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Abstract—A user study was performed to compare two non-

touch input methods for mobile gaming: tilt-input and facial 
tracking. User performance was measured on a mobile game 
called StarJelly installed on a Google Nexus 7 HD tablet. The tilt-
input method yielded significantly better performance. The mean 
game-score attained using tilt-input was 665.8.  This was 7××  
higher than the mean of 95.1 for facial tracking. Additionally, 
participants were more precise with tilt-input with a mean star 
count of 19.7, compared to a mean of 1.9 using facial tracking. 
Although tilt-input was superior, participants praised facial 
tracking as challenging and innovative. 

Keywords—Android; Mobile Games; Facial Tracking; Tilt-
input; Accelerometer; Sensors; Qualcomm Snapdragon 

I. INTRODUCTION 
With the rampant rise in smartphone usage, the gaming 

industry has adjusted to address to the convenience and appeal 
of the mobile context. The genesis of mobile gaming dates to 
the late 1990s when Nokia included a re-vamped version of the 
arcade game Snake on their mobile phones.  It was a standard 
pre-loaded feature.1  Present-day mobile games are, of course, 
far  superior in terms of graphics and the sophistication of 
gameplay. Importantly, today’s mobile games are available 
from download sites, such as the App Store on Apple’s iOS or 
the Play Store on Google’s Android OS.  

Although game developers put considerable effort in 
advancing the state of the art in graphics and themes for 
gameplay, less interest is directed at the UI (user interface) of 
mobile games.  The controls for mobile games on smartphones 
are limited as they heavily rely on touch-input. Most such 
games employ a soft touchpad for navigational input with some 
games relying on taps or touch gestures.  A common UI 
scenario is thumb input using a soft d-pad on the left and soft 
buttons on the right, the latter to control in-game secondary 
actions.  An example is Sega’s Sonic the Hedgehog 2.  See 
Fig. 1.  Another method of recent interest is tilt-input using a 
mobile device’s built-in accelerometer [5].  Some games, such 
as Imangi Studios’ Temple Run, an infinite-runner game, 
effectively use tilt-input while also relying on touch-based 
input.  

                                                             
1 http://en.wikipedia.org/wiki/Snake_(video_game) 

 

Fig. 1. Sega’s Sonic the Hedgehog 2 illustrates a typical mobile UI, with soft 
touch zones as input controls. 

One drawback of touch input for mobile games is the lack 
of tactile feedback and proprioception. While it is relatively 
easy to implement soft versions of the buttons on traditional 
handheld game consoles, doing so on a flat touch-sensing 
surface is problematic.  The lack of a tactile sense can be 
mitigated (somewhat) using either auditory feedback or the 
device’s vibrotactile actuator to create a “response” when a 
player presses, pushes, or slides on a soft control.  However, 
interacting with a soft control lacks proprioception – the sense 
of relative position of body parts (e.g., fingers, limbs) 
combined with a sense of strength and effort in movement.  Of 
course, physical controls inherently have location and shape 
and “push back” when the user actuates them.  These 
properties bear valuable information to the player.  So, there 
are significant challenges in implementing soft controls on 
touchscreens.  However, the wide variety of sensors on modern 
mobile devices has opened new avenues to interaction, such as 
the aforementioned tilt-input using the device’s accelerometer.  
Another sensor of potential interest for gaming is the device’s 
built-in camera.   

Tracking of a user’s body or a body part is available in 
many applications today, both in mobile and non-mobile 
contexts.  The most obvious non-mobile example is 
Microsoft’s Kinect, which uses a camera and depth sensor to 
locate and respond to the user’s position and movement in 
front of a console. Position and movement information allow 
the player to control the in-game environment using a natural 
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mapping from the player’s movements to the movement of 
scene objects, such as an avatar [2]. Face tracking is also of 
interest, for example, to detect the number of faces in a scene. 
In a gaming context, facial tracking has been predominantly 
used to sense and augment a user’s face, providing an 
experience known as augmented reality (AR). For example, a 
2010 Iron Man 2 promotional website released a web app 
demo that used a webcam to place an Iron Man helmet on the 
user.  The demo translates and rotates the 3D helmet object 
based on the user’s head movements.  

In mobile gaming, the notion of facial tracking is fairly 
new. There are a few mobile apps which use the front-facing 
camera on mobile devices; however, games using facial 
tracking are scarce.  One example is Umoove’s Flying 
Experience for iOS, introduced in February 2014.  The game 
uses the device’s front-facing camera to track the user’s head 
movements.  Head movements are used to navigate a 3D 
environment. 

In the next section, we review previous work in mobile 
gaming related to tilt-input or tracking a user’s body or body 
parts.  This is followed with a description of our methodology 
to empirically compare tilt-input and facial tracking as input 
methods for mobile gaming.  The results are then presented and 
discussed with conclusions drawn. 

A. Related Work 
Wang et al. [10] performed a study seeking to enrich the 

experience of motion-detection games by employing a face 
tracking system with an Xbox gamepad. To test forms of hybrid 
control schemes, they tested conventional control with and 
without facial tracking added. Employing facial tracking added 
a new axis of in-game control. Participants performed better 
when facial tracking was added to the conventional physical 
control scheme. Additionally, the experiment observed that 
players felt more involved in the games they were playing and 
stimulated a higher emotional response when facial tracking 
was implemented versus without it.  In contrast, our 
experiment compares tilt and facial tracking as individual input 
methods and separate control schemes. 

Sko and Gardner [9] conducted a similar study that used 
head tracking in a first-person game environment using a 
webcam. The experiment employed natural head movements 
which mapped to four different gameplay controls: zooming, 
spinning, peering, and iron sighting. The experiment also 
implemented two ambient (or perceptual) techniques: head-
coupled perspective (HCP), which mimics the parallax effect 
of a scene viewed from a window, and handy-cam, which 
replicates the shaky effect of a handheld camera. These 
ambient techniques have no effect in gameplay controls as they 
only enhance visual feedback. Sko and Gardner observed a 
general positive feedback with participants most receptive to 
peering. It was also noted that the participants experienced 
neck fatigue and pain when performing iron sighting, which 
required the user to tilt his/her head to the right. In addition, the 
HCP technique was ineffective due to the latency of the 
system. 

Similarly, Francone and Nigay [4] performed a study on 
mobile devices using facial tracking to mimic user perception. 

By using the front-facing camera, a pseudo sense of depth and 
perception was rendered.  The technique was found acceptable, 
with participants claiming the interaction was natural, 
attractive, and innovative.  However, Francone and Nigay also 
noted that the camera’s field of view was limited and therefore 
could not always capture the face of the user. Additionally, the 
small screen clipped regions of the rendered image and 
therefore compromised the perception of depth.  

Zhu et al. [11] conducted an experiment comparing head 
tracking and gaze tracking as an input controller for a 3D 
soccer game. Similar to related work, the research observed 
that head tracking provided a more immersive experience and 
kept the participants engaged. It was also shown that head 
tracking was inferior to gaze tracking because head motion 
required more physical movement.   

Alternatively, Chehimi and Coulton conducted an 
experiment dealing with a motion-controlled 3D mobile game 
[3]. In the experiment, they compared a mobile device’s 
accelerometer and physical keypad as input to navigate around 
a 3D environment. Participants found the accelerometer control 
scheme encouraging and easier to use than the phone’s 
physical keypad. The accelerometer-based input method was 
also observed to have an easier learning curve versus the phone 
keypad. The experiment showed that the tilt-based controls 
provided a more intuitive experience for both gamers and non-
gamers.  

Cairns et al. [2] compared touch and tilt in a study using a 
mobile racing game, Beach Buggy Blitz. Tilting produced 
higher levels of immersion and a better performance versus 
touch. These results were attributed to the natural mapping of 
tilt to a physical steering wheel. The steering metaphor 
provided players an easy introduction to the game’s mechanics. 

 Browne and Anand [1] evaluated commonly used input 
methods for mobile games. Participants’ preferences from most 
to least preferred were accelerometer (tilt-input), simulated 
buttons, and finally, touch gestures. Similar to Chehimi and 
Coulton’s study, the participants found the accelerometer input 
method intuitive and engaging. The evaluation also showed 
that the reason participants gave a poorer rating to simulated  
buttons and touch gestures was the lack of tactile feedback.  In 
the case of the simulated buttons, the fingers of the participants 
occluded the button.  This resulted in a confusing sequence of 
actions.  

B. Overview 
Our user study compared two input methods: tilt-input and 

facial tracking. The study compared both input methods and 
observed player behaviour including learnability and efficiency 
with respect to speed and accuracy. The main goal was to 
assess the relatively new use of facial tracking as an input 
method for mobile gaming.  Tilt-input, as a more common 
input method, was used as a point of comparison.   

The study used the facial tracking and recognition API of 
the Qualcomm Snapdragon processor used in mobile game 
environments [7]. Participants were tested using an endless 
runner-styled game called StarJelly. The game utilizes the 
accelerometer sensor (tilt-input) and the front-facing camera of
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Fig. 2. Google Nexus 7 HD (released Fall 
2013). 

 

 

Fig. 3. Qualcomm Facial Tracking Demo 
App showing head-tracking capabilities. 

 

Fig. 4. StarJelly gameplay and user interface. 

a Nexus 7 HD tablet (facial tracking). Each participant was 
given five lives per input method. The objective of the game 
was to survive as long as possible and to collect as many stars 
as possible.  Together, these measures provided a total score 
per life iteration.  See the Software subsection below. 

II. METHOD 

A. Participants 

The experiment included 12 voluntary participants 
recruited from the local university campus.  Ten participants 
were male, two female.  Ages ranged from 19 to 23 years.  All 
participants were smartphone or tablet owners with casual 
experience in mobile gaming. The participants were given no 
incentives or compensation. 

B. Hardware and Software 
The hardware was a Google Nexus 7 HD tablet running 

Android 4.4 KitKat.  See Fig. 2.  The device has a 7.02 inch 
display with resolution of 1920 × 1200 pixels and a density of 
323 pixels/inch. 

The software was developed in Java using the Android 
SDK, with special focus on the Qualcomm Snapdragon Facial 
Recognition API.  See Fig. 3. The API is only available for 
devices with a built-in Qualcomm Snapdragon processor [7]. 

We developed a custom game called StarJelly. StarJelly is an 
endless-runner game set in an underwater environment. The 
game implements two game modes to accommodate the two 
input methods under investigation: tilt-input and facial 
tracking. The player navigates a Jellyfish avatar horizontally 
while blowfishes and stars advance vertically down the screen.  
See Fig. 4.  The velocity of the blowfishes ranged from 413 to 
1180 pixels per second downwards. On the other hand, the 
velocity of the stars ranged from 236 to 472 pixels per second 
downwards.  

The goal was to avoid the blowfishes (to stay alive) and to 
collect stars (to collect star-points).  Stars were collected via 

contact by moving the Jellyfish horizontally.  More blowfishes 
were added as gameplay progressed; thus, the game difficulty 
increased, making a collision inevitable.   

Each participant was given a total of ten lives: five for tilt-
based gameplay and five for facial tracking gameplay. The 
player lost a life upon colliding with a blowfish.  The score per 
life iteration was based on how long the participant survived 
without a blowfish collision as well as the number of stars 
collected. 

  

Fig. 5. a) Setup activity.  b) Results activity. 

The application began with a setup activity which prompted 
for the user’s initials and parameters including a group code 
(for counterbalancing), input method, participant number, and 
session number. See Fig. 5a. When completed, the application 
transitioned into the game activity. The game mode depended 
on the input method specified in the setup activity. Each round, 
or “life”, ended when the user collided with a blowfish.  This 
triggered a ready state with a cool-down period followed by the 
next round. After five rounds, the application started an activity 
which presented results to the participant.  The results included 
the score, stars collected, and survival time per round. The last 
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row in the results activity indicated the total score of the 
participant.  See Fig. 5b. 

In the tilt-based gameplay, the movement of the player was 
based on the angle of device tilt. Tilting was sensed about the 
y-axis of the device (aka roll) and mapped to the position of the 
Jellyfish. The mapping was 7 pixels per degree of tilt in the 
direction of tilt relative to the neutral position. On the other 
hand, facial tracking gameplay used the device’s front-facing 
camera to calculate the x-coordinates of the left and right eye.  
These were averaged to yield an overall facial coordinate for 
movement control. The screen width of the game was 1200 px, 
with the home position in the middle.  The player rotated 
his/her head left and right to move the Jellyfish left and right.  
The mapping was 13.3 pixels per degree of head rotation in the 
direction of rotation.  Thus, the Jellyfish was positioned at the 
left edge of the screen with 45° left head rotation and at the 
right edge with 45° right head rotation.   

The two game modes were similar in structure, with two 
minor differences.  The first difference was in the cool down 
period when the player loses a life. In the tilt-input mode, the 
cool-down period was 3 seconds.  This was ample time for the 
participants to prepare for the next round (life).  In the facial 
tracking condition, the cool-down period was 10 seconds.  This 
was necessary so participants could get a feel for the mapping 
of their face and could self-calibrate by moving the Jellyfish 
avatar around if necessary. 

The other difference was a slight UI addition in the facial 
tracking condition.  A green and red dot was rendered 
underneath the Jellyfish.  See Fig. 6. The dot provided visual 
feedback on the player’s face-to-game mapping. A missing dot 
indicated that the camera was not picking up the left or right 
eye coordinates of the participant. In addition, the dot allowed 
participants to easily navigate the avatar by providing a 
primary focal point. The game also utilized sound effects and 
upbeat background music. 

 

Fig. 6. The game in the ready state. For the facial tracking condition, a facial 
tracking dot is seen below the Jellyfish avatar. 

C. Procedure 
Participants were tested in a well-lit environment to provide 

adequate lighting for the front-facing camera. They were seated 
in front of a table and were instructed to keep their hands and 
forearms rested on the table during the facial tracking game 
mode. See Fig. 7. Participants were also given the option of 
lifting their arms off the table during the tilt game mode. 
Before starting the game, participants were briefly introduced 
to the objectives of the experiment and the goal of comparing 
tilt-input and facial tracking as input methods for mobile 
gaming. Participant were then asked to enter their initials in the 
setup activity as consent for participation in the experiment.   

 

Fig. 7. Participant performing experiment. 

Each game mode was briefly demonstrated. No practice 
trials were given. Each participant took about 10 minutes to 
complete the experiment. After the ten trials were completed, 
participants were given a questionnaire to solicit qualitative 
feedback. Items included participant experience, input method 
preference, and an open-end request for comments on the input 
methods. 

D. Design 
The experiment was a 2 × 5 within-subjects design. There 

were two independent variables: input method (tilt-input, facial 
tracking) and life (1, 2, 3, 4, 5).  The dependent variables were 
survival time, stars collected, and score. Survival time was 
based on how long the participant survived each round. The 
score was an aggregate measure equal to the sum of 10× the 
survival time and 10× the number of stars collected.  

Participants were divided into two groups to counterbalance 
the order of input methods, and thereby offset learning effects. 

The total number of testing rounds was 120 (12 participants 
× 2 input methods × 5 lives). 

III. RESULTS 
The effect of group (order of testing) was not statistically 

significant for survival time (F1,10 = 1.312, ns), stars collected 
(F1,10 = 0.847, ns), and score (F1,10 = 1.234, ns). Thus, we 
conclude that counterbalancing had the desired effect of 
offsetting learning effects due to the order of testing. 
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A. Survival Time 
The grand mean for survival time for all 120 rounds was 

27.2 seconds. The mean survival time travelled for tilt-input 
was 47.1 seconds. In contrast, the mean survival time for the 
facial tracking input method was 7.3 seconds. The mean 
survival time with tilt-input was therefore 6.5× longer than the 
survival time with facial tracking. Not surprisingly, the 
difference between the two input methods was statistically 
significant (F1,10 = 65.74, p < .0001).  

The overall mean survival time by life shows that the facial 
tracking input method was inferior for navigating the Jellyfish 
avatar across the screen to avoid blowfish obstacles. The life 
iteration breakdown in Fig. 8 shows learning effects in both 
input methods.  

 

Fig. 8. Survival time per life iteration. 

The longest survival time for the tilt-input method 
happened on the fourth life with a time of 49.9 s. On the other 
hand, the facial tracking input method reached a peak of 10.3 s, 
also on the fourth life. The highest recorded survival times 
were 84.1 s for the tilt input method and 34.9 s for facial 
tracking. As illustrated in Fig. 8, participants did learn and 
improve with each iteration. The survival time with the tilt-
input method increased by 14% from the first iteration to the 
fourth iteration. In contrast, the survival time with facial 
tracking increased by 102% from the first iteration to the fourth 
iteration, indicating greater learning with the facial tracking 
input method.  However, it was also illustrated that the mean 
survival time regressed back to an average of 56 s on the fifth 
iteration and is correlated with head fatigue, as discussed 
below. Due to the variability in the measured responses, the 
effect of life on input method for survival time was not 
statistically significant (F1,4 = 0.143, ns). 

B. Stars Collected 
The grand mean for stars collected for all 120 lives was 

10.9 stars. The overall mean for stars collected with tilt-input 
was 19.5 stars. The mean with facial tracking was 2.3 stars.  
Thus, tilt-input averaged 9.5× more stars collected than with 
facial tracking. The difference was statistically significant 
(F1,10 = 57.56, p < .0001). 

It was observed that tilt-input gave participants more 
precision and, therefore, allowed them to move around faster 

which resulted in more stars collected. It was also noted that 
participants were more interested in staying alive versus 
collecting more stars with the facial tracking game mode. The 
effect of life on input method for stars collected was not 
statistically significant, however (F1,4 = 0.299, ns). The 
breakdown is illustrated in Fig. 9. 

Fig. 9. Breakdown of stars collected per life based on input method. Error 
bars indicate ±1 SD. 

C. Score 
Score is an aggregate measure of survival time and the 

number of stars collected: 

 Score = (10 × survival time ) + (10 × stars ) 

Based on the preceding results, it is evident that the scores 
attained with the tilt-input method would be much higher.  
Fig. 10 shows the substantial difference in the scores based on 
the two input methods.  

 

Fig. 10. Total score per life iteration. 

The overall mean score for all 120 iterations was 376.9. 
The mean score for tilt-input was 665.8 while the mean score 
for facial tracking was 95.1. Hence, the mean score with tilt-
input was 7× more than the mean score with facial tracking. 
The highest score achieved in the facial tracking mode was 479 
while the lowest score was 12. In addition, the highest score 
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was 1101 with tilt-input while the lowest was 19. The 
difference in the scores between the facial tracking and tilt-
input was statistically significant (F1,10 = 66.49, p < .0001).  

The improvement in score with practice with tilt-input was 
35% from the first life iteration to the fourth and 11% from the 
first to the last iteration. In contrast, the score improved by 
96% with facial tracking from the first life iteration to the 
fourth. Due to variability in the measured responses, the effect 
of life iteration on score was not statistically significant (F1,4 = 
0.168, ns). As mentioned previously with mean survival time, 
the increase depicts a learning effect with performance which 
could be amplified given more trials and rest periods. 

Overall, it is clear that the facial tracking input method was 
inferior to the tilt input method. Several factors were involved 
in the large differences between the two input methods, 
including experience and hardware limitations. Hardware 
limitations are a known issue with tracking-based applications 
as noted by Sherstyuk and Treskunov in their head tracking 
evaluation [8]. The main issue is system lag, which is caused 
by the substantial CPU processing required to convert camera 
images to face-feature coordinates. For games, lag is a deal-
breaker since game-inputs must be highly responsive.   

With respect to lag, there was a large difference in latency 
between the two input methods. The average latency for each 
accelerometer motion event captured during the tilt game mode 
is 20 ms. In contrast, facial tracking events were captured every 
125 ms and therefore yield a latency that is 6× greater than 
with tilt input. In addition, the facial tracking mode was 
susceptible to unexpected drops. That is, due to lighting 
conditions, swift head motions, or rotation of the head beyond 
a threshold, the facial tracker sometimes fails to detect a face in 
the camera’s field of view. When the tracking is lost, the player 
avatar remains in the last known location until another tracking 
event is captured. These constraints were also observed in 
previous studies on facial or head tracking [6, 9, 10, 11]. Not 
surprisingly, these factors had adverse effects on performance.  

As well, all the participants had at least some experience 
with mobile games using tilt-input. With this in mind, the 
participants were already skilled in tilt-based gaming. 
Conversely, the participants did not have experience with facial 
tracking input for mobile games. 

D. Participant Feedback 
Based on the questionnaire portion of the experiment, there 

was mixed feedback from the participants regarding the input 
method of preference. Surprisingly, half the participants 
preferred the facial tracking input method. One participant 
concisely described why he preferred facial tracking over tilt: 

 It’s a lot more engaging because there isn't any other 
game with facial tracking. Tilting and swiping is a lot 
more common when it comes to mobile games and 
learning to control another bodily function such as 
head movement while playing a game is just another 
step further in game development. While the input 
method is a lot more challenging, it brings a different 
satisfaction once you finish playing. 

 Another participant explained why he preferred tilt over 
facial tracking: 

The tilt control scheme is smooth and responsive. It 
was easier to control. I found it much easier to get out 
of tight situations. This can be good when you’re 
playing games that require fast timing.  

Participants also provided additional feedback based on 
both input methods. Many participants highlighted the fact that 
facial tracking, while difficult, provided an innovative way to 
play mobile games. Most of the participants believed that it just 
takes practice with facial tracking to obtain optimal results. 
Some participants highlighted that the latency of the camera 
was a key issue with the facial tracking input. This notion was 
also evident in previous work by Sko and Garder which 
addressed the inaccuracy and high-latency of head tracking [9]. 
Due to the limitation of the hardware, the facial processing was 
not up to speed with the frame rate of the game and this 
hindered participant performance. Some participants, however, 
used this disadvantage by timing their next movements. Many 
participants noted that the tilt input method was common in 
numerous games today and only provided a mediocre 
engagement level. In addition, the participant feedback shows 
that facial tracking was much harder in comparison to the tilt. 
One participant expressed his concern over the difficulty gap 
stating that the tilt input method was so easy that the game 
eventually got too repetitive.  

Additionaly, four participants experienced slight head 
fatigue. Fatigue has been a common issue associated with 
tilting and rotation the head [9, 11]. This factor may have led to 
the decline in score, as previously noted. That is, after the 4th 
life iteration, the score and survival time was just as low as 
with the first iteration. 

IV. CONCLUSION 
 Tilt-input and facial tracking were compared as input 
methods for mobile gaming. The experiment utilized a newly 
developed mobile app called StarJelly, an endless runner-
styled game in which players avoid obstacles and collect stars. 
The mean scores were 665.8 for tilt-based input 95.1 for facial 
tracking. The difference was substantial: 7× higher for tilt-
input. However, this is not a surprise as many of the 
participants had prior experience with tilt-based games.  

Participants were also observed to collect more stars when 
playing the game using tilt-input. On the other hand, 
participants mainly focused on avoiding obstacles when 
playing the game using the facial tracking as input. Although 
the tilt-input method triumphed over facial tracking, many 
participants still preferred the facial tracking input and saw it as 
an innovative and exciting way to play mobile games.  

Facial tracking is a natural interaction mode allowing 
players to interact using their face and a front-facing camera. 
However, the high processing requirements for head tracking 
provided adverse effects on the interaction. Two main factors 
affected the performance of the user during facial tracking: 
lack of experience and the latency of the camera. While facial 
tracking provides a new way to play mobile games, given the 
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hardware limitations [8], it is not adequate in a high-speed 
gaming environment at the present time.    

V. FUTURE WORK 
 Our research is open to future work. One obvious extension 
is to test participants over longer and more intensive gaming 
sessions where learning can be tracked for more than five lives 
or rounds. In addition, better hardware could be used to address 
the latency issues associated with facial tracking. Future work 
could also implement facial tracking in slower-paced 
environments focusing on an immersive experience rather than 
performance. As observed in this study and previous work [6, 
9], head tracking hurts performance in fast paced videogames 
due to issues of latency, inaccuracy, and fatigue. 
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