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a b s t r a c t 

Keyword search over databases, popularized by keyword search in WWW, allows ordinary 

users to access database information without the knowledge of structured query languages 

and database schemas. Most of the previous studies in this area use IR-style ranking, which 

fail to consider the importance of the query answers. In this paper, we propose CI-Rank , 

a new approach to keyword search in databases, which considers the importance of indi- 

vidual nodes in a query answer and the cohesiveness of the result structure in a balanced 

way. CI-Rank is built upon a carefully designed model called Random Walk with Mes- 

sage Passing that helps capture the relationships between different nodes in the query an- 

swer. This model lends itself well to adaptation to user preferences. We develop a branch 

and bound algorithm to support the efficient generation of top- k query answers. Indexing 

methods are also introduced to further speed up the run-time processing of queries. Ex- 

tensive experiments conducted on two real data sets with a real user query log confirm 

the effectiveness and efficiency of CI-Rank . 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Recent years have seen a growing interest in supporting keyword search in databases [1–8] . Popularized by search en-

gines on the Web, keyword search provides an intuitive, convenient, and effective way for users to interact with and explore

the structured data stored in database. Different than the traditional ways of querying a database, it does not require the

users to be familiar with the database schema and query languages. 

A keyword query Q is specified by a set of keywords Q = { k 1 , k 2 , . . . , k | Q| } . Since those | Q | keywords could find matches

in different places in the database, the results are usually interconnected structures that contain all (or as many as possible)

of the given keywords. For example, one popular form of such structures is joined tuple trees [7] for keyword search in

relational database systems. 

Conceptually, a database R can be viewed as a data graph G R = (V , E ) , where the vertex set V represents the data ob-

jects (e.g., tuples in the case of relational database systems), and E represents the connections between the objects (e.g.,

primary key-foreign key relationships). In general, keyword search could yield more than one result, as there could be mul-

tiple objects matching each keyword, and there could be different ways to assemble all matching tuples into a connected
∗ Corresponding author. 
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Fig. 1. The schemas of the DBLP and IMDB data. 

Fig. 2. Search results for the query “Papakonstantinou Ullman ”. p 1 : Capability based mediation in TSIMMIS; p 2 : The TSIMMIS Project: Integration of 

heterogeneous information sources. 

Fig. 3. The answer to the query “Bloom Wood Mortensen ”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

structure. Keyword search algorithms usually use a function score ( ·) to assign a score to a structure, and rank the set of

results accordingly. 

Various factors have been considered in designing the score ( ·) function. Early approaches simply use the size of the

connected structure as the metric [4] . Many existing approaches utilize IR-style scoring functions [5–7] . The idea is to assign

each object in the result an IR score based on its textual content, and then combine individual scores together using a score

aggregation function comb ( ·) to obtain the final score. Other factors utilized in the literature include the distance between

two keyword-matching objects in the connected structure [9] , the coverage of keywords [7] , etc. 

Despite all recent effort s in improving the effectiveness of search through designing better scoring functions, one critical

factor has been largely overlooked: the importance of the result structures. As an example, consider the following keyword

query, “Papakonstantinou Ullman ”, on a bibliography database (DBLP) with the relational schema shown in Fig. 1 (a). 

The two keywords in the query match two tuples in the author table containing “Yannis Papakonstantinou” and “Jeffery

Ullman” respectively. Each paper co-authored by them could connect the two tuples to form a complete result ( Fig. 2 ). Hence

there could potentially exist many results, which only differ in the paper tuple that connects the two authors together. When

ranking the (potentially many) results generated, it is certainly desirable to assign higher scores to the results containing

papers with more citations (thus considered more important). However, existing approaches do not take this importance

factor into account. The widely used IR-style scoring functions only consider the textual information contained in the results,

and thus cannot distinguish the more important results from the others. Since all results have the same size, incorporating

the size factor in ranking the results does not help either ( Fig. 3 ). 

The importance of search results has been considered in ObjectRank [10,11] . However, the goal of that work is to rank

individual objects (e.g., tuples) according to their relevance to the query. This in contrast to our task where we would like

to measure the collective importance of the objects contained in a result. ObjectRank cannot be easily extended to handle

this new task. BANKS [2] and Bi-directional Search [3] only consider the importance of the root node and the nodes con-
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taining the keywords in a result tree, and do not consider the importance of intermediate nodes which we will show in

Section 2 has a significant impact on the quality of results. Measuring the importance of objects (such as Web documents)

has also been well studied in the Web area, as exemplified by PageRank [12] . However, measuring the importance of key-

word search results is a significantly different task and presents unique challenges. Whereas Web documents are single

objects, keyword search results are usually connected structures. In addition, Web documents are entities that already ex-

ist and their importance values can be computed offline, while for keyword search in databases, the results are obtained

dynamically based on the keywords and thus their importance values have to be computed on the fly to return the top-k

results to users as soon as possible. 

In this paper, we propose a novel method called CI-Rank (for C ollective I mportance Rank ing) to rank keyword search

results based on their collective importance. Note that the collective importance of a search result is not simply an aggregate

of the importance of individual nodes, it is also affected by the structure of the result (i.e., how those nodes are connected

together). CI-Rank takes into consideration not only the importance of the objects in the result, but also the structure of the

result. To the best of our knowledge, this is the first work that addresses the issue of evaluating the overall importance of a

search result. For ease of presentation, we focus on relational databases where the search results are joined tuple trees, but

our approach is general enough to be applied to other types of structured data that can be modeled as graphs, such as XML

data. 

The underpinning of CI-Rank is a model called RWMP (for R andom W alk with M essage P assing). Our proposal of RWMP

is inspired by the random walk model, which has been successfully employed in G D [11] as well as in PageRank to compute

the importance of individual nodes. The main innovation of RWMP is that it incorporates a carefully designed message

passing procedure that helps model the degree of cohesiveness in the result tree in addition to the importance of the

individual nodes. 

CI-Rank defines a new scoring function based on RWMP. This new function calls for an algorithm that can produce the

search results efficiently. To this end, we proposed a branch-and-bound algorithm that utilizes the properties of the scoring

function to help prioritize the search and prune the search space. An index structure is also proposed to speedup the run-

time computation through pre-computation and materialization of partial results. 

The main contributions of this paper can be summarized as follows. 

• We propose CI-Rank , a novel method for ranking keyword search results, which considers both the importance of nodes

and the cohesiveness of the result tree structure. CI-Rank is enabled by our proposal of RWMP, a random walk model

with message passing. 

• We present a branch-and-bound tree search algorithm for computing the keyword search results, which allows for effec-

tiveness pruning of the search space, while at the same time guarantees the optimality of the results. 

• We design two index structures (star indexing and group indexing) to further improve the search efficiency, and utilize

the characteristics of the database graph to reduce the sizes of two indexes effectively. 

• We show how CI-Rank can adapt to user preferences using user feedback, and demonstrate the superiority of the ranking

strategy employed by CI-Rank to a PageRank-style ranking function. 

• We perform extensive experiments using both synthetic and real data and queries, including a manually labeled AOL

query log, to demonstrate the superiority of CI-Rank over existing methods. 

The rest of the paper is organized as follows. Section 2 defines the problem and analyzes problems with existing ranking

methods. Section 3 presents CI-Rank and the random walk model with message passing. Section 4 describes the branch

and bound algorithm for generating top- k query answers. The indexing techniques are presented in Section 5 . Experimental

results are presented in Section 6 . Section 7 discusses related work. Section 8 concludes this paper and discusses possible

directions for future work. 

2. Preliminaries 

In this section, we first formally define the keyword search problem, and then provide an analysis of the problems with

existing methods for ranking search results. 

2.1. Problem definition 

A database is modeled as a weighted directed graph G = (V , E ) . Each tuple t i is represented by a node v i ∈ V . For any

two nodes v i , v j , there is a directed edge 〈 v i , v j 〉 (or v i → v j ) and a backward edge 〈 v j , v i 〉 (or v j → v i ) if and only if there

exists a foreign key on tuple t i that refers to the primary key tuple v j . The reason to model a foreign key to primary key

relation as two directed edges rather than one undirected edge is to reflect the difference between these two directions. For

instance, if paper p b cites paper p a , readers of p b are more likely to also read p a , whereas readers of p a are less likely to also

read p b . 

In the following discussion, we assume the AND semantics between the keywords (i.e., the results should contain all

keywords). 

Definition 1 (input query) . An input query Q is a set of keywords, Q = { k 1 , k 2 , . . . k | Q| } , where k i is keyword. 
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Definition 2 (free and non-free nodes [4] ) . If a database tuple matches any keyword k i in the query Q , it is called a non-

free tuple w.r.t. k i . The corresponding node in graph is called a non-free node w.r.t. k i . If a tuple does not contain the query

keyword k i , it is a free tuple w.r.t. k i and the corresponding node is a free node w.r.t. k i . We use E n ( k i ) and E f ( k i ) to denote

the non-free and free node sets of k i . From their definitions, we have E n (k i ) ∪ E f (k i ) = V and E n (k i ) ∩ E f (k i ) = φ. E n ( Q ) is

the set of all non-free nodes of the query Q . All nodes that contain any keyword in Q belong to this set. Then, E n (Q ) =
E n (k 1 ) ∪ E n (k 2 ) ∪ . . . ∪ E n (k | Q| ) . Similarly, E f (Q ) = E f (k 1 ) ∩ E f (k 2 ) ∩ . . . ∩ E f (k | Q| ) denotes the free node set of the query Q .

Each node in this set does not contain any query keyword in Q . 

Definition 3 (query answer) . An answer to query Q is defined as any subtree T of G D such that T is reduced w.r.t. Q . That

is, there exist a set of nodes in T , R = { v 1 , . . . , v m 

} , where v i contains keyword k i (1 ≤ i ≤ m ), such that the leaves of T must

come from R , lea v es (T ) ⊆ R , and the root of T must be also from R if the root has only one child. We call such a query

answer a joined tuple tree (JTT). 

Since there could be multiple JTTs for a query Q , a core task of keyword search in databases is to perform effective

ranking of the JTTs. 

2.2. Problems with existing ranking methods 

2.2.1. IR-Style Ranking functions 

Most existing solutions employ IR-style ranking. For example, DISCOVER2 [5] uses the following scoring function based

on TF-IDF: 

score (T , Q ) = 

∑ 

v ∈ T score (v , Q ) 

size (T ) 
, 

score (v , Q ) = 

∑ 

k ∈ v ∩ Q 

1 + ln (1 + ln (t f k (v ))) 
(1 − s ) + s · dl v 

a v dl v 

· ln (idf k ) , 

where idf k = 

N Rel(v ) +1 

df k (Rel(v ) , tf k ( v ) is the number of occurrences of keyword k in node v, dl v denotes the length of the text in v ,

and avdl t is the average length of the text in the relation which the tuple corresponding to v belongs to (i.e., Rel ( v )), N Rel ( v ) 

is the number of tuples in Rel ( v ), df k ( Rel ( v )) is the number of tuples in Rel ( v ) containing keyword k , and s is a constant. 

As another example, SPARK [7] , the state-of-the-art IR-style method, considers three factors, score a ( T, Q ), score b ( T, Q ), and

score c ( T, Q ), where score a ( T, Q ) is the TF-IDF score, score b ( T, Q ) is called the completeness factor, and score c ( T, Q ) the size

normalization factor. The final scoring function is defined as 

score (T , Q ) = score a (T , Q ) · score b (T , Q ) · score c (T , Q ) 

The IR score of a JTT T is determined by 

score a (T , Q ) = 

∑ 

k ∈ T ∩ Q 

1 + ln (1 + ln (t f k (T ))) 

(1 − s ) + s · dl T 
a v dl CN ∗ (T ) 

· ln (idf k ) , 

where t f k (T ) = 

∑ 

v ∈ T t f k (v ) , idf k = 

N CN ∗(T ) +1 

df k (CN ∗(T )) 
, and CN 

∗( T ) denotes the join of relations containing the keywords (see [7] for

the precise definition), dl T is the total length of all text attributes for tuples in T , and a v dl CN ∗(T ) is the average length of all

tuples in CN 

∗( T ). 

The completeness factor measures the coverage of keywords by T to allow flexibility in forcing AND/OR semantics, and

the size normalization factor normalizes the score of T based on its size to ensure fairness between small and large JTTs.

The exact formulas for those two factors are omitted here due to the limited space. 

The aforementioned two scoring functions only consider the textual information, and fail to consider the difference in

the importance of the nodes. Continuing the example shown in Fig. 2 , the nodes a i and p i represent an author and a

paper respectively. For the query ”Papakonstantinou Ullman”, we find that two paper nodes p 1 and p 2 can both link the two

matching author nodes together into two JTTs: a 1 �p 1 �a 2 and a 1 �p 2 �a 2 (where � denotes a join). It can be observed from

the data that paper p 1 is cited 7 times and paper p 2 38 times. Apparently, the JTT containing p 2 should be ranked higher

than that containing p 1 as it is considered to be more important. However, if we use the DISCOVER2 scoring function, the

two corresponding JTTs have exactly the same score, as the paper nodes p 1 and p 2 do not match the keywords and therefore

do not affect the final scores. Using the SPARK scoring function does not help either: we can show that the score for the

JTT ( a 1 �p 2 �a 2 ) is actually lower than that for the JTT ( a 1 �p 1 �a 2 ). The reason is that the only factor that differentiates the

scores of those two JTTs is dl T with all other factors in the scoring function being equal. Since p 1 has a shorter title than p 2 ,

it has a smaller dl T and thus a higher final score. 

2.2.2. Graph-based ranking functions 

The ranking functions of BANKS [2] and Bi-directional Search [3] combine two scores, the node and edge scores, to

generate the overall tree score. The node score is the average weight of the root node and the leaf nodes. The edge score

is 1 / (1 + sum (e )) , where sum ( e ) is the total weight of all edges in the answer tree. However, this scoring method cannot
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address the difference in the importance of the free nodes. As an example, consider the query “Bloom Wood Mortensen ”
on the IMDB database with the schema shown in Fig. 1 (b). The result JTT may have the Actor node “Orlando Bloom” as the

root, “Elijah Wood” and “Viggo Mortensen” as the leaves, and any movie co-stared by the three actors as the intermediate

free node. Assume that the weights of the edges are independent of the movie. Since only the weights of the root and

leaf nodes are considered, choosing which movie to link them together does not make a difference in the final score. This

is certainly undesirable, because more popular movies should be favored. This example illustrates that all nodes and their

connections should be accounted for in scoring the query answer. 

3. Measuring the collective importance of query answers 

The analysis in the preceding section reveals that the collective importance of query answers cannot be properly mea-

sured by existing ranking functions and some alternatives we have considered. This motivates our proposal of CI-Rank ,

which not only considers the importance of individual nodes (both free and non-free), but also the connection structures

between them. Inspired by PageRank, we propose a variant of the random walk model called Random Walk with Message

Passing (RWMP) to provide the basis for the design of our scoring function. In the remainder of this section, we will first

describe the classic random walk model, and then present RWMP. Finally, we discuss how to score query answers with

RWMP. 

3.1. The random walk model 

The random walk model has been successfully applied in computing PageRank scores of Web pages [12,13] . The whole

Web can be considered as a graph (V , E ) , where a Web page corresponds to a node in V , and a hyperlink is represented as

an edge in E . A random surfer moves in the graph from node to node in two ways. In any step, the random surfer currently

in node v i can either fly to a random node in the graph with probability c , or walk to a neighbor node with probability

1 − c. c ∈ (0, 1) is called the “teleportation” constant. 

Let p i denote the probability of node v i being visited by the random surfer. It measures the importance of that node and

is considered the PageRank value of the corresponding Web page. The vector p = { p 1 , p 2 , . . . p i , . . . , p | V | } can be obtained by

solving the following equation. 

p = (1 − c) · M p + c · u (1)

The first part (1 − c) · M p corresponds to a random surfer walking from a node to its neighbor, where M is the adjacency

matrix with size | V | × | V | . If there exists an edge 〈 v j v i 〉 , m ij is 1/ OutDegree ( v j ); m ij is zero otherwise. The second part c · u

corresponds to the surfer flying to a random node. u is a probability vector called the “teleportation vector”, where u i in u

is the probability of node v i being the destination the surfer is flying to. 

The random walk model can also be applied in the database context to compute the importance of individual nodes.

Treating the database R as a directed graph G R , the surfer moves within G R in a similar fashion as described above. The

edge weights can be determined and tuned as needed, and the importance of a node is the probability that a random surfer

appears in this node in a steady state. This value can be computed by iteration or Monte Carlo simulation of Eq. (1) . 

3.2. Extending the random walk model for keyword search in databases 

The random walk model works well in the Web context, but it cannot be applied directly to keyword search in databases,

because the answers are trees instead of single nodes. Intuitively, we want the search results, i.e., the JTTs, to be generally

important and at the same time tightly connected. Therefore, the scoring function must reflect both the importance of

individual nodes and the cohesiveness of the result JTTs. 

A naive way to extend the random walk model to database search is to score a JTT using the average importance values

of the non-free nodes in it. The problem with this approach is that the cohesiveness of the JTT is not accounted for. For

example, suppose for a keyword query { k 1 , k 2 }, both v 1 and v 3 match k 1 , and both v 2 and v 4 match k 2 . Let p i be the

importance value of v i . If avg ( p 1 , p 2 ) > avg ( p 3 , p 4 ), then the JTT containing v 1 and v 2 would be ranked higher than the JTT

containing v 3 and v 4 . However, if v 1 and v 2 are connected by a long path or there is no meaningful connection between the

two nodes at all, while v 3 and v 4 are closely connected, the user might prefer the JTT containing v 3 and v 4 . 

Another possible scoring function is to take the average importance value of all nodes, free and non-free, in a JTT. This

function also has a major flaw, which we call the free node domination problem. If the score of a JTT is dominated by the

free nodes, the irrelevant JTTs that contain of irrelevant non-free nodes could be ranked higher than the relevant JTTs. For

example, the answer to the query “wilson cruz ” on the IMDB database with the schema shown in Fig. 1 (b) should be a

single node tree T 1 as shown in Fig. 4 . However, another tree T 2 , which is also shown in Fig. 4 and is obviously irrelevant,

also matches this query. The non-free nodes are the movie “Charlie Wilson’s War (2007)” and the actress “Penelope Cruz”,

respectively. They are connected by two free nodes, “Tom Hanks” and “America: A Tribute to Heroes (2001)”. Because the

importance value of the free node “Tom Hanks” in T 2 is much higher that of the single node in T 1 , the average importance

value of T 2 is higher than T 1 , and is therefore ranked higher. This illustrates the problem caused by domination of free

nodes. 
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Fig. 4. The free node domination problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yet another alternative ranking function is to use the average importance score / result size , which takes not only the av-

erage importance of nodes, but the size of the result into consideration. The problem is that it cannot address the structural

difference between the answer trees. For example, suppose we have two JTTs, T 1 and T 2 , for the same query. T 1 has a star

structure with one free node in the center and four non-free nodes connecting directly to the free node. T 2 also has one

free node and four non-free nodes. They have exactly the same importance scores as those in T 1 , but they form a chain-like

structure with the free one in the center. Since T 1 and T 2 have the same size, and the importance values of the nodes are

the same, T 1 and T 2 will have the same ranking scores despite their significant structural difference and hence potentially

very different semantics. 

3.3. Random walk with message passing 

We propose a random walk model with message passing (RWMP) that is designed to match the characteristics of key-

word search in databases. It considers both the importance of the single nodes and the structural cohesiveness of the answer

trees in a balanced way, avoiding the pitfalls of the ranking functions discussed in the preceding subsection. 

3.3.1. Overview of the model 

The RWMP model consists of the following procedures. 

1. Message generation : In RWMP, a non-free node generates messages indicating the existence of itself. The messages

generated from different nodes have different types. We call such a message generated at v i a v i message. The number of

messages generated at v i is proportional the importance value of v i . Let p i be the importance value of the node v i , and | v i |

the number of words in node v i . | v i ∩ Q | denotes how many words in the node v i match the query Q . The number of the

message notes generated at node v i is r ii = (t · p i · | v i ∩ Q| ) / | v i | , where t is the total number of the random surfers in the

graph. 

2. Message passing : One of the design objectives of RWMP is to measure the strength of pairwise connection of the

non-free nodes in an answer tree. It is very difficult to measure the connection inside an answer tree using the original

random walk model. We therefore add to it a component called message passing. 

Intuitively, the message-passing model can be thought of as follows. A source node (which contains a keyword in the

query) sends out a signal. The strength of the signal is weakened when it passes through an intermediate node. By measur-

ing the strength of the received signal in the destination node, we know how closely these two nodes are connected. 

To be more specific, the random surfers move to the neighboring nodes, carrying the messages. Since we are interested

in evaluating the cohesiveness of the result tree, we assume that messages are only passed between nodes inside the tree

and the surfers leaving the tree do not carry any messages. The number of surfers moving along different outgoing edges

are proportional to the weights of those edges (which can be determined by domain experts or in ways similar to what is

done in BANKS [2] ). 

Let the number of v i messages received at node v j be r ij , and the number of leaving messages be f ij . Suppose v k is a

neighbor of v j and v k is not in the path that connects v i and v j in the tree T . Then, at node v k , the number of the v i 
messages received, r ik , is f i j · w jk / 

∑ 

v n ∈ N(v j ) ∩ V (T ) w jn , where w jk is the weight of edge e jk , N ( v j ) is the set of neighboring

nodes of v j in G R , 
∑ 

v n ∈ N(v j ) ∩ V (T ) w jn is the sum of the weights of all edges from v j to its neighbors in the tree T . If the

neighbor v k is on the path that connects v i and v j in the tree T, v k must have already got the v i messages before v j does.

Since v j sends v i messages along all of its outgoing edges in the tree T , some v i messages are sent back to v k . These messages

are discarded. 
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3. Message dampening : The number of messages is dampened in intermediate nodes, as surfers may drop with a certain

probability some of the messages they are carrying. We call d j = f i j /r i j < 1 (i � = j) the survival rate at node v j , representing

the proportion of messages surviving the dampening process. The value of d j is positively correlated with the importance of

node v j , and is the same across different message types. Apparently, the higher the survival rate is, the more messages are

kept and passed on. We now describe in more detail the method for dampening messages and the choice of the survival

rate. 

3.3.2. Methods for dampening messages 

Message dampening is an important procedure in RWMP as the dampening strength reflects the relative importance of

intermediate nodes. Since we prefer the JTT to be connected by important nodes, the relationship between the survival

rate d i and the node importance p i should be monotonically increasing. A straightforward design is d i ∝ p i . However, its

dampening strength is too heavy. In our experience, a high importance value can be thousands of times greater than a low

one. As such, the range of the survival rates generated according to d i ∝ p i is too large and inflexible. 

Our preliminary experimental results reveal that our model is highly effective when the survival rate of an intermediate

node is proportional to the logarithm of its importance value. This design can be interpreted by the following in-node

message exchange process. Suppose that in a node v i , there are t · p i random surfers. Each random surfer carrying messages

talks to all other surfers inside this node in several steps: 

(1) The surfer finds a group of g random surfers (regardless of the types of messages they carry) and talks to them. With

a certain probability, she gives the message to one of the surfers in this group. We call this message-carrying surfer a

speaker, and the group of g random surfers listeners. 

(2) The listeners in the previous step become speakers. Each of them finds g listeners and talks to them with possible

message exchange. A random surfer can be a listener only once in any step. 

(3) Repeat this process, until all surfers in this node have communicated directly or indirectly with the given surfer. 

In this manner, the surfer can communicate with all random surfers in this node in log g ( t · p i ) steps. 

Let the probability that a surfer is willing to keep the messages by herself be α. With probability 1 − α, she gives the

messages to one of her listeners. In the last talk step, if the surfer who is now carrying the messages does not want to keep

the messages, she just discards them. Hence, after log g ( t · p i ) talk steps, the probability that a message is not discarded is

α · ∑ log g (t·p i ) 
n =0 

(1 − α) n = 1 − (1 − α) 1+ log g (t·p i ) . This is the dampening function at this node. 

The dampening function has three parameters, the probability of keeping the messages α, the group size g , and the total

number of random surfers t . Recall that the node importance p i is obtained from Eq. (1) . To simplify the dampening function,

we assume that the node with the lowest importance value has only one random surfer. Let p min denote the importance of

this node. Then, t = 1 /p min , and the survival rate can be written as follows: 

d i = 1 − (1 − α) 1+ log g (p i /p min ) (2)

3.3.3. Scoring of JTTs 

In RWMP, a non-free node v i receives messages generated from other non-free nodes. The number of the types of the

incoming messages is | E n (Q ) ∩ V (T ) | − 1 . We choose to use the number of messages of the least populous type in v i as its

score, i.e., 

score (v i ) = min 

v j ∈ E n (Q ) ∩ V (T ) , j � = i 
( f ji ) (3)

Intuitively, in a destination node (non-free node), if we take one message of each type (corresponding to each source

node) and combine them, that can be considered complete knowledge of all sources. The number of messages of the least

populous type determines the number of such message combinations, which measures how strongly this node is connected

to the other parts of the answer tree. The scoring function in Eq. (3) reflects the number of such combinations. 

The scoring function of CI-Rank for the whole tree T is calculated as the average of the scores of all non-free nodes. 

score (T ) = 

∑ 

v i ∈ E n (Q ) ∩ V (T ) 

(score (v i )) 

| E n (Q ) ∩ V (T ) | (4)

3.3.4. An example of RWMP 

We use an example in Fig. 5 to illustrate the process of RWMP model. This example shows how the “Orlando Bloom”

messages are sent to other nodes in the tree. In Fig. 5 (a), the messages are generated and carried out of node “Orlando

Bloom”. Suppose the total amount is 10 0 0 in this step. 

Fig. 5 (b) shows the message dampening in the middle node. We choose the movie “The Lord of the Rings: The Fellowship

of the Ring (2001)” as the free node in the middle. When the “Orlando Bloom” messages arrive at this node, some of them

are discarded. The number of the messages is reduced from 10 0 0 to 411. If this node has lower importance value, more

messages are discarded. 
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Orlando Bloom

Viggo Mortensen

Elijah Wood

1000

(a)

(b)

(a) 1000 messages leaving the
source node corresponding to the
actor “Orlando Bloom”

(b)

The Lord of the Rings: The
Fellowship of the Ring (2001)

1000

411

(c)

(b) Message dampening in an in-
termediate node corresponding to
the movie “Lord of the Rings”.
Only 411 messages remain.

Orlando Bloom

Viggo Mortensen

Elijah Wood
137

137

137

(c)

(d)

(c) Messages leaving the interme-
diate node, with 137 (=411/3) mes-
sages being sent along each edge

(d)

Viggo Mortensen Elijah Wood

137
137

54
51

(d) Message dampening in the two
destination nodes corresponding to
the actors “Viggo Mortensen” and
“Elijah Wood” respectively

Fig. 5. An example of RWMP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In next step, the “Orlando Bloom” messages leave the middle movie node. This step is demonstrated in Fig. 5 (c). Because

the weights of the three out edges of the middle node are same, the out messages are equally distributed on them. Those

messages that move back towards the node “Orlando Bloom” are ignored because they are messages about the node itself.

The messages moving along the other two edges will enter the nodes “Viggo Mortensen” and “Elijah Wood”. 

Inside these two nodes, these messages are dampened first as shown in Fig. 5 (d). Then, they are recorded. For example,

the node “Viggo Mortensen” will record that the received amount of the “Orlando Bloom” messages is 54. 

Since all non-free nodes send out messages in a similar manner. Therefore, the node “Viggo Mortensen” also receives the

“Elijah Wood” message. The number of these received messages are used to calculate the score of a single node and the

whole JTT according to the formulas presented in previous subsection. 

3.3.5. Benefits of CI-RANK 

The benefits of the scoring model in CI-Rank can be summarized as follows. 

3.4. Adapting to user preferences 

The design of the proposed RWMP model allows it to be adapted to the user’s preferences through user feedback. Sup-

pose there is a query log containing the past queries and the correct query answers chosen by the users. Biasing the scoring

function in CI-Rank is done through the teleportation vector u in Eq. (1) . We set u i to be proportional to the frequency that

its corresponding node v i appears in the correct query answers. In this way, not only do the nodes that are contained in the

correct query answers receive preference, the related nodes also get higher importance values. 

The strength of this bias is adjustable by assigning different values to the constant c , the weight of the teleportation

vector, in Eq. (1) . In CI-Rank , initially the importance values of the database graph nodes can be calculated offline. When

sufficient user feedback is accumulated in the form of query logs, the importance values of the nodes can be updated, again

in an offline fashion. This is because the important values are query-independent, leading to minimal overhead at query

processing time. 

3.5. Semantics 

We now discuss how to extend the default AND semantics to any combination of AND/OR semantics, with which an

advanced user can enter any combination of input keywords connected by AND and OR operators. Our approach is to first

translate such an input query to the conjunctive normal form (CNF), and then process the transformed queries, where a

query consists of multiple clauses each corresponding to a disjunction of keywords in our problem. To this end, we define

the transformational rules as follows: 

• For a query with input keywords connected by only AND operators, each keyword will be deemed as a clause when

translating this query into the CNF. 

• If a query contains both AND and OR operators, the sequence of keywords linked by one or more OR operators is viewed

as a clause, while each remaining keyword linked by AND operators corresponds to a clause. 

Based on the transformation rules, we can translate any user input query into CNF. For instance, for a given query

“frequent AND pattern AND mining OR discover ”, on the basis of the above rules, it will be translated into CNF as

frequent ∧ pattern ∧ ( mining ∨ discover ). 

Now we give the formal definition of the input query based on CNF. An input query Q is a conjunction of clauses. A

clause is called a group G i , and Q = G 1 ∧ G 2 ∧ . . . ∧ G n . A group G i is a disjunction of keywords. Let | G i | denote the length of

the group G i , which is the number of keywords it contains. The number of keywords in query Q is its length | Q| = 

∑ n 
i =1 | G i | .

Our model accepts two modes of user input. In the default mode, the users can simply input a sequence of keywords,

and this sequence of keywords is interpreted using the default AND semantics. Or, for the advanced users, they can input

any combination of keywords connected by AND and OR operators. Queries of this type will be translated to its conjunctive

normal form (CNF) based on the transformational rules, and then handled as follows. 



X. Yu et al. / Information Sciences 384 (2017) 1–20 9 

Fig. 6. Comparison of CI-Rank and PageRankSearch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For an input query Q in CNF, we require that any result of the query Q must contain at least one keyword from each

group. In this case, a node matching any keyword in a group is considered a non-free node of this group, and a result

refers to an optimal Steiner tree that covers all groups of Q . Hence, compared with handling the default AND semantics, the

search algorithm (to be discussed in the next section) remains the same to process the input queries based on CNF, just by

considering each group in the input as a single keyword in the default mode. Finally, we try to find top-k Steiner trees that

cover all groups and have the largest scores. 

3.6. Comparison with a PageRank-based ranking function 

PageRank [14] and its variants have been widely used in web search and gained great success. So a natural alternative

to consider is to apply PageRank to our setting. We thus design a ranking function called PageRankSearch based on the

PageRank principle, and compare it with the ranking function employed by CI-Rank . PageRankSearch views the data graph

representing the database as a graph of webpages (in the original PageRank context), where each node corresponds to a

page and the edge represents a reference from one page to another, and employs a simplified algorithm [15] to compute

the PageRank value of each node in an offline fashion. PageRankSearch defines the score of a JTT as the sum of the PageR-

ank values of all the nodes in this tree divided by this tree size, i.e., W (T ) = 

∑ n 
i =1 p(v i ) /Size (T ) , where p ( v i ) denotes the

PageRank value of node v i in a joined tuple tree T , and Size ( T ) is the number of nodes in T . The ranking of a given set of

JTTs can be done efficiently at runtime as the PageRank values of the nodes can be computed offline. 

However, the gain of PageRankSearch in efficiency comes at the cost of effectiveness. PageRankSearch fails to consider

the structural cohesiveness of an answer tree, as it just summarizes the PageRank values of individual nodes. The nodes

with large PageRank values will dominate the score of a JTT which leads to inferior performance. For instance, an answer

tree that the user does not want could be ranked at the top when it contains a node with overly large PageRank value,

regardless of whether this node is a free node or a non-free node. RWMP, on the other hand, avoids this problem as it

makes the generated messages of every node pass through other nodes in a JTT with a survival rate, which reduces the

impact of nodes with high importance values. 

To be more concrete, let us consider the example in Fig. 6 . In Fig. 6 (a), T 1 and T 2 are two JTTs , where a i ( i = 1, 2) and

p j ( j = 1, 2, 3) represent an author and a paper respectively. The green and white points represent non-free and free nodes

respectively, and every node has a PageRank value and a survival rate that is introduced by RWMP. Take the node a 1 in

T 1 as an instance. Its PageRank value and survival rate are 300 and 0.24 respectively. For comparison, we set the number

of generated messages of each node in RWMP to be equal to its PageRank value. Fig. 6 (b) shows the weights of all the

nodes calculated using the RWMP model. In this example, T 1 represents the answer where a 1 and a 2 co-author p 1 , while T 2
represents the answer where p 3 is cited by p 2 with co-authors a 1 and a 2 . Obviously, T 1 reflects a more cohesive relationship

between authors a 1 and a 2 and it is more likely to be a better answer. However, according to PageRankSearch, we have

P T 1 = 433 . 3 and P T 2 = 575 , which means that the importance of T 2 is higher than that of T 1 . In contrast, we utilize RWMP

to compute the weight of every node and the numbers with the same font represent the number of generated messages

of a node being distributed in other nodes in a JTT . The results in Fig. 6 (b) show that T 1 is more important than T 2 in this

scenario ( R T 1 > R T 2 ), which coincides with our intuition. 

4. Search algorithms 

We now consider the problem of efficiently generating the top- k answers to the keyword queries. In many previous

studies, the cost of an answer tree is the summation of its edge weights. In this case, the problem of generating the top-

k answers becomes the minimum cost group Steiner tree problem, which has been shown to be NP-Complete. [16] lists

several heuristic algorithms for this problem. 
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The scoring function in CI-Rank is more complex than the summation of the tree edge weights. Therefore, existing al-

gorithms cannot be applied directly. In what follows, we will first describe a naive brute-forth algorithm, and then present

a branch and bound search algorithm that utilizes the characteristics of the scoring function to get the top- k answers in a

more efficient way. Similar to previous studies [2,4,5] , we put a limit D on the diameter of answer trees. 

4.1. The naive search algorithm 

In the naive search algorithm, we first perform breadth first search from all non-free nodes. Then, the information gath-

ered during the search is combined to generate the answer trees. The maximal search distance is � D /2 � from each non-free

node. When a node is visited in the search, the source node and the distance between the current node to the source node

is recorded in this node. Because there may exist several different paths from the source node to this node being visited,

the node visited right before this node is also recorded. After the search is finished for all non-free nodes, we check the

visited nodes. If a node is reachable from one or more non-free nodes, and all keywords in the query are covered by these

reachable non-free nodes, this node is selected as the root of the answer tree. From this root node, we connect the non-free

nodes together to generate a full answer. Since there could be multiple paths from a root node to each non-free node, all

combinations should be considered to generate different answers. 

The main problem with this naive search algorithm is that it has to thoroughly expand all non-free nodes to find the

best answer, a very time consuming task. To improve the efficiency, we design a branch and bound search algorithm, which

prefers to expand the most promising non-free nodes and can stop early without exhaustively expanding all non-free nodes.

4.2. The branch and bound search algorithm 

The branch and bound search algorithm works on candidate trees. A candidate tree C is a tree that covers at least one

keyword. The initial candidate trees are the single non-free nodes constrained by the query keywords. We use tree grow and

tree merge procedures [17] to expand small candidate trees to larger ones. The complete tree resulting from the expansion

process that matches all input keywords, is considered an answer. At any time, only the top- k answers are kept. 

The algorithm orders the candidate trees according to their upper bound values and expands the candidate tree with the

highest upper bound value. Let us denote a candidate tree C with a root node v i by C ( v i ). The upper bound of this candidate

tree C ( v i ), ub ( C ( v i )), is the maximal score that an answer tree can have if it is obtained from expanding this candidate tree

C ( v i ). All candidate trees are kept in a priority queue P in the decreasing order of their upper bound values. The algorithm

always retrieves the tree at the head of the queue P , the most promising candidate tree, and expands it. When the minimal

score in the current top- k answers is higher than the upper bound value of the tree at the top of the queue, the algorithm

can stop, because any answer trees generated in future steps are guaranteed to be worse than the top- k answers already

obtained. 

The outline of the branch and bound algorithm is shown in Algorithm 1 . 

Tree growing and tree merging: Let v j ∈ N ( v i ) be a neighbor of v i . If v j is not contained in tree C ( v i ) (i.e., v j �∈ C ( v i )), we

can create a new tree whose root is v j with a single child tree C ( v i ). This process is called tree growing. C ( v i ) can merge

with another candidate tree C 
′ 
(v i ) if they have the same root, and the result covers more keywords than either C ( v i ) or

C 
′ 
(v i ) . Invalid merge results with cycles are avoided through a sanity check. 

Upper bound calculation: The tree growing and tree merging methods ensure the following important property of the

candidate tree: when a candidate tree C ( v i ) is used as part of a larger tree C ( v j ), only the root of this small candidate tree,

v i , is connected to the other part of C ( v j ). ub ( C ( v i )) is calculated according to this property from two different estimates, the

complete estimate and the potential estimate , denoted by ce ( C ( v i )) and pe ( C ( v i )) respectively. 

Complete estimate: The complete estimate ce ( C ( v i )) is the highest possible score that an incomplete candidate tree C ( v i )

can achieve when it is expanded to a complete answer. An incomplete candidate tree C ( v i ) only covers a portion of the

query keywords. To expand it to a complete tree, we need to supply non-free nodes that cover the missing keywords, and

connect them by some paths to the root v i of this candidate tree. If C ( v i ) is complete, the complete estimate is its own

score score ( C ( v i )). The difficulty of obtaining the complete estimate ce ( C ( v i )) for an incomplete candidate tree C ( v i ) is that

we do not know which non-free nodes can be used to complete the tree and how to choose the paths that connect them to

the candidate tree. The fact that some parts of these paths can be shared makes the above decision even more difficult. To

obtain a rough estimate, we assume that the best supplementary non-free nodes are connected directly to the root v i of the

candidate tree C ( v i ). This assumption leads to a complete tree that may not exist in reality. It is thus called a hypothetical

tree. 

The complete estimate given by the above method is usually much larger than the true value, and can be further refined

by checking the direct neighbors of the root v i . If a missing keyword can be covered by a node v j that directly connects to

v i , we consider two scenarios. One is that v j is contained in the hypothetical complete tree; the other is that this keyword is

covered by a node not directly connected. In the latter case, we assume that the best supplement node is connected to the

root v i through its best neighbor. The greater estimate from these two scenarios is chosen as the complete estimate. This

method provides a more accurate estimate, and is used in our experiments. 

Potential estimate: Although a complete answer tree covers all input query keywords, it is still possible to add more

non-free nodes to this tree to generate other complete trees with higher scores. The potential estimate, pe ( C ( v )), is the
i 
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Algorithm 1 Branch and bound search. 

1: Initialize the priority queue P := φ
2: Initialize the list of top- k results L top−k := φ
3: for each v i ∈ E n (Q ) do 

4: create a single node candidate tree C(v i ) 
5: enqueue C(v i ) into queue P 

6: end for 

7: while P � = φ do 

8: dequeue P to C(v i ) 
9: if | L top−k | = k and ub(C(v i )) < minscore (L top−k ) then 

10: return L top−k 

11: end if 

12: S grow 

(C(v i )) ← tree grow of C(v i ) 
13: for each C(v j ) ∈ S grow 

(C(v i )) do 

14: L top−k := L top−k ∪ { C(v j ) } if C(v j ) is complete 

15: enqueue C(v j ) into queue P 

16: S merge (C(v j )) ← tree merge of C(v j ) 
17: for each C(v h ) ∈ S merge (C(v j )) do 

18: L top−k := L top−k ∪ { C(v h ) } if C(v h ) is complete 

19: enqueue C(v h ) into queue P 

20: end for 

21: end for 

22: if | L top−k | > k then 

23: truncate L top−k to size k 

24: end if 

25: end while 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maximal contribution from the additional nodes appended to a complete tree. The tree growing and tree merging method

ensures that the additional nodes can only connect to a candidate tree C ( v i ) through its root v i . Similar to the method to

get the complete estimate ce ( C ( v i )), we can consider the non-free nodes in the set of nodes consisting of v i and all direct

neighbors of v i . All other non-free nodes are assumed to be connected to v i through the best neighbor of v i . When these

additional nodes are added to the complete candidate tree C ( v i ), each of them will have a node score, which is defined in

Eq. (3) . We take the maximum among these node scores as the potential estimate pe ( C ( v i )). 

Combination of complete and potential estimates: The complete and potential estimates can be combined to give the

upper bound for the candidate tree, ub ( C ( v i )). The upper bound of a candidate tree T ( v i ) is the greater of the complete and

potential estimates. This is stated in the following lemma. 

Lemma 1 (Correctness of the upper bound) . For an arbitrary full answer tree T grown from the candidate tree C , score (T ) ≤
ub(C) = max (ce (C ) , pe (C )) . 

Proof: See Appendix A. 

Lemma 2 (Monotonicity of the upper bound) . Suppose we have a candidate tree C ( r o ) . This tree grows from its root r o to a

neighbor node r g , and generates a new candidate tree C ( r g ) . We have ub ( C ( r g )) ≤ ub ( C ( r 0 )) . 

Proof: See Appendix B. 

Theorem 1 (Optimality of the search algorithm) . The top-k results of the branch and bound search algorithm are guaranteed to

be optimal. For any answer tree T / ∈ L top−k where L top−k is the top-k results, score (T ) ≤ minscore (L top−k ) , where minscore (L top−k )

is the minimal score of the top-k results. 

Proof. Prove by contradiction. If the top-k results L top−k generated by the branch and bound search algorithm are not opti-

mal, there should exist an answer tree T such that score (T ) > minscore (L top−k ) . Because this tree T is not generated by the

branch and bound search algorithm, at least one of the candidate tree, denoted by C , that can be grown or merged to T is

pruned. The pruning rule in Lines 24 and 25 of Algorithm 1 shows that ub(C) ≤ minscore (L top−k ) . 

On the other hand, Lemma 1 states that ub ( C ) ≥ score ( T ). Considering the assumption of tree T , score (T ) >

minscore (L top−k ) , we can get a result that ub(C) > minscore (L top−k ) . 

It is a contradiction that ub(C) ≤ minscore (L top−k ) and ub(C) > minscore (L top−k ) . Therefore, the initial assumption that the
top-k results L top−k are not optimal must be false. �
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4.3. Computing scores of JTT incrementally 

In the branch and bound algorithm, a candidate tree C will constantly evolve into a new tree when it absorbs a new node

or is combined with another candidate tree. Once a new tree C n is constructed, it is a challenging problem to computing

the score of C n efficiently. A naive method for calculating the score of C n is to directly employ the RWMP model to let the

message of each node in C n go through all other nodes in this tree, and we can then get the number of messages of the

least populous type in each node to calculate the final score of C n . This method is straightforward to implement, but the

main problem is that the message of each node needs to pass through the whole tree repeatedly when the tree is extended,

which may result in prohibitive computational cost. 

To improve the efficiency, we design ISF, an incremental approach inspired by the work by Rodger et al. [18] for com-

puting scores of new trees based on their existing scores. In the branch and bound algorithm, the candidate tree C can be

extended in two ways: adding a new node or being combined with another candidate tree. Hence, when computing the

score of a new tree we need to take into account these two conditions. 

Adding a new node: Suppose the tree C will become a new tree C n by adding a new node v x , and v n is the adjacent node

of v x in C n . If v x is a free node, it will not generate messages and therefore will not affect the score of C n . Thus, we just need

to consider the case of v x being a non-free node. In this case, ISF has to calculate the score of v x and recompute scores of

the nodes in C . In the ISF approach, we let each node record the number of all types of messages it has received. Since v n is

linked to v x , each type of messages in C will reach v x through v n . Because v n maintains the number of all types of messages

it has received, we can immediately compute the number of each type of messages that v x has received. Next, we let the

messages generated by v x pass through each node in C , and then update the number of messages of the least populous type

of each node. Finally, we can compute the score of C n by combining the scores of each node based on Eq. (4) . As a special

case, if the tree C n covers all keywords, and the number of messages that are carried from v x to v n is larger than the number

of messages generated by v n , then the scores of the nodes in C will not change because the dampening rate of each node is

fixed for different messages that can be inferred by Eq. (2) . In this case, Score (C n ) = (Score (C) + Score (v x )) / (En (Q ) ∩ V (C n )) .

Being combined with another candidate tree: In the second case that C is merged with another candidate tree C a 

through their common root, we have to consider two scenarios. If the new tree C n constructed by merging C and C a covers

all keywords, then it is not necessary to exchange messages between C and C a to calculate the score of C n . Let v r denote the

common root, and v m 

and v n be the adjacent nodes of v r in C and C a respectively. Next, we only need to send the messages

of the least populous type in v m 

to C a through the root v r because other types of messages in v m 

will not reduce the score

of C a . Similarly, only the messages of the least populous type in v n will walk through v r and the nodes in C . Since v r and

the nodes in C and C a only receive one or two types of messages, they can update their scores instantly. Hence, C and C a 

can get their new scores quickly. The score of C n can be obtained by combining the new scores of v r , C , and C a based on

Eq. (4) . 

If the new tree C n does not cover all keywords, we then need to exchange all types of messages between C and C a . That

is, all types of messages in v m 

and v n will walk through each node in C a and C according to their common root v r with the

RWMP model. In this case, each node in C n needs to update their scores and then the score of C n can be calculated with

Eq. (4) . 

Overall, the ISF approach provides an incremental paradigm for computing the scores of trees that are continuously

extended with the branch and bound algorithm. In the best case, we merely need to transfer two types of messages be-

tween only two nodes. Even in the worst case, all types of messages just pass through part of the nodes in the new tree.

Hence, the ISF approach may enjoy a significant reduction in computational cost compared with the naive method. To verify

the theoretical analysis, we also conduct experiments to evaluate the performance of the ISF approach and the results in

Fig. 11 demonstrate that this incremental approach can effectively enhance the efficiency of the search algorithm. 

Further improvement: The performance of this algorithm is sometimes impaired by noisy non-free nodes. These noisy

nodes cannot connect to other non-free nodes to generate complete answers, but they have very high importance values.

In some cases, the branch and bound search algorithm wastes a lot of time to enumerate the candidate trees grown from

these noisy nodes because they have higher upper bound estimates. To alleviate such problems and obtain more accurate

upper bound estimates, we build indexes on the database graph, as discussed in the following section. The index improves

the evaluation of the upper bounds of the candidate trees during their generation in Lines 12 and 16 of Algorithm 1 . 

5. Indexing techniques 

We design indexing methods to further improve the search efficiency of the branch and bound search algorithm. 

5.1. Naive indexing 

In a naive indexing scheme, we could compute offline and store the shortest distances between any two nodes in the

data graph, DS ( v i , v j ), and the minimal loss of messages due to dampening when surfers move from one node to another,

LS ( v i , v j ). The shortest distance information gives more pruning power at run-time. When expanding a candidate tree, a

non-free node can be ignored if it is too far away from the root of the candidate tree such that the diameter of the result
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Fig. 7. The shortest distance between a star node and a non-star node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tree would exceed the limit D . The information on the minimal loss of messages improves the accuracy of the upper bound

estimate used in the search. 

The main problem of this indexing scheme is that its space complexity is O (| V | 2 ) , too big even for databases of moderate

sizes. This leads us to the development of better indexing schemes. In particular, we consider the special case where the

database has a star schema, which is common in OLAP applications, and introduce a new indexing method called star

indexing . This indexing method dramatically reduces the space requirement and strikes a balance between the size of the

index and its pruning power. 

5.2. Star indexing 

In star indexing, only part of the nodes, which we call star nodes, are indexed. All nodes in the star table are considered

star nodes, where a star table is defined as a table such that if it is removed, all the remaining tuples in the database

become disconnected. For example, in Fig. 1 (b), the Movie table in the IMDB database is a star table. Similarly, the Paper

table is a star table in the DBLP database as shown in Fig. 1 (a). It is possible that tuples in the database cannot be completed

disconnected by the removal of a single star table. In this case, we can have multiple star tables. The nodes in all of the star

tables are indexed, maintaining the same information as in naive indexing. This design results in a significant reduction of

the nodes that have to be indexed. 

There are several different cases in leveraging the proposed star index to speed up the branch and bound algorithm by

evaluating the relationship between two nodes. 

Case 1 : Both nodes are star nodes. The shortest distance DS ( v i , v j ) and the minimal loss of the messages LS ( v i , v j ) can be

retrieved directly from the index. 

Case 2: A star node v i and a non-star node v j . In this case, we first retrieve the set of star nodes directly connected to

the v j . Let it be S star ( v j ). Then, the shortest distances and minimal message losses are retrieved for all v ∈ S star ( v j ) and v i . We

select the star node v h from S star ( v j ) that gives the lowest values among all retrieved shortest distances. The shortest distance

between v h and v i is denoted by DS ( v h , v i ). If v j is on the shorted path from v h to v i , the shortest distance between v i and v j
is DS(v h , v i ) − 1 . This is shown in Fig. 7 (a). The star nodes are represented by star symbols, and the other nodes are depicted

as circles. Other possible values for the shortest distance between v j and v i are DS(v h , v i ) + 1 and DS ( v h , v i ), illustrated in

Fig. 7 (b) and Fig. 7 (c) respectively. The latter value is given when there is another star node v o that connects directly to v j ,

which has a shortest distance DS(v h , v i ) + 1 to node v i , and has v j on its shortest path. Therefore, we cannot get the accurate

shortest distance in this case. In our search algorithm, we use the lower bound, DS(v h , v i ) − 1 as the shortest distance. The

pruning power is reduced because some nodes that should be pruned might be kept due to the inaccuracy thus introduced.

This illustrates the trade-off between the index size and its pruning power. The minimal loss of messages is calculated in a

similar way. 

Case 3 : Both nodes are non-star nodes. We expand both non-star nodes to two sets of star nodes and calculate the

approximate shortest distance in a manner similar to the second case. 

5.3. Group indexing 

To achieve further reduction in index size, we extend star indexing and propose group indexing . Under this scheme,

several star nodes can be grouped as one index unit. Only the inter-group relationships are indexed. A group is selected

as follows. For a given group center and a user tunable parameter named group diameter d , all star nodes within distance

d and not included in other groups are selected as members of this group. If a star node is chosen as a group center, the

number of the star nodes in this group is called the group capacity of this center star node. 
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Table 1 

Benefits of the model. 

Characteristics of the model 

1 The number of the source messages is proportional to the importance of the source node. 

Effect: The important non-free nodes are favored. 

2 The number of the messages is dampened when they pass through a node. 

Effect: Messages in a larger JTT have to go through more intermediate nodes before reaching other non-free 

nodes and thus tend to be dampened more heavily, resulting in lower scores. Smaller trees are preferred. 

3 The relation between the dampening rate and the node importance is monotonic. 

Effect: Pref erence is given to important free nodes in connecting the non-free nodes. 

4 The score of the tree is not dominated by the free nodes. 

Effect: The free node domination problem is avoided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The group centers are decided by a greedy algorithm that aims to minimize the number of groups. This algorithm always

selects the star node with the maximal group capacity as a group center in each iteration. The groups are mutually exclusive,

i.e., a node cannot appear in more than one group. The shortest distances from every node in one group to every node in

another group are evaluated; the lowest value among them is used as the shortest distance of the two groups and stored in

the index. The minimal loss of the messages between the two groups is calculated and stored in a similar way. Apparently,

the information stored in this manner is less precise than that in star indexing, but enjoys the benefit of being more space

efficient. When the group diameter d is chosen to be a typical number 2, the number of centers is only 4.23% of the number

of the star nodes for the IMDB database we experimented with. 

Benefits: Star indexing and group indexing enhance the efficiency of the branch and bound search algorithm in two

ways. First, it can provide a more accurate complete estimate. Without the index, if a supplement node is not directly

connected to the root of the candidate tree, we just assume that it is connected to the best neighbor of the root. However,

the supplement node may be far from the root, or even not connected at all. The minimal loss of messages between two

nodes, which we can get from the index, is used to improve the accuracy of the complete estimate. Second, we can avoid

computing the potential estimate and get a more accurate evaluation of the contribution from the additional nodes. The

contributions of all non-free nodes that are not in the candidate tree can be calculated using the index. A greedy algorithm

retrieves them in descending order of the contributions, and adds them into the candidate tree until the score of the result

tree starts to decrease. Because the star and group indexes do not store the precise values for the loss of the messages, the

calculated contribution is not an exact value but rather an upper bound. 

6. Experiments 

6.1. Experiment setting 

To evaluate the effectiveness and efficiency of CI-Rank , we conduct extensive experiments on two large-scale data sets

and a real user query log. 

The data sets used in the experiments are the Internet Movie Database (IMDB), 1 and the DBLP data. 2 Both data sets are

modeled as graphs. The IMDB data contains 3,378,743 nodes and 28,482,926 edges, and the DBLP data contains 2,132,821

nodes and 8,446,804 edges respectively. The schemas of the two databases are shown in Fig. 1 . 

Similar to the previous study [10] , the edge weights are chosen experimentally when modeling the databases as graphs in

our experiments. We find the edge weights listed in Table 2 work well in our experiments. These weights will be normalized

in the graph. For example, one movie has three out edges, which point to an actor, a director and a producer. Before the

normalization, the weights of these edges are 1.0, 1.0, and 0.5. The random walk model requires that the weights of out

edges of a node sum to 1.0. Therefore, the weights of above three out edges are normalized to 0.4, 0.4, and 0.2. There is

another problem in modeling the IMDB data set due to its normalization. The same person may have several copies because

he/she has different roles. For example, Mel Gibson is the director of the movie Braveheart (1995). At the same time, he

is an actor in it. When we map the IMDB data set to a graph, two nodes, director Mel Gibson and actor Mel Gibson, are

created. As a result, the importance value belonging to the same person is split and distributed into two different nodes.

To avoid this case, we merge such nodes into a single node. In the above example, we only have one Mel Gibson node in

the graph. This node has two different edges, directing and acting, that point to the node of the movie Braveheart (1995)

( Table 1 ). 

A real user query log is used in our experiments. In 2006, AOL provided the user query log accumulated in their search

engine for three months. The log, which can be obtained from a mirror site, 3 contains 20 million queries issued by 650,0 0 0

users. Each record in this log has both the query content and the URL clicked by the user. Only the records whose clicked

URL contains http://www.imdb.com are collected. The total number of such records is 81,250. Among them, we manually
1 http://www.imdb.com/interfaces . 
2 http://dblp.uni-trier.de/xml/ . 
3 http://www.gregsadetsky.com/aol-data/ . 

http://www.imdb.com
http://www.imdb.com/interfaces
http://dblp.uni-trier.de/xml/
http://www.gregsadetsky.com/aol-data/


X. Yu et al. / Information Sciences 384 (2017) 1–20 15 

Table 2 

The edge weights. 

Data set Edge type Weight 

IMDB Actor → Movie 1 .0 

Movie → Actor 1 .0 

Actress → Movie 1 .0 

Movie → Actress 1 .0 

Director → Movie 1 .0 

Movie → Director 1 .0 

Producer → Movie 0 .5 

Movie → Producer 0 .5 

Company → Movie 0 .5 

Movie → Company 0 .5 

DBLP Conference → Paper 0 .5 

Paper → conference 0 .5 

Author → Paper 1 .0 

Paper → Author 1 .0 

Citing paper → Cited paper 0 .5 

Cited paper → Citing paper 0 .1 

Fig. 8. The effect of parameters on the mean reciprocal rank. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

labeled 29,078 frequent queries. For robustness, each of those queries must have appeared at least three times in the log.

These labeled queries are used as user feedback to bias the CI-Rank model. 44 complex queries are selected from the user

query log to verify the effectiveness and efficiency. These complex queries, which match at least two nodes, have clear

meaning and no ambiguity in the manual labeling. Since the AOL log does not contain any queries related to DBLP, 20

synthetic queries are used instead. The method to generate the synthetic queries is explained in the following subsection. 

CI-Rank is implemented in Java. The index is built using Apache Lucene. All the experiments are run on an IBM Linux

server with a 3.0GHz Intel Dual Core processor, 4GB of RAM, and 2TB SATA HD RAID. 

In the experiments, we implement SPARK’s [7] scoring function on the database graph, as well as BANKS [2] , to compare

their performance with that of CI-Rank . We also design a ranking approach called PageRankSearch as another baseline.

PageRankSearch adapts PageRank [14] to keyword search over relational databases. In this approach, we first view the data

graph representing the database as a graph of webpages (in the original PageRank context), where each node corresponds to

a page and the edge represents a reference from one page to another, and then use a simplified algorithm [15] to compute

the PageRank value of each node. PageRankSearch defines the weight of a Steiner tree as the sum of the PageRank values of

all nodes in this tree, and the Steiner trees can be ranked according to their weights in a descending order. Since the weight

of a Steiner tree includes the PageRank values of both free nodes and non-free nodes, the main drawback of PageRankSearch

is that the free nodes with large PageRank values will have excessive impact on the results which may lead to degradation

in the effectiveness of ranking. This will be empirically evaluated in the Section 6.2 ( Fig. 8 ). 

6.2. Effectiveness 

We use two metrics, mean reciprocal rank and precision, to measure the effectiveness. The reciprocal rank is the inverse

of the rank of the best answer. The best answer is decided by a user study. Five graduate students were invited to select

their most preferred answer for each query. For a query, the best answer is decided by majority voting. In the case of a

tie, all of the answers are considered the best. Another measure, precision, is the fraction of the answers generated that
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Fig. 9. Effectiveness comparison of CI-Rank with SPARK, BANKS, and PageRankSearch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are relevant to the query. Graded relevance levels are used. If a relevant answer does not contain all input keywords, its

relevance level is penalized by the percentage of the missed keywords. 

We first study the effect of the two parameters in CI-Rank , namely, α and g . Both parameters defined in Section 3.3 are

used to control the message dampening process inside a node. Recall that α is the probability a message carrier is willing

to take the messages in one talk. g is the clique size of the talk. The importance values of the graph nodes are calculated

by the iterations in Eq. (1) . A typical value, 0.15, is used for the teleportation constant c in this equation. 

Fig. 8 (a) and (b) illustrate how the effectiveness is affected by the parameters α and g . The change of the mean reciprocal

rank shows the same pattern for both data sets. The result is better when α is between 0.1 and 0.25 than when the α is

out of this range. Similarly, the parameter g leads to better accuracy when it ranges from 10 to 20. We choose α = 0 . 15 and

g = 20 for the following experiments since CI-Rank has the best performance with them for both IMDB and DBLP data sets.

The value range of the dampening rate in CI-Rank is controlled by α and g. α is the minimal value of the dampening rate.

If α is fixed, the maximal value of the dampening rate decreases when g increases. 

To compare CI-Rank and existing methods, we introduce the ranking strategies of SPARK, BANKS, and PageRankSearch.

The result of CI-Rank is obtained with the default parameters α = 0 . 15 and g = 20 . No user feedback is used. Two different

query sets are used for IMDB. One is obtained from the AOL user log, and the other synthetically generated. Interestingly,

most of the complex queries obtained from the AOL user log can be matched by two directly connected nodes, which is

typical of Web search. Considering that a database search user is more likely to retrieve the information that links two or

more separated elements, a synthetic query set is also generated for IMDB. It has the same number of queries, 20, as the

DBLP query set. Both synthetic query sets follow the same pattern. 50% of the queries are matched by two non-free nodes

that are not directly connected, and 20% of the queries cover three or more non-free nodes. The remaining queries can be

matched by either a single node or two directly connected nodes. 

The comparison in terms of mean reciprocal rank is shown in Fig. 9 (a). For queries obtained from the AOL user log, the

effectiveness of CI-Rank , SPARK, and PageRankSearch is close (0.85, 0.79 and 0.76 respectively), all better than BANKS. For

synthetic queries on both IMDB and DBLP, the mean reciprocal ranks of SPARK, BANKS and PageRankSearch are about 0.5,

much lower than that of CI-Rank . The reason is that for most user log queries, the answers are directly connected non-

free nodes, with no free nodes required. Only 11.4% of them require free nodes to connect the matched non-free nodes.

For synthetic DBLP queries, this percentage is chosen to be 50%. This validates the effectiveness of our ranking function in

selecting the free nodes to connect non-free nodes, as well as the flaw of PageRankSearch that the free nodes excessively

impact the ranking results. 

Fig. 9 (b) shows the comparison of the methods in terms of precision. The precision of CI-Rank is higher than 0.9 in three

different experiments. SPARK, BANKS and PageRankSearch also have high precision values, which are more than 0.85 for

IMDB and 0.75 for DBLP. The difference in precision between CI-Rank and SPARK can be primarily attributed to those long

queries that match three or more non-free nodes. 

6.3. User feedback 

Next we evaluate the effect of user feedback. This experiment is only performed on the IMDB data set since we do not

have the real user query log for the DBLP data set. In the unbiased model, the teleportation vector u in Eq. (1) has a uniform

distribution. Now it is populated using the query log as follows. If a node v i shows up k times in the query result chosen

by the user according to the log, its teleportation data u i is set to be proportional to k . Under this rule, for a node v i that

does not appear in the log, its u i should be set to zero. However, considering that the log does not span a long time and

that we have only labeled the frequent queries, it may penalize such a node too much if u i is set to zero. Instead, we assign

it a small value by assuming that the unlabeled queries are uniformly distributed over the nodes that are not covered by
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Fig. 10. The effect of user feedback on mean reciprocal rank for IMDB. 

Fig. 11. The efficiency of the naive algorithm and the branch and bound algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the log. This small value is 1 . 9 e − 7 in our experiment. For comparison, the minimum u i for the labeled nodes is 3 . 7 e − 5 .

Fig. 10 shows the effect of incorporating the user feedback in terms of mean reciprocal rank. The horizontal axis in this

figure corresponds to the teleportation constant c in Eq. (1) . By varying this parameter, we adjust the bias strength of the

model. Clearly, CI-Rank with user feedback gives the best result, achieving a mean reciprocal rank of 0.95 when c is 0.15.

Over all c values tested, the mean reciprocal rank is always higher than 0.9 over all c values tested, averaging a 5%-10%

improvement over CI-Rank without user feedback. It indicates that incorporating user feedback does effectively improve the

quality of ranking. 

6.4. Efficiency 

We first show the efficiency comparison between the naive algorithm and the branch and bound algorithm. Because the

naive algorithm can easily run out of memory when the whole datasets are used in their entirety, we obtain uniformly

samples of the original datasets, with the size of each being 10% of the original. The experiments are performed on the

sample datasets, and the results are presented in Fig. 11 . It is evident that the branch and bound algorithm significantly

outperforms the naive one. 

The evaluation of star index and group index is performed on the full datasets. Here, we set the group diameter as 2.

The search time for the answer tree is measured for different maximal tree diameters D , and the results are presented in

Fig. 12 (a) and (b). Each result is the average search time for the top-5 answers for the IMDB and DBLP queries. It is evident

from these two graphs that the indexes reduces the search time considerably on both datasets, and star index performs

better than group index. When the maximal tree diameter D decreases, the search time generally drops. For all maximal

tree diameters, the average search time is less than 10 seconds when the star index is used. Note that when the maximal

tree diameter D is set to a small value (e.g., 2 or 3), the number of the full answer trees for some queries is less than 5, the

value of k in top- k search. 

7. Related work 

Keyword search has been extensively studied in the literature [1,4–7,10,19–21] . See [22] for an excellent survey. We have

examined a few representative approach in Section 2 . Here we briefly mention a couple other studies that are related to our

work. 
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Fig. 12. The average search time for queries on two datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instead of generating answer tree, EASE [9] looks for the most relevant subgraph, constrained by a maximum radius

specified by the user. The ranking function in EASE is still IR-style. Thus, it does not consider the node importance. 

CEPS [23] uses random walk with restarts (RWR), a variant of the random walk model, to find the best center-piece

subgraph for a given graph and several pre-selected query nodes. The result of this algorithm is a subgraph rather than a

tree, which is different from the query answer form used in our studies. A problem with this approach is that the query

nodes are pre-selected in this model. For keyword search in databases, every input keyword will hit a lot of non-free tuples.

It is unclear how to best choose candidates from all non-free tuples as the query nodes. 

MeanKS [24] studies meaningful keyword search in relational databases with complex schema. This system allows the

user to specify the “role” of each keyword through a user interface, and returns the top minimal join trees that not only

contain all the query keyword roles but also reflect the user interests. The ranking of minimal join trees is based on the

importance of nodes, edges, or combinations of them. 

Bergamaschi et al. [25] propose QUEST, a keyword search system over relational databases implementing a three-step

schema-based approach. It first determines how the keywords in the query correspond to the structural elements of the

database using Hidden Markov Models, and then identifies the structure of the queries that can be generated from a given

configuration. Finally, it decides on the combination of keyword mappings into data structures and paths connecting these

data structures that most satisfy the requirements of users. 

Coffman et al. [26] present a thorough empirical performance evaluation of relational keyword search systems. 

8. Conclusions and future work 

We have proposed CI-Rank , a new approach for keyword search in databases. CI-Rank considers both the importance of

individual nodes and the cohesiveness of the answer tree in a balanced way, and avoids a lot of the pitfalls of the ranking

functions employed in previous methods. We presented a branch and bound algorithm to support the efficient generation

of top- k query answers. The efficiency of the algorithm is further improved by star indexing. All solutions are implemented

and evaluated against the IMDB and DBLP datasets. Real user query logs are employed in the evaluation. 

In future work, we would like to study user preference adaptation. One possible direction is to consider how to improve

the model such that user feedback can be used to adjust not only the importance values of the nodes, but also the weights

of the edges of the database graph. Another direction is to study how to combine the importance-based ranking used in our

approach and IR-style ranking to produce better ranking functions. 
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Appendix A. Proof of Lemma 1 

Proof. Suppose we have an arbitrary full answer tree T grown from the candidate tree C . Now we prove that score (T ) < =
ub(C) = max (ce (C ) , pe (C )) . 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100007129


X. Yu et al. / Information Sciences 384 (2017) 1–20 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0) We divide the non-free nodes in T into three groups. Group a consists of the non-free nodes in C , denoted as

v 1 , v 2 , . . . , v n . Since C is not a complete tree, the keywords that are not covered by C are matched by some other non-

free nodes in T . We choose an arbitrary combination ( group b ) of these nodes that just covers the missed keywords in C ,

denoted as w 1 , w 2 , . . . , w m 

. The remaining non-free nodes form group c , and are denoted as u 1 , u 2 , . . . , u l . 

(1) We first prove that the average node score of groups a and b is less than or equal to the complete estimate, i.e.,

( 
∑ n 

i =1 score (v i ) + 

∑ m 

i =1 score (w i ) ) / (n + m ) ≤ ce (C) . The steps are as follows. In the hypothetical tree that is used to evaluate

ce ( C ), the best complement nodes are attached directly to the root of C . Denote them as w 

′ 
1 
, w 

′ 
2 
, . . . , w 

′ 
m 

. Because they are

the best complement nodes, the importance of w 

′ 
i 

is higher than or equal to that of w i . For any non-free node v i in C,

score ( v i ) is its node score in tree T . Let score ′ ( v i ) denote its node score in the hypothetical tree. Since w 

′ 
1 
, w 

′ 
2 
, . . . , w 

′ 
m 

have

higher importance values and connect more closely than w 1 , w 2 , . . . , w m 

, v i will receive more messages from w 

′ 
1 
, w 

′ 
2 
, . . . , w 

′ 
m 

.

If the non-free nodes from group c are not considered, score ( v i ) ≤ score ′ ( v i ). Because the node score is determined by the

least populous type of messages, the additional non-free nodes from group c can only make v i have the same or lower node

score. Consequently, score ( v i ) ≤ score ′ ( v i ) still holds when group c is considered. Next we compare the score of score ( w j ) and

score ′ (w 

′ 
j 
) . Messages from v i are less dampened before they are accepted in w 

′ 
j 

because w 

′ 
j 

has higher importance value and

closer connection to v i than w j . The direct connection of w 

′ 
j 

to another group b node w 

′ 
k 

is considered in the hypothetical tree

as well. Thus, the number of messages received from w 

′ 
k 

in w 

′ 
j 

is greater than or equal to that from w k in w j . Consequently,

w 

′ 
j 

receives more messages than w j for any message type. According to the definition of node score, score (w j ) ≤ score 
′ 
(w 

′ 
j 
) .

Combining the result of the above two steps leads to [ 

n ∑ 

i =1 

score (v i ) + 

m ∑ 

i =1 

score (w i ) 

] 

/ ( n + m ) (5)

≤
[ 

n ∑ 

i =1 

score ′ (v i ) + 

m ∑ 

i =1 

score ′ (w 

′ 
i ) 

] 

/ ( n + m ) = ce (C) (6)

(2) We then prove that the average node score of group c is less than or equal to the potential estimate,

( 
∑ l 

i =1 score (u i ) ) /l ≤ pe (C) . The potential estimate is chosen as the max node score an additional non-free node can achieve.

Thus, pe ( C ) ≥ s ( u i ). Then, we can get 

l ∑ 

i =1 

score (u i ) /l ≤
l ∑ 

i =1 

pe (C) /l = pe (C) ∗ l /l = pe (C) (7)

(3) According to the definition, the score of the tree T is 

score (T ) = 

n ∑ 

i =1 

score (v i ) + 

m ∑ 

i =1 

score (w i ) + 

l ∑ 

i =1 

score (u i ) 

n + m + l 
(8)

Applying Eqs. (6) and (7) into Eq. (8) results in 

score (T ) ≤ (n + m ) ∗ ce (C) + l ∗ pe (C) 

n + m + l 

≤ (n + m + l) ∗ max (ce (C ) , pe (C )) 

n + m + l 

= max (ce (C) , pe (C)) = ub(C) �

Appendix B. Proof of Lemma 2 

Proof. We set ce ( C ( r 0 ))and pe ( C ( r 0 )) as the complete estimate and potential estimate of C ( r 0 ) respectively, and ce ( C ( r g )) and

pe ( C ( r g )) are the complete estimate and potential estimate of C ( r g ) respectively. To prove Lemma 2 , we also use the groups

a and b as defined in Appendix A, i.e., C ( r 0 ) contains the non-free nodes v 1 , v 2 , . . . , v n . Suppose that a full tree T can be

extended from C ( r 0 ) by adding the non-free nodes w 1 , w 2 , . . . , w m 

, and that w 

′ 
1 , w 

′ 
2 , . . . , w 

′ 
m 

are in the hypothetical tree. We

redefine the group c so that it contains the non-free nodes u 1 , u 2 , . . . , u k that can be connected to T to maximize score ( T ) .

According to the above definitions, we can get 

ce (C(r 0 )) = 

n ∑ 

i =1 

score (v i ) + 

m ∑ 

i =1 

score (w 

′ 
i ) 

ce (C(r g )) = 

n ∑ 

i =1 

score (v i ) + score (w j ) + 

m ∑ 

i =1 

score (w 

′ 
i ) , j � = i 
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where node w j represents the node r g . Because score (w j ) ≤ score (w 

′ 
j 
) , ce ( C ( r g )) ≤ ce ( C ( r 0 )). Similarly, we can obtain 

pe (C(r 0 )) = score (T ) + 

k ∑ 

i =1 

score (u 

′ 
i ) 

pe (C(r g )) = score (T ) + score (u 

′ 
j ) + 

k ∑ 

i =1 

score (u 

′ 
i ) , i � = j 

Therefore, pe ( C ( r g )) ≤ pe ( C ( r 0 )). Hence, ub ( C ( r g )) ≤ ub ( C ( r 0 )). �
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