PHYS 3280

Physics of the space environment
2. Neutral upper atmosphere

Scope

- The physics of gases
- Gas "macroscopic" physical properties
- Pressure
- Temperature
- Mass density, etc.
- How these relate to "microscopic" properties
- Particle radius
- Particle mass etc.
- How the atmosphere can be divided up
- Based on temperature
- Based on pressure
- Textbook sections 2.1 - 2.3

Why?

- Determine temperature, density changes as a function of altitude
- Determine mean free path for objects in upper atmosphere (affects dynamics, thermal environment etc.)
- Predict atmospheric environment on other planetary bodies using point measurements and knowledge of molecular interactions

Gas macroscopic state parameters

- Chemical composition
- Composition at Earth surface?
- Composition at 300 km above?
- Temperature
- Range of temperatures varies widely with altitude
- Pressure
- Pressure variation with altitude is many orders of magnitude variability at a given altitude is much smaller
- Mass density
- Which of the above variations most closely matches density variation?
- Flow velocity
- Magnitude - air speed. Range of possible speeds varies significantly with altitude

Macroscopic state parameters

Parameters that describe the general state of an atmosphere

Parameter	Symbol	Gas kinetic meaning	Height		Unit
			0 km	300 km	
Chemical composition		$\mathrm{n}_{\mathrm{i}} / \mathrm{n}$	$\begin{array}{r} 78 \% \mathrm{~N}_{2} \\ 21 \% \mathrm{O}_{2} \\ 1 \% \mathrm{Ar} \end{array}$	$\begin{array}{rl} \hline 78 \% & \mathrm{O} \\ 21 \% & \mathrm{~N}_{2} \\ 1 \% & \mathrm{O}_{2} \\ \hline \end{array}$	
Mass density	ρ	$\sum_{i} m_{i} n_{i}$	1.3	$2 \cdot 10^{-11}$	$\mathrm{kg} / \mathrm{m}^{3}$
Flow velocity	\vec{u}	$\langle\vec{v}\rangle$	0-50	0-1000	m / s
Temperature	T	$2 / 3 \mathrm{k} \cdot 1 / 2 \mathrm{mc} \bar{c}^{2}$	$\begin{aligned} & 200-320 \\ & 2500 \end{aligned}$	600 -	K
Pressure	p	$1 / 3 \mathrm{nmc}^{2}$	10^{5}	10^{-5}	Pa

$1 \mathrm{~Pa}=1$ pascal= $1 \mathrm{~N} / \mathrm{m}^{2}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760$ torr

Gas kinetics

- Macroscopic state parameters are sufficient to describe the general macroscopic characteristics of an atmosphere.
- Gas kinetics are necessary to give physical interpretation of the macroscopic state parameters.
- Gas kinetics are necessary to describe other parameters like diffusion, viscosity and heat conduction.
- Gas kinetics describe the behaviour of gas particles with atomic parameters, dynamical variables and boundary conditions.

Atomic parameters

- Particles to consider:
- $\mathrm{HHeOAr} \mathrm{N}_{2} \mathrm{O}_{2}$
- Particle radius
- Not radically different for any of the constituent particles
- $1-3 \times 10^{-10} \mathrm{~m}$ (If the particle radius would be scaled up to 1 cm , then 1 m would have to be scaled up to the distance from here to the moon.)
- Mass number (atomic mass number - sum of protons and neutrons vs. Atomic number - number of protons only) - and particle mass (mass number times mass of $1 \mathrm{amu}-1.66 \times 10^{-27} \mathrm{~kg}$)
- Degrees of freedom
- 3 for atoms, usually 5 for molecules:
- rotation about the axis joining the two atoms has no impact on kinetic energy - negligible moment of inertia about this axis.
- Vibration in the joining axis generally negligible as well

Periodic Table of Elements

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

For Space Scientists

For Astronomers

Atomic parameters

Gas kinetic parameters

At 0 km , assume 300 K , use primary composition N_{2}
At 1000 km , assume 1000 K , use primary composition O

- Particle density
- Random velocity
- Collision frequency
- Mean free path

Important gas kinetic parameters

can be derived if statistical behaviour of gas particles is known

Parameter	Symbol	Height		Unit
		$\begin{gathered} 0 \mathrm{~km} \\ \left(300 \mathrm{~K}, \mathrm{~N}_{2}\right) \end{gathered}$	$\begin{gathered} 300 \mathrm{~km} \\ \left(\mathrm{~T}_{\infty}=1000 \mathrm{~K} ; \mathrm{O}\right) \end{gathered}$	
Particle density	n	2×10^{25} *	1×10^{15}	$1 / \mathrm{m}^{3}$
Random velocity Mean random speed	$\begin{aligned} & \vec{c} \\ & \bar{c} \end{aligned}$	470	1100	m / s
Collision frequency	V	6×10^{9}	0.4	1/s
Mean free path	1	8×10^{-8}	3000	m

[^0]
Particle number density

- Particle density, n , of a gas is a function of
- position within the gas and
- time
- It can be expressed as

$$
n(\vec{r}, t)=\lim _{\Delta V \rightarrow d V}\left(\frac{\Delta N}{\Delta V}\right)_{\vec{r}, t}
$$

where dV is large enough to contain enough particles but small enough so that the density does not vary.

If the edge of $d V$ is of size a and the distance between particles is d, and we assume particles are on average equidistant from each other and located on a volumetric grid

- Number of particles on an edge of length $a=\frac{a}{d}+1$
- Number of particles N in the volume $d V=a^{3}$ is $\left(\frac{a}{d}+1\right)^{3}$

Knowing $d \ll a, \mathrm{~N} \approx(a / d)^{3}$
Remembering n is the density of particles, the number of particles N in a volume $d V$ is $a^{3} \times n$, so the mean distance between particles, $d \approx 1 / \sqrt[3]{n}$
The number of particles in a volume $d V$ will typically fluctuate by $1 / \sqrt{N}$, so if we want to constrain the particle density variation to $<0.1 \% \mathrm{~N}$ must be $>1,000,000$. If we have a particle density of 1×10^{6} particles $/ \mathrm{m}^{3}$, we would need a volume of at least 1 m

Three types of gas velocities

- Particle velocity

$\overrightarrow{\boldsymbol{v}}$

- Flow (bulk or wind) velocity $\overrightarrow{\boldsymbol{u}}$
- Random (thermal) velocity $\overrightarrow{\boldsymbol{C}}$

$$
\vec{u}(\vec{r}, t)=\langle\vec{v}\rangle_{\vec{r}, t}=\lim _{\Delta V \rightarrow d V}\left(\frac{1}{n \Delta V} \sum_{i=1}^{n \Delta V} \bar{v}_{i}\right)_{\vec{r}, t}
$$

Random velocity is the deviation from the ordered mean flow velocity.

$$
\langle\vec{c}\rangle=\langle\vec{v}-\vec{u}\rangle=\langle\vec{v}\rangle-\vec{u}=0 \quad: \text { Mean random velocity }
$$

$$
\bar{c}=\langle | \vec{c}| \rangle: \text { Mean random speed }
$$

Boltzmann energy distribution

Derived for identical but distinguishable particles

> With increasing energy E, it is progressively less likely that any given particle will attain that energy, so more particles will be found with lower energies. It is assumed that an unlimited number of particles can occupy any energy state.

The probability that a particle will have energy E

The probability for occupying a given energy state decreases exponentially with energy

Boltzmann's constant $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$

Example 2-1

Consider a system that consists of only 2 possible energy states, E_{1} and $\mathrm{E}_{2}=\mathrm{E}_{1}+\Delta E$

$$
F\left(E_{1}\right)+F\left(E_{2}\right)=1
$$

$\mathrm{E}_{1}+\Delta E \backsim$ State 2
$\mathrm{E}_{1} \longrightarrow$ State 1

$$
\frac{F\left(E_{2}\right)}{F\left(E_{1}\right.}=\frac{e^{-\left(E_{1}+\Delta E\right) / k T}}{e^{-E_{1} / k T}}=e^{-\Delta E / k T}
$$

$$
F\left(E_{1}\right)=\frac{1}{1+e^{-\Delta E / k T}}
$$

- If the energy in the Boltzmann energy distribution is just 1-dimensional kinetic energy, then

$$
f\left(c_{z}\right)=A e^{-\left(-\frac{m c_{z}^{2}}{2 k T}\right)}
$$

- After normalization which gives us an expression for A, we get:

$$
\int_{-\infty}^{+\infty} f\left(c_{z}\right) d c_{z}=1
$$

$f\left(c_{z}\right)=\left(\frac{m}{2 \pi k T}\right)^{\frac{1}{2}} e^{-\left(\frac{m m_{2}^{2}}{2 k T}\right)}$

Maxwell-Boltzmann speed distribution

The Maxwell-Boltzmann speed distribution (for idealized gases) is obtained by converting the 1-dim energy distribution to a 3-dim energy distribution and then integrating over all velocity directions.

$$
\begin{aligned}
& f\left(c_{x}, c_{y}, c_{z}\right)=\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} e^{-\left(\frac{m\left(c_{x}^{2}+c_{y}^{2}+c_{z}^{2}\right)}{2 k T}\right)} \\
& f(\vec{c})=\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} e^{-\left(\frac{m c^{2}}{2 k T}\right)} \\
& c^{2}=c_{x}^{2}+c_{y}^{2}+c_{z}^{2}
\end{aligned}
$$

For the integration over all directions it is best to use spherical coordinates and consider a shell in velocity space.

Attention: in these diagrams, the random velocity \vec{c} is \vec{v}

This gives us the Maxwell-Boltzmann speed distribution

$$
f(c)=\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} 4 \pi c^{2} e^{-\left(\frac{m c^{2}}{2 k T}\right)}
$$

Shell of thickness dv in velocity space

$d v_{x} d v_{y} d v_{z}=d v(v d \theta)(v \sin \theta d \phi)$
Summing over all directions involves integrating over θ and ϕ.

$$
f(v)=\left[\frac{m}{2 \pi k T}\right]^{3 / 2} e^{-m v^{2} / 2 k T} \underbrace{\int_{0}^{\pi} \int_{0}^{2 \pi} v^{2} \sin \theta d \phi d \theta}_{=4 \pi v^{2}}
$$

http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/maxspe.html

Maxwell speed distribution or Maxwell-Boltzmann speed distribution

Example 2-2
m varied
T constant

$$
f(c)=\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} 4 \pi c^{2} e^{-\left(\frac{m c^{2}}{2 k T}\right)}
$$

> m constant

T varied

Collision frequency

 mean number of collisions of a particle in a gas per unit timeReal scenario: A particle of radius, r_{1}, and gas type 1 moves with its random velocity, $c_{1, i}$, in a set of particles with radius, r_{2}, in a gas of type 2 with flow velocity $=$ zero but with random velocities, $\vec{c}_{2, j}$. The particles collide frequently with each other. Each collision changes the magnitude and the direction of each colliding particle.

Statistically equivalent scenario: Collisions occur statistically at the same rate as between particles of radius $r_{1}+r_{2}$ of gas type 1 with point particles of gas type 2 . Furthermore, we can model this scenario as a test particle with the mean relative speed $\bar{c}_{1,2}=\langle | \vec{c}_{1}-\vec{c}_{2}| \rangle$ and a stationary point particle. The zig-zag course can also be replaced, namely by a straight trajectory along the axis of a cylinder with a base area of radius, $\mathrm{r}_{1}+\mathrm{r}_{2}$. During time, $\Delta \mathrm{t}$, the test particle flies a distance, $\bar{c}_{1,2} \Delta t$, colliding with all point particles in the cylinder. The number of collisions is then: $\pi\left(r_{1}+r_{2}\right)^{2} \bar{c}_{1,2} \Delta t n_{2}$, and

$$
\begin{aligned}
v_{1,2}=\frac{\pi\left(r_{1}+r_{2}\right)^{2} \bar{c}_{1,2} \Delta t n_{2}}{\Delta t} & =\sigma_{1,2} n_{2} \bar{c}_{1,2}: \text { Collision frequency } \\
\sigma_{1,2} & =\pi\left(r_{1}+r_{2}\right)^{2}: \text { Collision ross section }
\end{aligned}
$$

Consideration for calculating the collision frequency

Real scenario

- To repeat:
- Gas particle 1 maps out volume $\pi\left(r_{1}+r_{2}\right)^{2}$ times $\bar{c}_{1,2}=\langle | \vec{c}_{1}-\vec{c}_{2}| \rangle$ times $\Delta \mathrm{t}$. During time interval $\Delta \mathrm{t}$ it will collide with that volume times n_{2} particles of particle 2 .
- The collision frequency, $v_{1,2}$, that is the number of collisions per unit time, Δt, is:

$$
\begin{aligned}
& v_{1,2}=\pi\left(r_{1}+r_{2}\right)^{2} n_{2} \bar{c}_{1,2} \\
& v_{1,2}=\sigma_{1,2} n_{2} \bar{c}_{1,2}
\end{aligned}
$$

where $\sigma_{1,2}$ is the collision cross-section. But we still need an explicit number for the collision frequency in terms of temperature of each of the gases and the mass of the particles in each of the two gases.

Now we want to consider a mix of two gases with particles 1 and particles 2 and temperature 1 and temperature 2 . We have then the two Maxwell-Boltzmann speed distributions:

$$
\begin{aligned}
& f\left(c_{1}\right)=\left(\frac{m_{1}}{2 \pi k T_{1}}\right)^{\frac{3}{2}} 4 \pi c_{1}^{2} e^{-\frac{m_{2} c_{1}^{2}}{2 k T_{1}}} \\
& f\left(c_{2}\right)=\left(\frac{m_{2}}{2 \pi k T_{2}}\right)^{\frac{3}{2}} 4 \pi c_{2}^{-} e^{-\frac{m_{2} c_{2}^{2}}{2 k T_{2}}}
\end{aligned}
$$

It can be shown that the mean relative velocity is

$$
\begin{aligned}
& \bar{c}_{1,2}=4 \pi\left(\frac{m_{1,2}}{2 \pi k T_{1,2}}\right)^{\frac{3}{2}} \int c_{1,2}^{2} e^{-\frac{m_{1,2} c_{r}^{2}}{2 k T_{1,2}}} d c_{1,2} \\
& \bar{c}_{1,2}=\sqrt{\frac{8 k}{\pi}\left(\frac{T_{1}}{m_{1}}+\frac{T_{2}}{m_{2}}\right)}=\sqrt{\frac{8 k T_{1,2}}{\pi m_{1,2}}}
\end{aligned}
$$

where $\mathrm{T}_{1,2}$ and $\mathrm{m}_{1,2}$ are the reduced temperature and the reduced mass, respectively:

$$
\begin{aligned}
& T_{1,2}=\frac{m_{2} T_{1}+m_{1} T_{2}}{m_{1}+m_{2}} \\
& m_{1,2}=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}
\end{aligned}
$$

The Collision frequency is then given as:

$$
v_{1,2}=\sigma_{1,2} n_{2} \sqrt{\frac{8 k T_{1,2}}{\pi m_{1,2}}}
$$

Mean free path

- The mean free path is the mean distance, $\bar{c}_{1} \Delta t$, travelled by particle 1 in this mixed gas in the time interval, $\Delta \mathrm{t}$, divided by the number of collisions, $v_{1,2} \Delta t$, during that same time interval.

$$
\begin{aligned}
& l_{1,2}=\frac{\bar{c}_{1}}{v_{1,2}} \\
& l_{1,2}=\frac{1}{\sigma_{1,2} n_{2} \sqrt{1+\frac{m_{1} T_{2}}{m_{2} T_{1}}}}
\end{aligned}
$$

When all the particles are the same, we get:

$$
\begin{aligned}
& \sigma_{1,1}=4 \pi r^{2} \\
& v_{1,1}=4 \sigma_{1,1} n \sqrt{\frac{k T}{\pi m}} \\
& l_{1,1}=\frac{1}{\sqrt{2} n \sigma_{1,1}}
\end{aligned}
$$

Example 2-3

Assume for Earth:
atmosphere with $100 \% \mathrm{~N}_{2}$ height $=0 \mathrm{~km}$ above sea level, $\mathrm{T}=300 \mathrm{~K}$

$$
\begin{aligned}
& \mathcal{M}: \text { mass number }=28 \\
& \rho=1.3 \mathrm{~kg} / \mathrm{m}^{3} \\
& r=2 \times 10^{-10} \mathrm{~m} \\
& m=\mathcal{M} \times \mathrm{amu}=28 \times 1.66 \times 10^{-27} \mathrm{~kg} \\
& n=\rho /(\mathcal{M} \times \mathrm{amu})=1.3 /\left(28 \times 1.66 \times 10^{-27}\right) \\
& \\
& v_{1,1}=6.7 \times 10^{9} \mathrm{~s}^{-1} \quad \mathrm{YOR}_{\mathrm{UN} \cup \mathrm{VERSTE}} \mathrm{RK} \\
& \mathrm{I}_{1,1}=7 \times 10^{-8} \mathrm{~m}
\end{aligned}
$$

Gas kinetic parameters

- We have now successfully derived expressions for:
- Particle density
- Random velocity
- Collision frequency
- Mean free path

Macroscopic state parameters

Parameters that describe the general state of an atmosphere

Parameter	Symbol	Gas kinetic meaning	Height		Unit
			0 km	300 km	
Chemical composition		$\mathrm{n}_{\mathrm{i}} / \mathrm{n}$	$\begin{array}{r} 78 \% \mathrm{~N}_{2} \\ 21 \% \mathrm{O}_{2} \\ 1 \% \mathrm{Ar} \end{array}$	$\begin{array}{rl} \hline 78 \% & \mathrm{O} \\ 21 \% & \mathrm{~N}_{2} \\ 1 \% & \mathrm{O}_{2} \\ \hline \end{array}$	
Mass density	ρ	$\sum_{i} m_{i} n_{i}$	1.3	$2 \cdot 10^{-11}$	$\mathrm{kg} / \mathrm{m}^{3}$
Flow velocity	\vec{u}	$\langle\vec{v}\rangle$	0-50	0-1000	m / s
Temperature	T	$2 / 3 \mathrm{k} \cdot 1 / 2 \mathrm{mc} \bar{c}^{2}$	$\begin{aligned} & 200-320 \\ & 2500 \end{aligned}$	600 -	K
Pressure	p	$1 / 3 \mathrm{nmc}^{2}$	10^{5}	10^{-5}	Pa

$1 \mathrm{~Pa}=11 \mathrm{pascal}=1 \mathrm{~N} / \mathrm{m}^{2}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760$ torr

Gas kinetics

Macroscopic state parameters are sufficient to describe the general macroscopic characteristics of an atmosphere.

- Gas kinetics are necessary to give a physical interpretation of the macroscopic state parameters.
- Gas kinetics are necessary to describe other parameters like diffusion, viscosity and heat conduction.
- Gas kinetics describe the behaviour of gas particles with atomic parameters, dynamical variables and boundary conditions.

Macroscopic properties

- Pressure
- Temperature
- Specific heat capacity

We will introduce the concept of "flux":

- Net amount of a scalar quantity transported per unit area per unit time through a reference surface normal to the flow.
- Scalar quantity could be number of particles, heat, charge, even a component of a vector

Example: particle flux

$$
\phi_{x}=\frac{u_{x} \Delta t A n}{A \Delta t}=n u_{x} \quad \text { Particle flux } \quad \vec{\phi}=n \vec{u}
$$

Momentum flux

$I_{x}(u)=m u_{x}$: x-component of kinetic momentum carried by each particle travelling with velocity component, u_{x}

$\phi_{x, x}^{I(u)}=I_{x}(u) \phi_{x}=m n u_{x}^{2} \quad$ Momentum flux

Now to pressure

- Particles (atoms or molecules) of a gas inside the balloon move around randomly.
- During this motion they frequently collide with the each other and with the skin of the balloon.
- The result is a force exerted on the inside of the skin of the balloon.
- Pressure is the force per surface area.
- This inside gas pressure, P_{B}, is balanced by the gas pressure, P_{A}, exerted on the outside of the skin of the balloon, for instance, the atmosphere.

Pressure

- The thermodynamic pressure is the mean net transport of momentum flux produced by the thermal motion of the particles with random velocity c. Only the components parallel to the surface normal are considered and averaging is done over all three ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) directions of a Cartesian coordinate system.

$$
p=\frac{1}{3}\left(\phi_{x, x}^{\prime(c)}+\phi_{y, y}^{I(c)}+\phi_{z, z}^{I(c)}\right)
$$

(Net) momentum flux of \bar{c} in the direction x

An explicit expression is obtained from extending the one box of gases to two boxes, 1 and 2, separated by an imaginary surface A where all particles have the same speed and $1 / 6$ of them move in each of the 6 directions, $\pm x, \pm y, \pm z$.

Then the momentum transport from 1 to 2 per unit area and unit time is, $\phi_{1}^{I(c)}$, and the momentum transport from 2 to 1 per unit area and unit time is, $\phi_{2}^{I(c)}$.

$$
\phi_{1}^{\prime(c)}=\frac{1}{6} \frac{\bar{c} \Delta t A n}{A \Delta t} \bar{c} m=\frac{1}{6} n m \bar{c}^{2}=\frac{1}{6} n m \bar{c}^{2} \quad 1 \quad \text { Density } \mathrm{n} \quad 2
$$

$$
\phi_{2}^{I(c)}=-\phi_{1}^{I(c)}
$$

$$
p=\frac{1}{3} n m \overline{c^{2}}
$$

Thermodynamic pressure

Conventional derivation of pressure

$$
\begin{aligned}
& \Delta t=\frac{2 L}{c_{x}} \\
& F=m \frac{d c}{d t}=m a \\
& m \Delta c=m c_{x}-\left(-m c_{x}\right)=2 m c_{x} \\
& \bar{F}=\frac{m \Delta c}{\Delta t}=\frac{m c_{x}^{2}}{L} \\
& p_{1 \text { particle }}=\frac{\bar{F}}{A}=\frac{m c_{x}^{2}}{L A}=\frac{m c_{x}^{2}}{V} \\
& p_{\text {Nparticles }}=\sum_{1}^{N} \frac{m}{V} c_{x, i}^{2} \\
& p_{\text {Nparticles }}=\frac{N m \overline{c_{x}^{2}}}{V} \\
& \overline{c^{2}}=\overline{c_{x}^{2}}+\overline{c_{y}^{2}}+\overline{c_{z}^{2}} \\
& \overline{c_{x}^{2}}=\overline{c_{y}^{2}}=\overline{c_{z}^{2}} \\
& n=\frac{N}{V} \\
& p=\frac{1}{3} n m \overline{c^{2}}
\end{aligned}
$$

Dynamic pressure

- In addition to the random velocity, any flow velocity will also transport momentum
- For a surface perpendicular to the flow velocity, the mean net transport of "kinetic momentum" per unit area per unit time, or dynamic pressure, $p_{d}=(m \vec{u}) n \vec{u}=m n u^{2}$
- The dynamic pressure can also be written as:

$$
p_{d}=\phi_{x, x}^{I(u)}+\phi_{y, y}^{I(u)}+\phi_{z, z}^{I(u)}
$$

Flow velocity

Temperature

- Temperature is a measure of the kinetic energy due to the random motion of the particles of the gas.
- It is now important to consider the number of degrees of freedom of a gas as a number of distinct and independent modes of energy storage.
- For a monoatomic gas we have 3 (translational) degrees of freedom. For a diatomic molecule we usually have two additional (rotational) degrees of freedom.
- Temperature is then a measure of the mean energy, or average amount of heat, \bar{U}_{f}, stored per degree of freedom, with

$$
T=\left(\frac{2}{k}\right) \bar{U}_{f} \quad \text { Recall 1-dim distribution: } \quad c_{z, r m s}=\sqrt{\frac{k T}{m}}
$$

Ideal gas equation

- When heat is equally distributed over all, say, 3 degrees of freedom, meaning that the gas is in thermal equilibrium, then:

$$
T=\frac{2}{3 k}\left(\frac{1}{2} m \overline{c^{2}}\right) \quad \text { Note: } \bar{U}_{f}=\frac{1}{2} m \overline{c_{z}^{2}} \quad \begin{aligned}
& c^{2}=c_{x}^{2}+c_{y}^{2}+c_{z}^{2} \\
& \frac{1}{3} \overline{c^{2}}=\overline{c_{x}^{2}}=\overline{c_{y}^{2}}=\overline{c_{z}^{2}}
\end{aligned}
$$

- Compare that with what we know from the Maxwell-Boltzmann speed distribution

$$
\begin{array}{ll}
c_{z, r m s}=\sqrt{\frac{k T}{m}} & c_{z, r m s}=\sqrt{\overline{c_{z}^{2}}} \\
c_{r m s}=\sqrt{\frac{3 k T}{m}} & c_{r m s}=\sqrt{\overline{c^{2}}}
\end{array}
$$

- From this follows the equation of state for an ideal gas

$$
p=n k T \quad \text { ideal gas law }
$$

Specific heat capacity

- Temperature is a measure of a body's heat content. To raise the temperature of a body, heat must be supplied.
- Consider a gas of mass M in a fixed enclosure. How much heat (energy), ΔQ, is needed to raise the temperature of N particles with f degrees of freedom by ΔT ?

$$
\begin{aligned}
& \Delta T=\frac{2}{k} \Delta \bar{U}_{f}=\frac{2}{k} \frac{\Delta Q}{N f}=\frac{2 \Delta Q}{k\left(\frac{M}{m}\right) f} \\
& \Delta Q(=\Delta U)=\frac{M}{m} f \frac{k}{2} \Delta T
\end{aligned}
$$

Gas heat capacity at constant volume
$\Delta Q^{\prime}\left(=\Delta U^{\prime}\right)=\frac{\Delta Q}{M}=c_{V} \Delta T \quad$ Specific heat needed to raise temperature by ΔT with $V=$ const

$$
c_{V}=\frac{k f}{2 m} \quad \text { Specific heat capacity at constant volume }
$$

Example 2-4

1) Specific heat capacity at constant volume for N_{2}
$c_{V}=\frac{k f}{2 m} \quad=\frac{1.38 \cdot 10^{-23} \cdot 5}{2 \cdot 28 \cdot 1.66 \cdot 10^{-27}}=742 \mathrm{JK}^{-1} \mathrm{~kg}^{-1}$
2) How much energy is needed to heat up 10 kg of N_{2} by 2 C ?
$\Delta Q(=\Delta U)=\frac{M}{m} f \frac{k}{2} \Delta T=\frac{10 \cdot 1.38 \cdot 10^{-23} \cdot 5}{2 \cdot 28 \cdot 1.66 \cdot 10^{-27}} \cdot 2=14.48 \mathrm{~kJ}$
3) How large is the pressure of a N_{2} gas with density $\rho=1.3 \mathrm{~kg} / \mathrm{m}^{3}$ at a temperature $\mathrm{T}=300 \mathrm{~K}$?
$\mathrm{p}=\mathrm{nkT}=\frac{\rho}{m} \mathrm{kT}=\frac{1.3}{28 \cdot 1.66 \cdot 10^{-27}} 1.38 \cdot 10^{-23} \cdot 300=115,800 \mathrm{P}$

That is indeed approximately the atmospheric pressure at sea level.

Heat capacity at constant pressure

At constant p but variable V, we need more energy to raise T of gas than if V were constant, since we have to increase internal energy and do work to expand the gas.

Gas in a cylinder with a movable piston at the top:

The gas has performed work of expansion, $\Delta \mathrm{W}$,

$$
\Delta W=-F_{p} \Delta z=-p \Delta V
$$

- Using the ideal gas law with pressure = constant, we get:

$$
\begin{aligned}
p & =n k T=\frac{N}{V} k T=\text { const } \Rightarrow \frac{V}{T}=\text { const } \Rightarrow \Delta V=V \frac{\Delta T}{T} \\
\Delta W & =-\frac{p V}{T} \Delta T=-k N \Delta T \\
\Delta W^{\prime} & =-\frac{k}{m} \Delta T \quad \text { Work performed per unit mass } \quad \text { Remember: } N=\frac{M}{m}
\end{aligned}
$$

- To raise temperature in the cylinder by ΔT we need to supply amount of heat per unit mass of ΔQ^{\prime}, with

$$
\begin{gathered}
\Delta Q^{\prime}=c_{V} \Delta T+\frac{k}{m} \Delta T=c_{p} \Delta T \quad \text { with } \quad \Delta Q^{\prime}=\Delta U^{\prime}-\Delta W^{\prime} \\
c_{p}=\frac{k}{m}\left(\frac{f}{2}+1\right) \text { heat capacity at constant pressure } \\
\gamma=\frac{c_{p}}{c_{V}}=\frac{f+2}{f} \quad \begin{array}{l}
\text { adiabatic exponent } \\
\text { (or heat capacity ratio) }
\end{array} \quad \Rightarrow f=\frac{2}{\gamma-1}
\end{gathered}
$$

- Assume change of state of a gas proceeds with no heat exchange with the environment, i. e. $\Delta \mathrm{Q}=0$
- Work during expansion done at the expense of own internal energy
$\Delta Q=\Delta U-\Delta W=0$
$\Delta W=-p \Delta V=\Delta U=N f\left(\frac{k}{2} \Delta T\right)$
$d W=-p d V=d U=N f\left(\frac{k}{2} d T\right) \quad \begin{aligned} & \text { Divide by } \mathrm{TV} \\ & \text { and with } \begin{array}{l}N=n V \\ p=n k T\end{array}\end{aligned}$
$\frac{d T}{T}=-\frac{2}{f} \frac{d V}{V} \stackrel{\text { Integration }}{ } \rightarrow \ln \left(\frac{T}{T_{0}}\right)=-\frac{2}{f} \ln \left(\frac{V}{V_{0}}\right)$

Adiabatic law

$$
T=T_{0}\left(\frac{V}{V_{0}}\right)^{-\frac{2}{f}}
$$

$$
T V^{\frac{2}{f}}=\text { const }
$$

$$
T V^{\gamma-1}=\mathrm{const}
$$

Alternative forms if $\mathrm{N}=$ const.
\square

$p \rho^{-\gamma}=\mathrm{const}$
$p V^{\gamma}=$ const

$p^{1-\gamma} T^{\gamma}=\mathrm{const}$

Macroscopic properties

- We have now successfully derived expressions for:
- Pressure
- Temperature
- Specific heat capacity
- In addition we have derived the adiabatic law.

Atmospheric divisions

- Temperature
- Composition
- Vertical transport
- Gravitational binding
- Thermal plasma

Atmospheric divisions

Atmospheric divisions

		Inter-	planetary	space			
100,000 km		H-sphere	Effusosphere	Exosphere			
10,000	Thermosphere		Hetero- sphere	Diffusosphere	Barosphere	F-region	Plasma
:---							
1000							

3 maxima:

- Earth surface,
http://www.srh.noaa.gov/srh/jetstream/atmos/atmprofile.htm
- Stratopause,
- Thermopause

2 minima:

- Tropopause
- Mesopause

Troposphere:

- Sun absorption,
- IR radiation reabsorption
- 10 km deep, Tdown : rad. cooling Stratosphere:
- UV light absorption (100\%) by ozone, $\mathrm{O}_{3} \mathrm{~T}$ up: energy absorption
Mesosphere
- Radiative cooling $\left(\mathrm{CO}_{2}\right.$ emission) outpaces solar absorption
Thermosphere
- Rapid temperature increase from solar absorption, no effective heat loss
Thermopause
- Thermosphere asymptotically approaches thermopause temperature (nominally 1000 K generally between 600 and 2500K)

Temperature, pressure, mass density

Temperature, pressure, mass density

Particle number density

Particle number density

Collision frequency, mean free path, mean mass number

Aerostatics

As opposed to aerodynamics, aerostatics deals with density allocation at a macroscopic level, e.g. air density variation within the atmosphere as a function of height.

It is assumed that the gases are not in motion with respect to the coordinate system they are considered within.

That leads us to the aerostatic equation.

Aerostatic equation

- We want to consider a massless membrane at height z and area A that experiences pressure from the gas below and the weight of the gas above.

Pressure force:

$$
F_{p}(z)=A p(z)
$$

Weight of the gas:

$$
F_{g}(z)=A \int_{z}^{\infty} \rho\left(z^{\prime}\right) g\left(z^{\prime}\right) d z^{\prime}
$$

- For static equilibrium, $\mathrm{F}_{\mathrm{p}}=\mathrm{F}_{\mathrm{g}}$

$$
\begin{array}{ll}
p(z)=\int_{z^{\prime}=z}^{\infty} \rho\left(z^{\prime}\right) g\left(z^{\prime}\right) d z^{\prime} \\
\frac{d p}{d z}=-\rho(z) g(z) \quad \text { Aerostatic equation }
\end{array}
$$

Example 2-5

You are a scuba diver and know that the pressure under water increases the deeper you dive. What is the pressure at a depth of 50 m ?
Assume that the change of the gravitational acceleration and the density of water with depth can be ignored. That is assume that $\rho=$ const, $\mathrm{g}=$ const.

$$
\begin{array}{rlr}
\int_{P_{0}}^{P_{z}} d P & =-\rho g \int_{0}^{z} d z^{\prime} & \\
& \\
\mathrm{p}_{\mathrm{z}}-\mathrm{p}_{0} & =-\rho g z & \begin{array}{l}
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\\
\mathrm{p}_{\mathrm{z}}-\mathrm{p}_{0}
\end{array}=-1000 \times 9.81 \times(-50) \\
& \left.\begin{array}{l}
\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
\\
\end{array}\right) & \mathrm{z}=-50 \mathrm{~m} \\
\mathrm{p}_{0}=1 \mathrm{~atm}=101.3 \mathrm{kPa}
\end{array}
$$

$$
\mathrm{P}_{\mathrm{z}=50}=490.5+101.3=591.8 \mathrm{kPa}
$$

In general, however, ρ and g should be considered to depend on z.

The aerostatic equation describes the change of pressure, p, with height, z, as a function of mass density, ρ, and the gravitational acceleration g .

It ignores the centrifugal force resulting from the celestial object's rotation. This force is usually small.

It ignores any thermodynamic pressure at the top. But that is OK because in thermodynamic equilibrium it is maintained by the gravitational acceleration.
For Earth, the gravitational acceleration is given as

$$
g(z) \approx \frac{G M_{E}}{r^{2}}=\frac{g_{0}}{\left(1+\frac{h}{R_{E}}\right)^{2}}
$$

$$
\text { with } \begin{aligned}
& g_{0}=9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
& R_{E}=6371.0 \mathrm{~km} \\
& M_{E}=5.97 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$

With M_{E} and R_{E} as the mass and radius of the Earth and g_{0} the gravitational acceleration at the Earth surface.

For other celestial objects, M_{E}, R_{E} and g_{0} need to be replaced with the corresponding values for that object.

Barometric law

- The aerostatic law gives a relation between pressure as a function of height and mass density as a function of height. With the ideal gas law we can express the law in terms of T as a function of height.

$$
p=n k T
$$

$$
\rho=\bar{m} \frac{p}{k T}
$$

$$
\frac{d p}{d z}=-\frac{\bar{m}(z) g(z)}{k T(z)} p(z)=-\frac{p}{H}
$$

$$
\frac{d p}{d z}=-\frac{1}{H(z)} p(z)
$$

$$
\int_{p\left(m_{0}\right)}^{p(t)} \frac{d p}{p}=-\int_{h_{0}}^{n} \frac{\bar{m}(z) g(z)}{k T(z)} d z \quad \text { with } \quad H(z)=\frac{k T(z)}{\bar{m}(z) g(z)}
$$

Pressure scale height

$$
\ln \frac{p(h)}{p\left(h_{0}\right)}=-\int_{h_{0}}^{h} \frac{d z}{H(z)}
$$

$$
p(h)=p\left(h_{0}\right) \exp \left\{-\int_{h_{0}}^{h} \frac{d z}{H(z)}\right\} \begin{aligned}
& \begin{array}{l}
\text { Barometric law for the } \\
\text { vertical pressure profile } \\
\text { in an atmosphere }
\end{array} \\
& \hline
\end{aligned}
$$

- For $\mathrm{H}(\mathrm{z}) \approx$ const

- We can also derive a similar expression for the number density profile:

$$
n(h) k T(h)=n\left(h_{0}\right) k T\left(h_{0}\right) \exp \left\{-\int_{h_{0}}^{h} \frac{d z}{H(z)}\right\}
$$

$$
n(h)=n\left(h_{0}\right) \frac{T\left(h_{0}\right)}{T(h)} \exp \left\{-\int_{h_{0}}^{h} \frac{d z}{H(z)}\right\}
$$

Barometric law for the vertical density profile in an atmosphere

$$
n(h)=n\left(h_{0}\right) \exp \left\{-\int_{h_{0}}^{h} \frac{d z}{H_{n}(z)}\right\} \text { with } \frac{1}{H_{n}}=\left(\frac{1}{H}+\frac{1}{T} \frac{d T}{d H}\right)
$$

- For the pressure or the density, the scale height describes a vertical distance over which the pressure or the density changes significantly, namely approximately by $1 / \mathrm{e}$ or e .
- Derivation for pundits:

Looking at the pressure law we have

$$
\begin{aligned}
& \ln \frac{n(h)}{n\left(h_{0}\right)}=-\int_{h_{0}}^{h} \frac{d z}{H_{n}(z)} \\
& \frac{d n}{n}=\frac{d z}{H_{n}} \\
& H_{n}=\left(\left|\frac{d n}{d z}\right| \frac{1}{n}\right)^{-1} \\
& \frac{d n}{d z}=-n\left(h_{0}\right) T\left(h_{0}\right) T(z)^{-2} \frac{d T}{d z} e^{-\left(z-h_{0}\right) / H}-n\left(h_{0}\right) \frac{T\left(h_{0}\right)}{T(z)} \frac{1}{H} e^{-\left(z-h_{0}\right) / H} \\
& \frac{d n}{d z} \frac{1}{n}=\frac{1}{T} \frac{d T}{d h}+\frac{1}{H}=\frac{1}{H_{n}}
\end{aligned}
$$

The pressure and density scale heights are not the same. But since particularly for heights > 200 km the temperature term is relatively small, $\mathrm{H} \approx \mathrm{H}_{\mathrm{n}}$

Applications

- If we know the atmospheric characteristics of a planet at some height, we can predict the variation of these characteristics with height.

Example 2-6

Atomic Oxygen is the primary constituent in the thermosphere of Mars at heights above ca. 200 km . The gas temperature there has almost reached an equilibrium value of 200 K , which is approximately constant up to 1000 km .

Calculate the relative decrease in particle density in this region for an increase in altitude of 100km.

Assume the gravitational acceleration to be constant and equal to the value at 200 km

$$
n(h)=n_{h_{0}} \frac{T\left(h_{0}\right)}{T(h)} e^{-\left(h-h_{0}\right) / H}
$$

- We want the change in density over a height change of 100 km
- We need to determine the scale height H for the Mars atmosphere in this region

$$
H(z)=\frac{k T(z)}{\bar{m}(z) g(z)}
$$

$g=G \frac{M}{r^{2}}$
$g_{0}=G \frac{M_{\text {mars }}}{R_{\text {mars }}^{2}}$
$g(z)=\frac{g_{0}}{\left(1+\frac{h}{R_{\text {mars }}}\right)^{2}}$
$g_{0}=6.67 * 10^{-11} \frac{6.42 * 10^{23}}{\left(3.397 * 10^{6}\right)^{2}}=3.71 \mathrm{~ms}^{-2}$
$g(200 \mathrm{~km})=\frac{3.71}{\left(1+\frac{200}{3397}\right)^{2}}=3.31 \mathrm{~ms}^{-2}$
$H(h)=\frac{k T(h)}{\bar{m}(h) g(h)}=\frac{1.38 * 10^{-23} * 200}{16 * 1.66 * 10^{-27} * 3.31}=31.5 \mathrm{~km}$
So the scale height at 200 km is 31.5 km .

- At that height we are near the thermopause for Mars and we will assume that the temperature remains constant over the next 100 km .

$$
\frac{n(h)}{n\left(h_{0}\right)}=\exp \left\{-\frac{100}{31.5}\right\}=0.042
$$

- From this follows that the number density at 300 km is 4.2% of the number density at 200 km .

Now back to the atmospheric divisions.

Temperature, pressure, mass density

Atmospheric divisions

		Inter-	planetary	space			
100,000 km		H-sphere	Effusosphere	Exosphere			
10,000	Thermosphere		Hetero- sphere	Diffusosphere	Barosphere	F-region	Plasma
:---							
1000							

Composition

- The homosphere lies between the Earth's surface and the heterosphere. Gases are nearly uniformly mixed through this layer even though density decreases with height above the surface. The only exceptions is the "ozone layer" from 19 to 50 km and near surface variations in water vapor, carbon dioxide and air pollutants.
- The heterosphere is the outer-most sphere where gases are distributed in distinct layers by gravity according to their atomic weight. Extending from an altitude of $80-100 \mathrm{~km}$, the lightest elements (hydrogen and helium) are found at the outer margins of the atmosphere. The heavier elements (nitrogen and oxygen) are found at the base of the layer.
- The barometric law applies whether we are in an atmosphere composed of a single gas, a well-mixed homosphere or a gravitationally-separated heterosphere

Vertical transport

- The turbosphere, 0 to 100 km , is the region where convection effectively mixes atmospheric constituents.
- Above the turbosphere lies the diffusosphere, where diffusion is more important than turbulent mixing in distributing the constituents.
- Finally there is the effusosphere, where the atmosphere is no longer well bound to Earth and can escape under the right conditions

Gravitational binding

- The barosphere is the region of the atmosphere which is well bound to the Earth through gravitational attraction.
- The exosphere starts at about 600 km , where particle concentration is about $10^{7} \mathrm{~cm}^{-3}$, to 5000 km , where the concentration is $10^{2} \mathrm{~cm}^{-3}$
- The exosphere is the outer limit of the Earth's neutral atmosphere.
- In this region a particle travelling away from the Earth averages only one collision and pursues essentially a ballistic trajectory in the Earth's gravitational field. Particles with sufficient velocity and no electrical charge can escape from the atmosphere.

Thermal plasma - Ionosphere

- The ionosphere extends from about 60 km to $1,000 \mathrm{~km}$ and includes the thermosphere and parts of the mesosphere and exosphere.
- It is ionized by solar radiation, plays an important part in atmospheric electricity and forms the inner edge of the magnetosphere.
- It has practical importance because, among other functions, it influences radio propagation to distant places on the Earth.

© 2012 Encyclopædia Britannica, Inc.

Ionospheric layers

- At night the F layer is the only layer of significant ionization present, while the ionization in the E and D layers is extremely low. During the day, the D and E layers become much more heavily ionized, as does the F layer, which develops an additional, weaker region of ionisation known as the F_{1} layer. The F_{2} layer persists by day and night and is the region mainly responsible for the refraction of radio waves.

D, E, F layers

D layer

- The D layer is 60 to 90 km above the surface of the Earth. There are many more neutral air molecules than ions in this layer. Medium frequency (MF) and lower high frequency (HF) radio waves are significantly damped within the D layer, as the passing radio waves cause electrons to move, which then collide with the neutral molecules, giving up their energy. The lower frequencies move the electrons farther, with a greater chance of collisions. This is the main reason for absorption of HF radio waves, particularly at 10 MHz and below, with progressively smaller absorption as the frequency gets higher. This effect peaks around noon and is reduced at night due to a decrease in the D layer's thickness; only a small part remains due to cosmic rays. A common example of the D layer in action is the disappearance of distant AM broadcast band stations in the daytime.

E layer

- The E layer is 90 to 150 km above the surface of the Earth. lonization is due to soft X-ray ($1-10 \mathrm{~nm}$) and far ultraviolet (UV) solar radiation ionization of molecular oxygen $\left(\mathrm{O}_{2}\right)$. Normally this layer can only reflect radio waves having frequencies lower than about 10 MHz and may contribute a bit to absorption on frequencies above. At night the E layer weakens because the primary source of ionization is no longer present. After sunset an increase in the height of the E layer maximum increases the range to which radio waves can travel by reflection from the layer.
- (560 mi) to $2,500 \mathrm{~km}(1,600 \mathrm{mi})$. Double-hop reception over $3,500 \mathrm{~km}(2,200 \mathrm{mi})$ is possible.

F layer

- The F layer extends from about 150 to more than 500 km above the surface of Earth. It is the densest point of the ionosphere, which implies signals penetrating this layer will escape into space. At higher altitudes, the number of oxygen ions decreases and lighter ions such as hydrogen and helium become dominant. The F layer consists of one layer at night, but during the day, a deformation often forms in the profile that is labeled F_{1}. The F_{2} layer remains by day and night responsible for most skywave propagation of radio waves, facilitating high frequency (HF, or shortwave) radio communications over long distances.

Atmospheric division (with more detail)

Height /km	Temperature	Composition	Vertical transport	Gravitational binding	Thermal plasma
100,000	Thermosphere	Hydrogensphere (Geocorona)	Effusosphere	Exosphere	
10,000					Plasmapause
1,000		Heterosphere			Plasmasphere
				Exobase	F-region
			Diffusosphere		
	Mesopause				E-region
100	Mesosphere	Homopause	Turbopause	Barosphere	D-region
			Turbosphere		
	Stratosphere	Homosphere			
10	Tropopause				
0	Troposphere				

Atomic Oxygen

- Atomic oxygen does not occur in the lower atmosphere but it is abundant in the thermosphere. It is produced through photodissociation.

$$
O_{2}+\operatorname{photon}(\lambda \leq 242.4 \mathrm{~nm}) \rightarrow O+O^{*}
$$

- higher frequency UV light (top end of UV-B, UV-C and above)
- Each oxygen atom then quickly combines with an oxygen molecule to form an ozone molecule:

$$
\begin{aligned}
& \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{3}+E_{\mathrm{K}} \quad \text { - extra kinetic energy } \\
& \text { and } \mathrm{O}_{3}+h \mathrm{v}_{(240-310 \mathrm{~nm})} \rightarrow \mathrm{O}_{2}+\mathrm{O} \\
& \quad \text { UV light between } \underline{U V-B} \text { and UV-C }
\end{aligned}
$$

- This cycle converts UV-B light into heat, helping prevent UV-B from penetrating the lower layers of the atmosphere.

Removal

- $\mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2}$
- $2 \mathrm{O} \rightarrow \mathrm{O}_{2}$

Stratospheric ozone is then determined as a balance of production by solar radiation and removal.
The removal rate is slow due to a low concentration of O atoms
Some free radicals: Hydroxyl (OH), Nitric Oxide (NO) and Chlorine and Bromine atoms (Cl, Br) catalyze the recombination reaction, so remove ozone much more quickly than recombination alone
OH and NO are mostly naturally occurring, but Cl, Br generally a result of CFC emissions.

Escape velocity

- In order to escape Earth, a particle with mass, m, must be moving with sufficiently high velocity to overcome earth's gravity. The velocity that is just sufficiently large to do that is the escape velocity, $v_{\text {esc }}$.
- The escape velocity can be computed from the kinetic energy of the particle being equal to the work required to overcome the gravitational field along the trajectory

$$
\frac{1}{2} m v_{e s c}^{2}=\int_{r}^{\infty} m g\left(r^{\prime}\right) d r^{\prime}=\int_{r}^{\infty} m G M_{E} r^{\prime-2} d r^{\prime}=-\left.m G M_{E} r^{\prime-1}\right|_{r} ^{\infty}=m G M_{E} r^{-1}=m g(r) r
$$

where,$r=R_{E}+h$, is the distance from Earth's centre, $R_{E}=6371 \mathrm{~km}$, is the mean radius of Earth and h is the height above mean sea level, and $g(r) \approx G M_{E} / r^{2}$, the gravitational acceleration.

$$
v_{e s c}=\sqrt{2 g(r) r}=\frac{v_{\text {esc }}(h=0)}{\sqrt{1+\frac{h}{R_{E}}}} \quad \text { Escape velocity }
$$

Heterosphere

What do we know about the heterosphere?

What do we know about the heterosphere?

- Above the homosphere
- Starts around 80-100 km
- Chemical composition no longer uniform - more dense constituents lower in heterosphere than less dense ones
- Leads to the Hydrogensphere (Geocorona)

Atmospheric division (with more detail)

Height /km	Temperature	Composition	Vertical transport	Gravitational binding	Thermal plasma
100,000	Thermosphere	Hydrogensphere (Geocorona)	Effusosphere	Exosphere	
10,000					Plasmapause
1,000		Heterosphere			Plasmasphere
				Exobase	F-region
			Diffusosphere		
	Mesopause				E-region
100	Mesosphere	Homopause	Turbopause	Barosphere	D-region
			Turbosphere		
	Stratosphere	Homosphere			
10	Tropopause				
0	Troposphere				

Heterosphere

- Heterospheric density distributions
- Gas Kinetic Interpretation of the Barometric Law
- Transition from Homosphere to Heterosphere

Collision frequency, mean free path, mean mass number

Heterospheric density distributions

- The barometric law, as we derived it, can only be explicitly evaluated properly for a single gas or a well-mixed gas as in the homosphere where the mean particle mass, $\bar{m}(h)$ is known.
- In the heterosphere $\bar{m}(h)$ is not easily known, since it depends on the density profiles (density as a function of height) of the individual gases. For instance, the gases, $\mathrm{O}, \mathrm{O}_{2}$ and N_{2} have different density profiles, and therefore the mean particle mass changes with height.
- If all the gases, i, are in thermodynamic equilibrium, we can use the Dalton-Stefan Law: the total pressure of a gas mixture is the sum of the partial pressures.

$$
\sum_{i} p_{i}=\sum_{i} n_{i} k T=n k T=p
$$

- Substituting into the aerostatic equation

Aerostatic equation

$$
\begin{aligned}
& p(z)=\int_{z^{\prime}=z}^{\infty} \rho\left(z^{\prime}\right) g\left(z^{\prime}\right) d z^{\prime} \\
& \frac{d p}{d z}=-\rho(z) g(z) \quad \text { Aerostatic equation }
\end{aligned}
$$

$\sum_{i} \frac{d p_{i}}{d z}=-\sum_{i} n_{i} m_{i} g$

However, this equation does not allow to break it down for individual gases so that

Let us consider a volume element with single gas species, i, in a mix of other gas species, j

- The gas species i is subject to
- gravitational force,
- pressure gradient force,
- force from species j (and any other species) on species i ,
- The last of these could be electrostatic or frictional
- Frictional forces are due to collisions between species.

- The force from particles of species 2 acting on particles of species 1 , is
$\vec{F}_{1,2}=\vec{F}_{f, 1}=\frac{\sum \Delta \overrightarrow{1}_{1}}{\Delta t}=\left\langle\Delta \overrightarrow{\vec{l}}_{1}\right\rangle v_{1,2}$
Mean change of momentum times collision frequency
- Consider two particles of masses m_{1} and m_{2} in a head-on collision

Before collision

After collision

$m_{1} v_{1}=m_{1} v_{1}^{*}+m_{2} v_{2}^{*}$
Momentum and $m_{1} v_{1}^{2}=m_{1}\left(v_{1}^{*}\right)^{2}+m_{2}\left(v_{2}^{*}\right)^{2}$ energy conservationYORK

- The combination yields

$$
v_{1}^{*}=v_{1} \frac{m_{1}-m_{2}}{m_{1}+m_{2}}
$$

- The change in momentum of particle of type 1 gas is then

$$
\begin{aligned}
& \Delta I_{1}=\left(v_{1}^{*}-v_{1}\right) m_{1}=v_{1} m_{1}\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}-1\right)=v_{1}\left(\frac{-2 m_{1} m_{2}}{m_{1}+m_{2}}\right) \\
& v_{1}=u_{1}-u_{2}
\end{aligned}
$$

with $\quad v_{1}=u_{1}-u_{2} \quad$ as the difference of the average flow velocities.

- For the collision with arbitrary impact parameter, b, the determination of the mean change of momentum goes as follows:

- We again reduce the radius of particle 1 to near zero and that of particle 2 to $r_{1}+r_{2}$. Particle 1 hits particle 2 with an impact parameter b and an impact angle α.
- The collision induced momentum change is reduced by the factor cosa once because of the angle of the impact and again because we only consider the transfer of impact in one direction, for instance the height.

$$
\Delta I_{1}(b)=\Delta I_{1}(b=0) \cos ^{2} \alpha
$$

- For the mean change of momentum we have to integrate over the possible impact parameters

$$
\left\langle\Delta I_{1}\right\rangle=\int_{b=0}^{R} \Delta I_{1}(b=0) \cos ^{2} \alpha \frac{2 \pi b d b}{R^{2} \pi}
$$

$$
b=R \sin \alpha
$$

- And get

$$
\left\langle\Delta I_{1}\right\rangle=\Delta I_{1}(b=0) \frac{2}{R^{4}} \int_{b=0}^{R}\left(R^{2}-b^{2}\right) b d b=\frac{\Delta I_{1}(b=0)}{2}
$$

$$
\begin{aligned}
& \sin ^{2} \alpha=\frac{b^{2}}{R^{2}} \\
& \cos ^{2} \alpha+\sin ^{2} \alpha=1 \\
& \cos ^{2} \alpha=1-\frac{b^{2}}{R^{2}}=\frac{R^{2}-b^{2}}{R^{2}}
\end{aligned}
$$

- The collision induced momentum change is reduced by the factor cosa once because of the angle of the impact and again because we only consider the transfer of impact in one direction, for instance the height.

$$
\Delta I_{1}(b)=\Delta I_{1}(b=0) \cos ^{2} \alpha
$$

- For the mean change of momentum we have to integrate over the possible impact parameters

$$
\left\langle\Delta I_{1}\right\rangle=\int_{b=0}^{R} \Delta I_{1}(b=0) \cos ^{2} \alpha\left(\frac{2 \pi b d b}{R^{2} \pi}\right)
$$

- And get

Fraction of particles for which the change of momentum is just $\Delta \mathrm{I}_{1}(\mathrm{~b}=0)$

$b=R \sin \alpha$
$\sin ^{2} \alpha=\frac{b^{2}}{R^{2}}$
$\cos ^{2} \alpha+\sin ^{2} \alpha=1$
$\left\langle\Delta I_{1}\right\rangle=\Delta I_{1}(b=0) \frac{2}{R^{4}} \int_{b=0}^{R}\left(R^{2}-b^{2}\right) b d b=\frac{\Delta I_{1}(b=0)}{2}$

$$
\cos ^{2} \alpha=1-\frac{b^{2}}{R^{2}}=\frac{R^{2}-b^{2}}{R^{2}}
$$

- The collision induced momentum change is reduced by the factor cosa once because of the angle of the impact and again because we only consider the transfer of impact in one direction, for instance the height.

$$
\Delta I_{1}(b)=\Delta I_{1}(b=0) \cos ^{2} \alpha
$$

- For the mean change of momentum we have to integrate over the possible impact parameters

$$
\left\langle\Delta I_{1}\right\rangle=\int_{b=0}^{R} \Delta I_{1}(b=0) \cos ^{2} \alpha \frac{2 \pi b d b}{R^{2} \pi}
$$

$$
b=R \sin \alpha
$$

- And get

$$
\left\langle\Delta I_{1}\right\rangle=\Delta I_{1}(b=0) \frac{2}{R^{4}} \int_{b=0}^{R}\left(R^{2}-b^{2}\right) b d b=\frac{\Delta I_{1}(b=0)}{2}
$$

$$
\begin{aligned}
& \sin ^{2} \alpha=\frac{b^{2}}{R^{2}} \\
& \cos ^{2} \alpha+\sin ^{2} \alpha=1 \\
& \cos ^{2} \alpha=1-\frac{b^{2}}{R^{2}}=\frac{R^{2}-b^{2}}{R^{2}}
\end{aligned}
$$

- The frictional force that a particle of gas type 1 experiences due to collision with a particle of gas type 2 is then
$F_{f r, 1}=\frac{\Delta I_{1}(b=0)}{2} v_{1,2}$
- For an ensemble of particles of type 1 gas the frictional force per unit volume is
$F_{f r, 1}^{*}=n_{1} F_{f r, 1}$ remember
$F_{f, 1}^{*}=\frac{4}{3} n_{1}\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right) v_{1,2}\left(u_{2}-u_{1}\right)=m_{1} n_{1} v_{1,2}^{*}\left(u_{2}-u_{1}\right)$

$$
v_{1,2}=\sigma_{1,2} n_{2} \sqrt{\frac{8 k T_{1,2}}{\pi m_{1,2}}}
$$

Factor $3 / 4$ comes from more detailed computations

- And for three dimensions:

$$
v_{1,2}^{*}=\frac{4}{3} \frac{m_{2}}{m_{1}+m_{2}} v_{1,2}
$$

$$
\vec{F}_{f r, 1}^{*}=m_{1} n_{1} v_{1,2}^{*}\left(\vec{u}_{2}-\vec{u}_{1}\right)
$$

- Frictional force is proportional to flow velocity differences.
- For stationary gases, $\vec{F}_{i, j}=\vec{F}_{f, 1}=0$.
- For stationary gases each gas behaves as if it were alone in the mix.
- For stationary gases in a mixture the aerostatic equation for a single gas is the same as that for the gas mixture.
- We can then really write:
$\frac{d p_{i}}{d z}=-n_{i} m_{i} g$
- The density of a gas in this region under the assumption of no flow difference is then similar to what we derived before.

$$
n_{i}(h)=n_{i}\left(h_{0}\right) \frac{T\left(h_{0}\right)}{T(h)} \exp \left\{-\int_{h_{0}}^{h} \frac{d z}{H_{i}(z)}\right\} \begin{aligned}
& \text { Barometric law for a single } \\
& \text { heterospheric gas } \mathrm{i} \text { in } \\
& \text { thermodynamic equilibrium } \\
& \text { with the mixture of } \\
& \text { gases (} \mathrm{T}_{\mathrm{i}}=\mathrm{T} \text {). }
\end{aligned}
$$

$$
H_{i}(h)=\frac{k T(h)}{m_{i} g(h)}
$$

With the assumption of T and g constant, then

$$
n_{i}(h)=n_{i}\left(h_{0}\right) e^{-\frac{h-h_{0}}{H_{i}}}
$$

Lighter molecules have larger scale heights than heavier molecules.

In-class project

- Compute $\mathrm{n}_{\mathrm{i}}(500 \mathrm{~km}) / \mathrm{n}_{\mathrm{i}}(300 \mathrm{~km})$ for O_{2} and O for $\mathrm{T}=\mathrm{T}_{\infty}$
- Write down equations with given parameters inserted
- Evaluate scale heights
- Take $\mathrm{n}_{\mathrm{O} 2}(300 \mathrm{~km})=10^{13} \mathrm{~m}^{-3}$ and $\mathrm{n}_{\mathrm{O}}(300 \mathrm{~km})=10^{15} \mathrm{~m}^{-3}$
- Evaluate $\mathrm{n}_{\mathrm{O} 2}(500 \mathrm{~km})$ and $\mathrm{n}_{\mathrm{O}}(500 \mathrm{~km})$
- Discuss how n decreases for lighter constituents of the atmosphere

Particle number density (100 to 500 km)

Particle number density (500 to 3000 km)

Proelss, 2010

Atmospheric models

- A Standard Atmosphere is defined as a vertical distribution of atmospheric temperature, pressure and density, which by international agreement is taken to be representative of the Earth's atmosphere
- The first Standard Atmospheres established by international agreement were developed in the 1920's primarily for purposes of pressure altimeter calibrations. Aircraft performance calculations, aircraft and rocket design, ballistic tables, etc.

Why?

- A good knowledge of temperature, total density, concentrations of major and minor constituents and pressure is important for a wide range of scientific purposes and for the planning and execution of many space missions exploiting the low-earth orbit (LEO) regime below $\sim 2500 \mathrm{~km}$ altitude.
- Aerodynamic forces on the spacecraft due to orbital motion of a satellite through a rarefied gas which itself can have variable high velocity winds, are important for planning satellite lifetime, maintenance of orbits, collision avoidance maneuvering and debris monitoring, sizing the necessary propulsion system, design of attitude control system, and estimating the peak accelerations and torques imposed on sensitive payloads.
- Surface corrosion effects due to the impact of large fluxes of atomic oxygen are assessed to predict the degradation of a wide range of sensitive coatings of spacecraft and instruments.
- The reactions of atomic oxygen around a spacecraft can also lead to intense "vehicle glow."

Satellite atmospheric drag

- Spacecraft in LEO are affected by increased drag that will change the Keplerian orbital parameters in such a way that the altitude and the eccentricity of the orbit are lowered.
- Short-term drag effects if perigee height < 1000 km (thermosphere)
- Drag increase due to
- solar UV output,
- geomagnetic storms heating of thermosphere
- tidal effects
- Drag models use 10.7 cm radio flux density (F10.7) 250 sfu, $\mathrm{K}_{\mathrm{p}}>6 \rightarrow$ significant drag $1 \mathrm{sfu}=10^{4} \mathrm{Jy}, 1 \mathrm{Jy}=10^{-26} \mathrm{~W} \mathrm{~Hz}^{-1} \mathrm{~m}^{-2}$

Probing gravitational redshift for potentially most sensitive test of general relativity (with grad student Nelson Nunes)

RadioAstron
Ground-space VLBI mission

Density variations at 400 km

Type	Relative change (\%)	Frequency (once per ...)
Diurnal effects	250	1 day
Significant Geomagnetic storm	800	3 days
Solar UV	250	27 days
Semi annual	120	12 months
Solar cycle	1600	11 years

Satellite atmospheric drag

$$
\frac{d E}{d t}=F_{d} v=-\frac{1}{2} \rho C_{d} A v^{3}
$$

$a_{d}=-\frac{1}{2} \rho \frac{C_{d} A}{m} v^{2}$

- F_{d} drag force
- v velocity of satellite relative to atmosphere
- ρ atmospheric mass density (calculated with 15% error)
- C_{d} drag coefficient (difficult to measure)
- A cross-sectional area of spacecraft perpendicular to motion
- a_{d} drag acceleration

Satellite drag has an effect on orbit

- Orbit decays and circularizes due to the satellite drag.
- Energy lost by a spacecraft because of the drag is given by the drag force and the velocity of the spacecraft.

$$
\frac{d E}{d t}=F_{d} v
$$

- Energy loss can be related to loss of orbit height.

Energy for satellite in circular orbit

$$
\begin{aligned}
& E_{\text {tot }}=E_{\text {pot }}+E_{\text {kin }}=-G \frac{M m}{r}+\frac{1}{2} m v^{2} \\
& E_{\text {tot }}=-\frac{1}{2} \frac{G M m}{r} \\
& \frac{d E_{\text {tot }}}{d t}=\frac{1}{2} \frac{G M m}{r^{2}} \frac{d r}{d t}=F_{D} v=-\frac{1}{2} \rho C_{D} A v^{3} \\
& \frac{d r}{d t}=-r^{2} \rho \frac{C_{D}}{G M m} A v^{3}
\end{aligned}
$$

For circular orbit:

$$
\begin{aligned}
& G \frac{M m}{r^{2}}=\frac{m v^{2}}{r} \\
& v=\sqrt{\frac{G M}{r}}
\end{aligned}
$$

With $r=R_{E}+h$, the drag force reduces the height.
How is the velocity affected?

Orbital Drag Laboratory Concept Map Worksheet

Boston University

Starshine's orbital decay

YORKU

Drag force as a function of T

Drag force (dyne cm^{-2})
$10^{\circ} \mathrm{Pa} 10^{1}$
$10^{-6} \mathrm{~Pa} 10^{-5}$

Radiation pressure

For single photon
$p_{\gamma, \text { momentum }}=\frac{h}{\lambda}=\frac{E_{\gamma}}{c}$
Change of momentum due to EM absorbed by surface
$\xrightarrow[\begin{array}{l}\text { absorbed } \\ \text { during time interval dt } \\ \\ \\ \\ \text { EM radiation energy } \\ \mathrm{m}, \mathrm{v}\end{array}]{\square}$

$$
\begin{aligned}
\mathrm{mdv} & =\text { energy } / \mathrm{c} \\
\mathrm{~F} & =\mathrm{d} / \mathrm{dt}(\mathrm{mdv}) \\
& =\mathrm{d}(\text { energy } / \mathrm{c}) / \mathrm{dt} \\
& =\text { power/c } \\
\mathrm{P}_{\mathrm{rad}, \mathrm{abs}} & =\mathrm{F} / \mathrm{A} \\
& =\left(\text { power } / \mathrm{m}^{2}\right) / \mathrm{c}
\end{aligned}
$$

For spacecraft near Earth and $\alpha=0$:
$P_{\text {rad }, ~ a b s}=1370 / c$

$$
=4.6 \times 10^{-6} \mathrm{~Pa}
$$

Temperature, density variations

Green indicates possible change from nominal

Molecular interactions

- The molecular interactions are characterized by the Knudsen number $K_{n}=\frac{L}{d}$, where
- L is the mean free path and
- d is the satellite characteristic length.
- We distinguish between:
- K_{n} >> 1; free molecular flow, particles interact one-byone with body, no disturbance of the incident flow.
$-K_{n} \sim 1$: reentry-like flow.
- $K_{n} \ll 1$; classical aerodynamics, e.g., shockwave for supersonic speeds.

Static models

- Simple model with reasonable results.
- Errors are $<40 \%$ during mean solar activities and <60\% during max. solar activities.
- Values change only with location:
- Height: hydrostatic equilibrium + perfect gas $\quad \rho=\rho_{0} e^{\frac{h_{0}-h}{H}}$
- Latitude: change of height because flattening of Earth toward poles.
- Height over ellipsoid changes with longitude

$$
\Delta h_{\text {ell }}=0-21 \mathrm{~km} \Leftrightarrow \Delta \rho
$$

- Longitude:
- Diurnal change, subsolar hump
- Small space variation (seas, mountains), mainly at low heights
- Spherical symmetry, co-rotating with Earth, that is the atmosphere rotates with the Earth as a rigid body.
- Reference density, ρ_{0}, and reference height, h_{0}.
- Scale height, H.

Different types of static models

- 1976 standard model
- CIRA 65-90
- Semi-static model with some free variables
- Data mainly from satellite drag and ground based measurements
- CIRA-72 and CIRA-86 incorporate dynamic models for altitudes over 100 km.
- Harris-Priester

Time-varying models

Diurnal variations

- Solar UV radiations heats up the atmosphere: density ρ increases.
- Maximum solar hump at 2:00 to 2:30 pm (delayed).
- Density ρ depends on:
- Apparent local solar time of satellite
- Solar declination
- Geodetic latitude of satellite

Magnetic storms

- Earth's field fluctuations.
- Solar storms - they are of short duration but have large effects.
- Influence on ρ through the geomagnetic indices K_{p} or A_{p}.

- The K-index characterizes the magnitude of geomagnetic storms. It is a code that is related to the maximum fluctuations of horizontal components observed on a magnetometer relative to a quiet day, during a three-hour interval.
- The A-index is calculated for individual magnetometer stations. The value is calculated as the average of eight, three-hour station indices observed during a UT day and provides a single, average value to indicate the activity for that day.
- The planetary K_{p}-index is a globally averaged indicator of the worldwide level of geomagnetic activity. The official index is derived by calculating a weighted average of K-indices from a predetermined network of geomagnetic observatories, the official K_{p} network.
- The network of contributing stations include the U.S. Geological Survey, Natural Resources Canada, the British Geological Survey, the German Research Center for Geosciences, Geoscience Australia, and contributions from the Institute de Physique du Globe de Paris, and the Korean Space Weather Center.
- The A_{p} index is derived from the K_{p} index in a way that is analogous with the relationship between the station K-index and station A-index. Each individual threehour K_{p} index is converted to an equivalent amplitude index, and the average of height of eight three-hour indices produces the A_{p} index.

NorthWest Research Associates, Inc. Space Weather Services

A_{p} index Geomagnetic Disturbance Index

Note: Heavy (dark) line is for the current 27-day Bartel rotation; light line is for the last rotation.

Solar affects

- Solar rotation period: 27 days
- Visible sun spots change
- Extreme UV (EUV) radiation changes
- Affects ρ through F10.7 and its 81-day average
- Semi-annual variation: Sun distance changes
- Solar cycle variations: 11-year cycles are not regular but change in intensty

F10.7

 DRAO

- The radio emission from the Sun at a wavelength $\lambda=10.7 \mathrm{~cm}$ (the 10 cm flux density) correlates well with the sunspot number.
- Sunspot number is defined from counts of the number of individual sunspots as well as the number of sunspot groups and must be reduced to a standard scale taking into account the differences in equipment and techniques between observatories.
- On the other hand, the radio flux density at 10.7 cm can be measured relatively easily and quickly and has replaced the sunspot number as an index of solar activity for many purposes.
- The global daily value is measured at local noon at the Dominion Radio Astronomy Observatory (DRAO) in Pendicton, BC, Canada.
- This index is used as a surrogate for the solar output in wavelengths that produce photoionization in the Earth's atmosphere in the UV.

Exosphere and escaping particles

- In the exosphere most of the particles are H and He .
- What is their escape velocity?
- What is the portion, $\mathrm{b}_{\mathrm{esc}}$, of these particles having sufficient energy to overcome the gravitational attraction?
- This portion can be computed from the MaxwellBoltzmann speed distribution.

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases

Remember......

Escape velocity

- In order to escape Earth, a particle with mass, m, must be moving with sufficiently high velocity to overcome earth's gravity. The velocity that is just sufficiently large to do that is the escape velocity, $v_{\text {esc }}$.
- The escape velocity can be computed from the kinetic energy of the particle being equal to the work required to overcome the gravitational field along the trajectory

$$
\frac{1}{2} m v_{e s c}^{2}=\int_{r}^{\infty} m g\left(r^{\prime}\right) d r^{\prime}=\int_{r}^{\infty} m G M_{E} r^{\prime-2} d r^{\prime}=-\left.m G M_{E} r^{\prime-1}\right|_{r} ^{\infty}=m G M_{E} r^{-1}=m g(r) r
$$

where,$r=R_{E}+h$, is the distance from Earth's centre, $R_{E}=6371 \mathrm{~km}$, is the mean radius of Earth and h is the height above mean sea level, and $g(r) \approx \mathrm{GM}_{\mathrm{E}} / \mathrm{r}^{2}$, the gravitational acceleration.

$$
v_{\text {esc }}(h=0)=11.18 \mathrm{~km} \mathrm{~s}^{-1}
$$

$$
v_{e s c}=\sqrt{2 g(r) r}=\frac{v_{\text {esc }}(h=0)}{\sqrt{1+\frac{h}{R_{E}}}} \quad \text { Escape velocity }
$$

YORKU

The integration of $\mathrm{f}(\mathrm{c})$ over all speeds is?
The integration of $f(c)$ from $c_{\text {esc }}$ to infinity is $b_{\text {esc }}$, the portion of particles that have speeds larger than $\mathrm{c}_{\text {esc }}$.

$$
\begin{aligned}
& b_{e s c}=\int_{c_{e s c}}^{\infty} f(c) d c \\
& b_{e s c}=\int_{c_{e s c}}^{\infty}\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} 4 \pi c^{2} e^{-\left(\frac{m c^{2}}{2 k T}\right)} d c \\
& \left.b_{e s c}=4 \pi\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}}\left(\frac{2 k T}{m}\right)^{\frac{3}{2}} \int_{\frac{c_{e s c}}{c_{p}}}^{\infty}\left(\frac{c}{c_{p}}\right)^{2} e^{-\left(\frac{c^{2}}{c_{p} 2}\right.}\right) d\left(\frac{c}{c_{p}}\right)
\end{aligned}
$$

$$
c_{p}=\sqrt{\frac{2 k T}{m}}
$$

$$
\frac{c}{c_{p}}=x \quad \frac{c_{e s c}}{c_{p}}=y
$$

$$
b_{e s c}=\frac{4}{\sqrt{\pi}} \int_{y}^{\infty} x^{2} e^{-x^{2}} d x
$$

$$
\int_{a}^{b} u v^{\prime} d x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v u^{\prime} d x
$$

$b_{e s c}=\frac{4}{\sqrt{\pi}}\left(-\left.\frac{x}{2} e^{-x^{2}}\right|_{y} ^{\infty}-\int_{y}^{\infty} e^{-x^{2}}\left(-\frac{1}{2}\right)\right) d x$

$$
u=-\frac{x}{2} \quad v^{\prime}=-2 x e^{-x^{2}} \quad v=e^{-x^{2}}
$$

$b_{\text {esc }}=\frac{4}{\sqrt{\pi}} \frac{1}{2} y e^{-y^{2}}+\left(\int_{0}^{\infty} e^{-x^{2}} d x-\int_{0}^{y} e^{-x^{2}} d x\right)$

$$
b_{e s c}=\frac{2}{\sqrt{\pi}} y e^{-y^{2}}+1-\operatorname{erf}(y)
$$

$$
\operatorname{erf}(y)=\frac{2}{\sqrt{\pi}} \int_{0}^{y} e^{-x^{2}} d x \approx 1-\frac{e^{-y^{2}}}{y \sqrt{\pi}}\left[1-\frac{1}{2 y^{2}}+\frac{1 \cdot 3}{2^{2} y^{4}}-\frac{1 \cdot 3 \cdot 5}{2^{3} y^{6}}+\cdots\right]
$$

Escape time

- How long does it take to completely remove the gas constituents from the atmosphere?
- $b_{\text {esc }}$ may be a small portion of 1 , but over time some of the light gas constituents, like H , may be lost completely.
- This "escape time" can be computed by considering an escape flux through an area parallel to the exopause.
- Particles moving through this area outward from all possible directions have to be considered.
- An integration over the angles φ, θ over a hemisphere needs to be done.
- As a result we get the escape parameter, X, an important parameter for the atmospheres of planets and moons.
- The larger X, the smaller the escape flux. For Jupiter, X~1400. For Mercury, X~2.

Age of
the Earth

$$
X\left(T_{\infty}\right)=\left(\frac{c_{e s c}}{c_{p}}\right)_{E B}^{2}=\frac{g_{E B} r_{E B} m}{k T_{\infty}}
$$

EB: Exobase

[^0]: * For $\mathrm{T}=0 \mathrm{C}, \mathrm{n}=2.69 \times 10^{25} \mathrm{~m}^{-3}$

