

1

Course textbook

Gerd Prölss, "Physics of the Earth's Space Environment: An Introduction", translated by Michael Keith Bird, SpringerVerlag, Berlin 2010 ISBN 978-3-642-05979-7

YORK

3

5

2

Introduction
Space physics: Physics of particles and fields within the space regions of the solar system and its immediate vicinity.
atoms, molecules, ions and electrons electric, magnetic, gravitational...
Neutral atmosphere
lonosphere
Magnetosphere
Solar atmosphere
Interplanetary space
Heliosphere

4

6

Did you know?

- The first animal in space was a Russian dog named Laika, aboard Sputnik in 1957.
- In 2012, Austrian sky diver Felix Baumgartner ascended to a height of 39 km aboard a capsule attached to a $55-$ story-tall helium balloon. He was less than half way up to what we consider space. Baumgartner jumped and shot to earth at a speed of $1,343 \mathrm{~km} / \mathrm{h}$, reaching Mach 1.24 , and became the first person to break the sound barrier without vehicular power on his descent. It took 9 minutes for Baumgartner to reach the ground.

7

Main chapters
(1) Introduction
(2) Neutral upper atmosphere
(3)Sun and absorption
(4) lonosphere
(5)Magnetosphere
(6) Interplanetary medium
(7)Orbital debris and micrometeorites

YORK

9

Groundbased observations related to the aurora

1733 de Mairan -description of auroras and speculation about the cause: solar particles penetrate Earth's atmosphere and generate polar lights.
1741 Hjorter \& Celsius - Intense magnetic field perturbations occurred during enhanced auroral activity
1866 Ångström- Recording of prominent greenish yellow auroral line at 557.7 nm
~1895 Birkeland - First experimental simulation of an aurora
~1895 Størmer - Calculation of trajectories of electrical particles in Earth magnetic field

YORK U
11

Scope and organization of the course

- The course is biased toward the space environment of the Earth and touches only sporadically on the space environment of the other planets of the solar system.
- Essentials of the Earth's immediate space environment can be relatively easily transferred to the immediate space environment of the other planets. For instance, the underlying physics for Earth's aurora are similar to the underlying physics for the aurora phenomena of Jupiter and Saturn.
- The order of the chapters follows the order of increasing distance of the regions that are covered in the chapters, and the regions' impact on spacecraft is discussed.YOR K

8

History

Groundbased observations related to Earth's magnetic field ~1000 -------- magnetic compass discovered in China
1600 Gilbert - Earth magnetic field investigated with compass needle 1722 Graham - Short period magnetic field fluctuations
1808 Humboldt - Irregular magnetic field disturbances \rightarrow magnetic storms
1839 Gauss - small part of magnetic field is extraterrestrial
1842 Schwabe - Solar sunspot cycle
1849 Barlow - First space weather effect: disturbance of telegraphic communications during geomagnetic storms
1852 Sabine - Intensity of magnetic disturbances correlated with sunspot cycle
1859 Carington - Solar flares can be followed by magnetic storms
YORK U

10

12

13

15

14

- Sabine led effort to build magnetic observatories all over the globe
- From Toronto recordings è magnetic variations closely correlate with variations in the number of sunspots.
- 11 year sunspot cycle identical to 11 year geomagnetic cycle

Joseph Sabine 1788-1883 YORK

16

Kristian Birkeland experiments with a magnetized sphere ("terrella") in a vacuum chamber and electrons shot at it. The electrons found their way to the magnetic poles è polar aurora is probably created by electron beams from the Sun.

Kristian Birkeland 1867-1917 YORK」

Groundbased observations of the ionosphere

1901 Marconi - Transatlantic radio communication \rightarrow speculation about conducting layer
1924 Breit, Tuve, Appleton (Nobel Prize), Barnett - Prove of existence of ionosphere
>1924 Chapman - Theory of ionosphere
1925 Espenschied - lonospheric disturbance \longleftrightarrow geomagnetic activity
1953 Storey - whistlers: low-frequency radio waves propagating in magnetized ionized gases, extension of ionosphere into magnetosphere

21

20

1970 Nobel Prize for work on magnetohydrodynamics

Hannes Alfven 1908-1995 YORK U

22

24

25

