docu-
ments containing a specific term. tf is within-document
term frequency. qtf is within-query term frequency.

Finally, a document’s weight for a query is given by the
sum of its weight for each terms in the query,

BM25(D) =

i<KX
i=1

w(qi, D) (13)

where w is the term weight obtained from Equation 12.

4.2 Algorithm and Time Complexity
In this section, we present the CRTER Algorithm with

an analysis on tis time complexity. We show that the time
complexity of our proposed algorithm is at the same level
of the basic weighting model. Figure 3 is the algorithm for
Cross Term Retrieval (CRTER) model. In the rest of this
section, we will analyze its time complexity.

Suppose the number of terms in a query Q is |Q|, the
number of documents in an index is |Index|, the average

document length is |D|. The first 6 steps are query pro-
cessing that the within-query term frequency is computed
for both query terms and Cross Terms, and the time com-
plexity of this part is O(|Q|2). The remaining steps are
document processing through the index. Also both query
terms and Cross Terms are computed separately. For steps
8 to 12, this is standard document processing except storing
term positions as well, and the time complexity of this part is

1: for all qi ∈ Q do

2: Compute qtf(qi)

3: end for
4: for all qi, qj ∈ Q do

5: Compute qtf(qi,j)

6: end for
7: for all D ∈ Index do
8: for all qi ∈ Q do

9: Compute tf(qi, D)

10: Store qi’s positions on D in an array

11: Compute n(qi) = n(qi) + 1

12: end for
13: for all qi, qj ∈ Q do

14: for k1 < tf(qi, D)&k2 < tf(qj , D)

15: Kerneltemp = Kernel( 1
2
|posk1,i − posk2,j |)

16: if Kerneltemp 6= 0

17: tf(qi,j , D)+ = Kerneltemp
18: Occur(qi,j , D)+ = 1

19: end if
20: end for

21: Compute n(qi,j) = n(qi,j) +
tf(qi,j ,D)

Occur(qi,j ,D)
;

22: end for
23: end for
24: Compute w(qi, D)

25: Compute w′(qi,j , D);

26: Compute CRTER(D)

27: Rank documents according to CRTER(D)

Figure 3: Algorithm for CRTER

O(|Q| · |D|). In steps 14 to 20, tf(qi,j , D) and Occur(qi,j , D)

are accumulated, and it takes O(tf
2
) time, where tf is av-

erage within-document term frequency. Thus computing all

Cross Terms’ variants on one document takes O(|Q|2 · tf2
).

From step 24 to step 27, the weights for query terms and
Cross Terms are computed and the documents are ranked
according to CRTER. This algorithm for CRTER model has
the time complexity of the follows

O(|Q|2 + |Index| · (|Q| · |D|+ |Q|2 · tf2
)) (14)

Generally the number of query terms |Q| in a submitted
query is far smaller than the number of documents in in-
dex, i.e., |Q| << |Index|, therefore the first |Q|2 in Fo-

rumla 14 could be eliminated. The use of Cross Terms

is represented as |Q|2 · tf2
in Formula 14. The percentage

of query terms’ within-document frequency over the docu-
ments’ length is normally very low. Formula 14 will become

O(|Index| · (|Q| · |D|)) (15)

when |Q| · tf2 ≤ |D|. This means the time complexity of
CRTER is the same as a basic probabilistic weighting model.

5. EXPERIMENTAL RESULTS

5.1 Data Sets and Evaluation Metrics
We conduct a series of experiments on six standard TREC

collections shown in Table 1. These collections are diverse



in both sizes and content, which facilitate a thorough evalu-
ation of our proposed CRTER model. The TREC8 contains
newswire articles from various sources, such as Financial
Times (FT), the Federal Register (FR) etc., which are usu-
ally considered as high-quality text data with little noise.
AP88-89 contains articles published by Association Press
from the year of 1988 to 1989. The WT2G collection is a
2G size crawl of Web documents. The WT10G collection
is a medium size crawl of Web documents, which was used
in the TREC 9 and 10 Web tracks. It contains 10 Giga-
bytes of uncompressed data. The .GOV2 collection, which
has 426 Gigabytes of uncompressed data, is a crawl from
the .gov domain. This collection has been employed in the
TREC 14 (2004), 15 (2005) and 16 (2006) Terabyte tracks.
The Blog06 collection includes 100,649 blog feeds collected
over an 11 week period from December 2005 to February
2006. Following the official TREC settings [21], we index
only the permalinks, which are the blog posts and their as-
sociated comments. For all test collections used, each term
is stemmed using Porter’s English stemmer, and standard
English stopwords are removed.

Collection Name # of Docs Topics # of Topics
TREC8 528,155 401-450 50
AP88-89 164,597 51-100 50
WT2G 247,491 401-450 50
WT10G 1,692,096 451-550 100
.GOV2 25,178,548 701-850 150
Blog06 3,215,171 851-950 150

Table 1: Overview of the TREC collections used.

Each topic contains three topic fields, namely title, de-
scription and narrative. We only use the title topic field
that contains very few keywords related to the topic. The
title-only queries are usually short which is a realistic snap-
shot of real user queries in practice. On each collection, we
evaluate our proposed model by a 10-fold cross-validation.
The test topics associated to each collection are randomly
split into ten equal subsets. In each fold, 9 subsets of the
test topics are used for training, and the remaining subset
is used for testing. The overall retrieval performance is av-
eraged over all 10 test subsets of topics.

We use the TREC official evaluation measures in our ex-
periments, namely the topical MAP on Blog06 [21], and the
Mean Average Precision (MAP) on the other five collec-
tions [29]. To emphasize on the top retrieved documents,
we also include P@5 and P@20 in the evaluation measures.
All statistical tests are based on Wilcoxon Matched-pairs
Signed-rank test.

5.2 Effectiveness of CRTER
We first investigate how much our proposed Cross Term

Retrieval (CRTER) model can boost BM25.
:::
We

:::
use

:::::::
optimal

:::::
BM25

:::
as

::::
our

::::::::
baseline.

:::::
The

::::::::::
parameter

:
b
:::

is
:::
set

:::
to

::
be

:::::
0.35,

:::::
which

::
is

::::::
shown

::
to

:::
be

:::::::
optimal

::
in

::::
our

::::::::::
preliminary

:::::::::::
experiments

::::
(See

::::::
Figure

:::
7).

::
The related experimental results are pre-

sented in Table 2. Seven different kernel functions are ap-
plied to instantiate the CRTER model, including: Gaus-
sian, Triangle, Circle, Cosine, Quartic, Epanechnikov, and
Triweight kernels. All the results are evaluated by MAP,
P@5, and P@20. The percentage of how much CRTER out-
performs BM25 is also listed. The best result obtained on

each collection is marked bold. As shown by the results,
our proposed CRTER model outperforms BM25 on all six
collections used. The advantage of CRTER over BM25 is es-
pecially evident on the .GOV2 and Blog06 Web collections,
where statistically significant improvement is observed with
all 7 kernel functions used. Moreover, according to the re-
sults in Table 2, each kernel function has its advantage on
some aspects. There is no single kernel function can outper-
form others on all the datasets.

5.3 Parameter Sensitivity
An important issue that may affect the robustness of the

CRTER model is the sensitivity of its parameters λ (in
Equation 11) and σ (in Equation 4-10) to retrieval perfor-
mance. The parameter λ balances the query terms and the
Cross Terms. When λ equals to 0, the retrieval model uses
query terms only, which is the standard BM25 weighting
model. When λ equals to 1, the retrieval model uses Cross
Terms only. Since the weights of query terms and Cross
Terms are normalized independently, the value of λ reflects
the influence of using Cross Terms. The kernel parameter
σ controls the range of a query term’s impact. When σ is
small, a Cross Term occurs only if its generating term are
very close. When σ is large, query terms far away from each
other can generate a Cross Term. But the Cross Term’s
value will be different according to the distance between
query terms.

Figure 4 plots the evaluation metrics MAP, P@5, and
P@20 obtained by CRTER over λ values ranging from 0
to 1 on WT2G. In addition, a group of different settings
of σ are applied, namely σ = 2, 5, 10, 20, 50, 75, 100. The
general tendency on each evaluation metric is similar. As
we can see from Figure 4, CRTER’s retrieval performance
decreases with large λ values. CRTER generally performs
well over different datasets when λ locates between 0 and
0.2. Overall, a λ value between 0 and 0.2 is recommended
as it is shown to be reliable. In addition, CRTER’s retrieval
performance increases with large σ values, and tends to be
stable when σ is larger than 20.

Figure 5 plots the CRTER model’s performance with all
kernel functions against kernel parameter σ on TREC8 dataset.
It illustrates the effect of kernel parameters in detail. The
increment of σ is 1 at the beginning and becomes larger after
10, because the model is more sensitive when σ is smaller.
For a given σ, the range of CRTER’s performance under dif-
ferent kernel functions is shown as a segment. The CRTER
model overall appears to be effective over a wide range of σ
values. When σ becomes larger, CRTER’s performance nor-
mally increases at the beginning, due to the incorporation
of term proximity. However, a larger σ value brings noise to
the model and therefore decreases CRTER’s performance. A
σ value between 20 and 25 is recommended to be a reliable
setting.

5.4 Robustness and Generalized Performance
The proposed CRTER model’s robustness is important to

its applications in practice. Ideally, we would like to have
a reliable retrieval performance using CRTER on various
datasets with its parameters within a stable safe range. This
issue is particularly crucial for a given new dataset without
training data.

We first fix BM25’s parameter b = 0.35, and evaluate the
robustness of CRTER provided by an empirical setting, ob-



Eval Metric TREC8 AP88-89 WT2G WT10G .GOV2 Blog06

BM25
MAP 0.2561 0.2710 0.3156 0.2119 0.3039 0.3246
P@5 0.4920 0.4360 0.5280 0.3800 0.6134 0.6400
P@20 0.4000 0.3860 0.3930 0.2670 0.5426 0.5997

CRTER Gaussian

MAP
0.2604 0.2787 0.3354 0.2213 0.3322 0.3484

(+1.679%) (+2.841%) (+6.274%) (+4.436%) (+9.312%) (+7.332%)

P@5
0.5040 0.4520 0.5480 0.4080 0.6336 0.6440

(+2.439%) (+3.670%) (+3.788%) (+7.368%) (+3.293%) (+0.625%)

P@20
0.4190 0.3900 0.4070 0.2775 0.5691 0.6147

(+4.750%) (+1.036%) (+3.562%) (+3.933%) (+4.884%) (+2.501%)

CRTER Triangle

MAP
0.2606 0.2789 0.3359 0.2207 0.3287 0.3494

(+1.757%) (+2.915%) (+ 6.432%) (+4.153%) (+8.161%) (+7.640%)

P@5
0.5040 0.4520 0.5480 0.4080 0.6336 0.6507

(+2.439%) (+3.670%) (+3.788%) (+7.368%) (+3.293%) (+1.672%)

P@20
0.4190 0.3890 0.4100 0.2775 0.5671 0.6170

(+4.750%) (+0.777%) (+4.326%) (+3.933%) (+4.515%) (+2.885%)

CRTER Circle

MAP
0.2599 0.2783 0.3359 0.2227 0.3264 0.3487

(+1.484%) (+2.694%) (+ 6.432%) (+5.97%) (+7.404%) (+7.425%)

P@5
0.5040 0.4600 0.5440 0.4060 0.6282 0.6453

(+2.439%) (+5.505%) (+ 3.030%) (+6.842%) (+ 2.413%) (+0.828%)

P@20
0.4190 0.3890 0.4080 0.2785 0.5631 0.6137

(+4.750%) (+0.777%) (+ 3.817%) (+4.307%) (+3.778%) (+2.335%)

CRTER Cosine

MAP
0.2599 0.2789 0.3358 0.2216 0.3289 0.3501

(+1.484%) (+2.915%) (+ 6.401%) (+4.578%) (+8.226%) (+7.856%)

P@5
0.5040 0.4560 0.5440 0.4080 0.6336 0.6533

(+2.439%) (+4.587%) (+3.030 %) (+7.368%) (+3.293%) (+2.078%)

P@20
0.4190 0.3910 0.4090 0.2765 0.5668 0.6316

(+4.750%) (+1.295%) (+ 4.071%) (+3.558%) (+4.460%) (+5.319%)

CRTER Quartic

MAP
0.2599 0.2787 0.3352 0.2212 0.3258 0.3497

(+1.484%) (+2.841%) (+6.210 %) (+4.389%) (+7.206%) (+7.733%)

P@5
0.5040 0.4560 0.5440 0.4080 0.6322 0.6533

(+2.439%) (+4.587%) (+ 3.030%) (+7.368%) (+3.065%) (+2.078%)

P@20
0.4170 0.3920 0.4100 0.2780 0.5658 0.6173

(+4.250%) (+1.554%) (+ 4.326%) (+4.120%) (+4.276%) (+2.935%)

CRTER Epanechnikov

MAP
0.2602 0.2787 0.3343 0.2217 0.3277 0.3482

(+1.601%) (+2.841%) (+ 5.925%) (+4.625%) (+7.832%) (+7.270%)

P@5
0.5080 0.4520 0.5440 0.4080 0.6336 0.6467

(+3.252%) (+3.670%) (+ 3.030%) (+7.368%) (+3.293%) (+1.047%)

P@20
0.4200 0.3890 0.4070 0.2785 0.5654 0.6147

(+5.000%) (+0.777%) (+ 3.562%) (+4.307%) (+4.202%) (+2.501%)

CRTER Triweight

MAP
0.2601 0.2788 0.3356 0.2225 0.3293 0.3506

(+1.562%) (+2.878%) (+ 6.337%) (+5.002%) (+8.358%) (+8.010%)

P@5
0.5080 0.4600 0.5440 0.4060 0.6336 0.6587

(+3.252%) (+5.505%) (+ 3.030%) (+6.842%) (+3.293%) (+2.922%)

P@20
0.4180 0.3910 0.4070 0.2780 0.5674 0.6187

(+4.500%) (+1.295%) (+ 3.562%) (+4.120%) (+4.571%) (+3.168%)

Table 2: Comparison between BM25 baseline and CRTER with different kernel functions. BM25 parameter
b is initialized to be 0.35. All the results are evaluated by MAP, P@5, and P@20. CRTER outperforms
BM25 on all collections.

tained from previous observations, namely Triangle Kernel,
σ = 25, and λ = 0.2. We compare this empirical setting with
the following optimization strategies: first, optimize each of
kernel function, σ or λ while setting the other parameter to
the empirical value; second, optimize all of kernel functions,
σ and λ. Figure 6 presents the related results on 4 datasets:
TREC8, AP88-89, WT2G and WT10G. From this figure,
we can see that the performance obtained by the empirical
setting is comparable to the retrieval performance obtained
by the optimized parameter settings on all datasets used.

We also test CRTER’s performance under the same em-

pirical setting with BM25 over different BM25 parameters
on all the six collections. In BM25, b ranges from 0.15 to
0.95. In Figure 7, MAP of BM25 changes over different b,
and CRTER can boost BM25 under all b’s settings and over
all the collections. More specifically, for .GOV2 dataset, we
can see that BM25’s performance is very sensitive to b, its
MAP gradually increases with the incrementment of b at
the beginning, and sharply decreases later. CRTER, on the
other hand, boosts basic BM25 over different b, and tends
to stabilize the retrieval performance.

In general, CRTER performs robustly and has strong gen-
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Figure 4: Sensitivity to CRTER parameter λ with different kernel parameters on WT2G
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Figure 5: Sensitivity to CRTER kernel parameter σ on TREC8 (Each segment gives the range of results
using different kernel functions under the given kernel parameter σ. The lowest point is the minimal result,
the highest point is the maximal result, and the point in the middle is the average result. )

eralized performance. Without much knowledge of a new
dataset, a group of parameters are recommended for CRTER:
Triangle Kernel, σ = 25, and λ = 0.2.

5.5 Comparison with Positional Language Model
We study how the proposed CRTER model performs com-

pared to the state-of-the-art approaches. In particular, its
effectiveness is evaluated over the positional language model
proposed by Lv et al. [16]. The positional language model
(PLM) estimates a language model for every single position
in a document. Among various kernel functions tested, the
Gaussian kernel is shown to provide the best retrieval per-
formance [16].

We compare CRTER’s results with PLM on the datasets
used in [16], including AP88-89, WT2G and TREC 8. As
illustrated in Table 3, PLM improves the language model
baseline (LM) by 1.3%, 2.0%, and 1.1% on TREC8, AP88-89
and WT2G, respectively, while the corresponding improve-
ment over BM25 by CRTER is 1.8%, 2.9% and 6.4%, respec-
tively. Overall, CRTER’s retrieval performance is at least
comparable to, if not better than PLM in our experiments.

TREC8 AP88-89 WT2G
LM 0.2518 0.2154 0.3249

PLM 0.255(1.3%) 0.2198(2.0%) 0.3285(1.1%)
BM25 0.2561 0.2710 0.3156

CRTER 0.2606(1.8%) 0.2789(2.9%) 0.3359(6.4%)

Table 3: Direct MAP Comparison with PLM

What is more, another advantage of CRTER model is that
it is more flexible that it can be fitted into more basic prob-
abilistic weighting models other than BM25, using defined
variants of Cross Term.

5.6 A Case Study
To further analyze the effectiveness of the proposed CRTER

model, out of the 550 test topics used in our experiments, we
conduct a case study on topic 867 on the Blog06 collection.
Using the judged documents, namely the golden standard
provided by TREC, we explore the factors that could dif-
ferentiate relevant documents from non-relevant ones. The
statistics about the distribution of the query terms in the
relevant and non-relevant documents is shown in Table 4.
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Figure 6: Robustness of CRTER:Compare CRTER’s retrieval performance provided by an empirical setting,
namely Triangle Kernel, σ = 25, and λ = 0.2 with the following optimization strategies: first, optimize each
of kernel function, σ or λ while setting the other parameter to the empirical value; second, optimize all of
kernel functions, σ and λ
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Figure 7: Generalized Performance of CRTER: Compare MAP between CRTER and BM25 with the change
of b. (CRTER uses fixed parameter: Triangle Kernel, σ = 25, λ = 0.2)

The relevant and non-relevant documents cannot be distin-
guished from each other by neither their average minimum
distance nor the average distance (less than 10). Therefore,
traditional proximity-based approaches may not be able to
boost the relevant documents of this specific topic. However,
the average Cross Term’s within document frequency (in
CRTER model) of the relevant documents is clearly higher
than the non-relevant ones, indicating that our proposed
CRTER model can effectively identify the relevant docu-
ments from the non-relevant ones for this topic.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce the concept of Cross Term

to integrate the context of the query term proximity into
IR models. The Cross Term measures the association that
two terms have in the textual proximity context. A query
term’s influence to their neighboring text is approximated
by a kernel function, which gradually decreases with the
distance to the term. The Cross Term is then defined as
the overlapped influence of the two terms. Based on this
idea, we propose a Cross Term Retrieval (CRTER) model,
where within-document, within-query frequency of a Cross

Term and the number of documents that contain the Cross
Term are well defined. Through extensive experiments on
standard TREC collections with various kernel functions,
we show that the proposed model outperforms the BM25
baseline, and is at least comparable to the state-of-the-art
Positional Language model. Furthermore, how the setting of
the balancing parameter in the CRTER model and the shape
parameter of kernel function affect CRTER’s effectiveness
are discussed. Meanwhile, a group of optimal parameters
shows the robustness of the CRTER model on all collections
used.

Our proposed concept of Cross Term has various promis-
ing future research directions. For example, we can apply
the CRTER model to other classical IR models, such as lan-
guage modeling, and the divergence from randomness mod-
els. We can also conduct an in-depth study on the Cross
Term’s distribution in documents collections, and examine
which of the kernel functions fits the best to the actual dis-
tribution.
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# of Docs
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Blog06 Collection)
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