

1

3

The sun

- Provides all the heat input
- 99.9% of the solar system mass
- G2 yellow star (fairly ordinary star)
- Age: 5×10^{9} years old - about half-way through its lifetime
- Luminosity $4 \times 10^{26} \mathrm{~W}$
- Solar constant, $\mathrm{P}_{\text {sqm, } 1 \mathrm{AU}}=1.37 \mathrm{~kW} \mathrm{~m}^{-2}$

YORK

2

4

6

7

9

Fusion reaction in Sun

8
...wait a minute..

- $\mathrm{L}_{\text {sun }}=3.9 \times 10^{26} \mathrm{~W}$
- $\mathrm{E}=\mathrm{mc}^{2}$
- Mass loss per second?
- Mass conversion per second?

YORK
10

Energy Transfer

- Conduction
- Convection
- (Electromagnetic) Radiation

12

A theoretical model of the Sun shows how energy gets from its center to its surface

Hydrogen fusion takes place in a core extending from the Sun's center to about 0.25 solar radius
The core is surrounded by a radiative zone extending to about 0.71 solar radius
about 0.71 solar radius

- In this zone, energy radiative diffusion
The radiative zone is
surrounded by a rather
opaque convective zone of gas at relatively low
temperature and pressure
- In this zone, energy
travels outward primarily through convection

13

Profiles through the Sun

YORK

15

14

Element	Number of atoms (percent)	Percent of total mass
Hydrogen	91.2	71.0
Helium	8.7	27.1
Oxygen	0.078	0.97
Carbon	0.043	0.40
Nitrogen	0.0088	0.096
Silicon	0.0045	0.099
Magnesium	0.0038	0.076
Neon	0.0035	0.058
Iron	0.030	0.014
Sulfur	0.015	0.040

16

Class project

- Compute the rms speed, c_{ms}, for ${ }^{1} \mathrm{H}$ nuclei in the center of the Sun.
- Compute the kinetic energy of a ${ }^{1} \mathrm{H}$ particle (p) in the center of the Sun based on $\mathrm{C}_{\text {rms }}$.
- How does that energy compare with the energy needed for p-p fusion of 1.2 MeV ? Note: $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

Quantum mechanics is needed to explain that it comes to fusion at these temperatures

- The temperature of about 10 Mill K (15 Mill K for the center of the Sun) is so high that the mean kinetic energy of the particles is about 2 keV for the center of the Sun.
- That is not enough for the particles to come so close together that the strong force can overcome the Coulomb barrier in the classical sense, even allowing for the tail of the Maxwell-Boltzmann speed distribution.
- Quantum mechanically the particles may find to be close enough together to fuse. The Heisenberg uncertainty principle through the uncertainty of a particle's position and momentum
$\Delta x \Delta p_{x} \geq \frac{\hbar}{2}$
makes fusion possible through tunneling.
YORK U
19

21

25

27

26

Corona characteristics

- Nearly all energy in UV and X-ray comes from the corona.
- Variability :
$-<1 \%$ in visible,
- few \% in UV,
- >100\% in X-ray (X-ray emissions may double or even increase by a factor of 10).
- Main cause of variability: sunspots, flares.

YORK】
28

31

32

Average surface temperature of planet

- $P_{a b s}=\left(L / 4 \pi d^{2}\right) \times \pi r_{p}^{2}$ (1-albedo)
- $\mathrm{P}_{\mathrm{em}}=4 \pi r_{\mathrm{p}}{ }^{2} \sigma \mathrm{~T}_{\mathrm{p}}{ }^{4}$
- If no atmosphere then for thermal equilibrium:
- $P_{\text {abs }}=P_{\text {em }}$
- $T_{p}=\left[L /\left(4 \pi d^{2}\right) \times(1 \text {-albedo }) /(4 \sigma)\right]^{1 / 4}$
- For Earth:
- $\mathrm{L}=3.86 \times 10^{26} \mathrm{~W}, \mathrm{~d}=1.5 \times 10^{11} \mathrm{~m}$, albedo $=0.37, \sigma=5.67 \times 10^{-8} \mathrm{~J}$ $\mathrm{m}^{-2} \mathrm{~K}^{-4} \mathrm{~s}^{-1}$
- $\mathrm{T}_{\mathrm{p}}=247 \mathrm{~K}$
- With average $\mathrm{T}=288 \mathrm{~K} \rightarrow 41 \mathrm{~K}$ due to greenhouse effect

YORK

34

36

Luminosity

33

35

37

Active and quiescent regions

Active regions involve all the phenomena directly linked to the magnetic field:

- sunspots in the photosphere,
- filaments in the chromosphere,
- prominences in the chromosphere and transition region, and
- flares and coronal mass ejections in the corona and chromosphere.
Quiescent prominences are large, cool dense structures which are observed as dark, "snake-like" ribbons (filaments) on the solar disc.

38

Sunspots

- Temporary phenomena on the photosphere of the Sun that appear visibly as dark spots compared to surrounding regions.
- Correspond to concentrations of magnetic field flux that inhibit convection
- Result: reduced surface temperature - roughly 3,000-4,500 K compared to $5,780 \mathrm{~K}$ in the surroundings. Sunspots clearly visible as dark spots
- Sunspots usually appear in pairs of opposite magnetic polarity.
- Number of sunspots varies according to the approximately 11-year solar cycle.
- Size ranging from 16 kilometres to 160,000 kilometres in diameter
- Sunspots accompany secondary phenomena such as coronal loops (prominences) and reconnection events. Most solar flares and coronal mass ejections originate in magnetically active regions around visible sunspot groupings
- Sunspots have two parts: the central umbra, the darkest part, where the magnetic field is approximately normal to the Sun's surface, and the surrounding penumbra, which is lighter, where the magnetic field is more inclined.

42

39

41

43

44

Rotation of the solar interior

\mathfrak{c}
46

48

45

Sun's differential rotation and magnetic field

$\underset{\substack{\text { Figure } \\ \text { Discovering the U } \\ \text { n }}}{ }$

47

49

50

52

Solar cycles (periodicities)

There are 4 main cycles of sun activity that can influence the Earth:

- The "diurnal cycle" - where on Earth is day and night depending on location pointing towards the sun -24 h cycle
- The solar rotation period: 27 -day cycle. Changes which part of the sun points to the Earth
- The semi-annual variation - how far away the sun is from Earth (and the tilt of the axis of rotation of the Earth changes where on Earth gets more warming - seasons)
- The solar cycle variation, tied to the magnetic field reversals on the sun: 11-year cycle

51

53

Coronal loops

- The basic structures of the magnetic solar corona. These loops are the closed-magnetic flux cousins of the open-magnetic flux that can be found in coronal hole (polar) regions and the solar that can be found in coronal hole (polar) regions and the solar with hot solar plasma.
- Solar plasma feeding these structures is heated from under 6000 K to well over 1,000,000 K from the photosphere, through the transition region, and into the corona. Often, the solar plasma will fill these loops from one foot point and drain from the other.
- Due to the heightened magnetic activity in these coronal loop regions, coronal loops can often be the precursor to solar flares and coronal mass ejections (CMEs).

NASA's Solar Dynamics Observatory (SDO) captured a splendid example of expanding
coronal loops seen in profile at the edge of the Sun (Oct. 14-15, 2014). The bright loops began to form and grow after a long-casting M-class flare erupted. The arcs of the loops see in extreme uitraviolet ligit are actual ty particles spiraling along magnetic field lines magnetic field after its disruption. To give a sense of scale, these huge loops are reaching
out more than 15 times the size of Earth. Credit: Solar Dynamics Observatory/NASA.
https://www.youtube.com/watch?v=Vy2v1JbboA8

56

Solar flares

- Flares take place in active regions and provoke a sudden increase of the radiative flux emitted from small regions of the corona.
- Flares are impulsive phenomena, of average duration of 15 minutes, even if the most energetic events can last several hours. Flares involve a high and rapid increase of the density and temperature.
- Usually, flares are only seen at EUV wavelengths and in the X-rays, typical of the chromospheric and coronal emission.

YORK U

58

60

57

59

61

This movie shows fireworks on the sun as 10 significant flares erupted on the sun from Oct. 19-28, 2014. The graph shows X-ray output from the sun as measured by NOAA's GOES spacecraft. The X-rays peak in sync with each flare.
Credit: NASA/SDO/NOAA/GOES
https://www.youtube.com/watch?v=sUKxalPIQOc
$\underset{\substack{\text { y Niversive } \\ \text { UNivenity }}}{\text { YORTM }}$
62

Dark strands of plasma tethered above the sun's surface by magnetic forces that, over time,
otten become disrupted and break away from the sun. Cooler clouds of gases (plasma) suspended above the Sun's surface by magnetic forces. plasma - they have a comparatively cool temperature.
In this movie, a dark, almost circular filament broke away from the sun on Nov. 15, 2015 This video was taken in extreme ultraviolet wavelengths and colorized in red. YORK edit: NASA/SDO
https://www.youtube.com/watch?v=WhiGtxulUIM

64

67

63

Solar storm impacts on Earth atmosphere

Flares can last minutes to hours. Traveling at the speed of light, it takes eight minutes for the light from a solar flare to reach Earth. Some of the energy released in the flare also accelerates very high energy particles that can reach Earth in tens of minutes.
CMEs travel over a million miles per hour. The hot plasma takes up to three days to reach Earth
The energy from a flare can disrupt the upper Earth atmosphere leading to degradation and, at worst, temporary blackouts in navigation and communications signals.

- CMEs can funnel particles into near-Earth space. A CME can affect Earth's magnetic field creating currents that drive particles down toward Earth's poles. When these react with oxygen and nitrogen, they help create the aurora. Magnetic changes can affect technologies though: HF radio waves can be degraded, and GPS coordinates can stray by a few
metres. The magnetic oscillations can also create electrical currents in utility grids that can overload electrical systems and transformers

$\frac{\text { yNivensite }}{\text { UNIVERSITY }}$
65

68

Impacts on Earth

- Space weather poses increasingly greater threat because of the emergence of vulnerable technologies.
- The first example of the impact of space weather on technology was the electric telegraph.
- A number of space weather incidents have already disrupted electrical transformers and grids, for instance in Canada.
- We have to increase understanding the risk from both extreme events (for example, a major magnetic storm) and low-level risk (often a cumulative build up of minor damage from smaller storms).
- Space weather can cause problems such as corrosion on pipelines and incorrect signal settings on railways.
 Earth and implications for business

Specific impacts to Earth

- Communication systems can be interrupted or damaged by these high-energy emissions.
- Navigation satellites may be disrupted or disabled.
- Radiation hazards, especially to flight crews and passengers, increase significantly during very high energy events.
- Magnetic storms can result in loss of power in transmission lines, or destroy transformers (which are very costly to replace and can take up to 12 months to rebuild).
 Earth and implications for business

71

'	Composition of the Interstellar Medium					
	Particle number (\%)	Mass (\%)				
:---	:---:	:---:				
Hydrogen		74				
(atoms and molecules)	90	25				
Helium	9	1				
Metals*	1					

*Metals in astronomy are all elements beyond H and He . Metals mostly come from supernova explosions of massive stars.
Diticovering the U Universe Eighth Edition

Solar radiation storms

- Bursts of charged particles at very high energies (MeV to GeV) from flares and CME are a major threat to spacecraft as they can disrupt and damage electronics and power systems.
- Some of these particles enter the Earth's atmosphere, where they collide with oxygen and nitrogen molecules in the atmosphere to produce neutrons.
- During strong events these neutrons can travel to the Earth's surface and raise radiation levels above normal. This can disrupt digital systems in aircraft and on the ground and is a health risk for aircrew and passengers.
- Radiation storms can also produce an atmospheric layer that absorbs high-frequency (HF) radio waves across polar regions.

Lloyd's 360° Risk Insight Space weather: it's impact on
YORTERSTITE
Earth and implications for business
70

The life of our Sun

- The Sun originated from a cold cloud of gas and a bit of dust somewhere in our Galaxy, the Milky Way.
- The gas cloud started to collapse, perhaps triggered by the shock front of a nearby supernova.
- The collapsing cloud formed a disk due to increasing rotation and a hot center.
- The center became our Sun when fusion started from H to He at $T=10$ Mill K.
- The Sun has a life of about 10 Bill yr.
- At the end it fuses He into C and O and becomes a giant filling almost the orbit of Earth.
- It becomes a planetary nebula shedding huge amounts of gas into the interstellar medium.
- It ends its life as a white dwarf with a size as little as the Earth.

72

74

75

A cold cloud of gas and a little bit of dust

Contraction:

1) Triggered by -supernova, -star light pressure
2) Supported by gravity

YORK
U
77

79

76

Contraction heats up the gas cloud

- Virial theorem for a system in equilibrium with K:kinetic energy and U potential energy and E total energy.
- As the cloud contracts, only half of the change of gravitational potential energy goes into the thermal energy that heats the gas, the other half is radiated away.

78

80

Kinetic and potential energy of a gas cloud

- Mean kinetic energy per particle:
$\frac{1}{2} m v_{\text {rus }}^{2}=\frac{3}{2} k \bar{T}$
- Mean kinetic energy of N gas particles:
$\bar{K}=N \frac{3}{2} k \bar{T}$
- The potential energy of the gas can be determined as follows:
- We assume density, $\rho(r)$, in a sphere of gas with radius, R
- Gravitational forces of a shell of matter add up to 0 within the shell so that they can be ignored.
- The mass within the shell can be taken as a point mass.
- The gravitational potential, dU_{i}, of a mass, dm_{i}, of a particle away by, r, from the center is then...

81
- As the cloud contracts to form a star, half of the potential energy goes into heat and the other half is radiated away. For the Sun..
$\Delta E_{g}=\frac{3}{10} G \frac{M_{s m m}^{2}}{R_{s m m}}$
- With the luminosity of the Sun of $\mathrm{L}_{\text {sun }}=3.8 \times 10^{26} \mathrm{~W}$, a mass of $2 \times 10^{33} \mathrm{~kg}$, and a radius of $7 \times 10^{8} \mathrm{~m}$, the Sun would be able to have lived for only
$\tau_{K H}=\frac{\Delta E_{g}}{L_{s t m}}=1 \times 10^{7} y r$
- This timescale is called, Kelvin-Helmholtz timescale. It is much too short to account for the 500 times older age of the Sun. Indeed, another process, other than gravitational energy has to account for the luminosity of the Sun. That is indeed nuclear fusion.
- But conversion of gravitational potential energy into heat and radiation played a significant role during the contraction phase

The average temperature of the Sun

- Since half of the gravitational potential energy goes into kinetic energy of the gas, we have..
$\bar{K}=\frac{1}{2} m v_{m s}^{2}=\frac{3}{2} k \bar{T}$
$\frac{3}{2} k \bar{T} N=\frac{3}{2} k \bar{T} \frac{M}{m}=\frac{3}{10} G \frac{M^{2}}{R} \quad$ where, N , is the number of particles with mass, m .
$\bar{T}_{s \mathrm{smm}}=\frac{1}{5} G \frac{M_{s m m} m}{k R_{s \mathrm{sm}}}$
$\bar{T}_{\text {sun }}=5 \times 10^{6} \mathrm{~K}$
- This temperature is close to $T=1 \times 10^{7} \mathrm{~K}$, needed for starting the p-p cycle, of fusion. This is the main cycle for fusing $4^{1} \mathrm{H}$ into $1^{4} \mathrm{He}$ as discussed earlier. YORK

84

86

87

89

91

88

90

92

93

Star changes

- When a star exhausts the supply of hydrogen by nuclear fusion processes in its core, the core contracts and its temperature increases, causing the outer layers of the star to expand and cool.
- The star's luminosity increases greatly, and it becomes a red giant, following a track leading into the upper-right hand corner of the HR diagram.
- Eventually, once the temperature in the core has reached approximately $3 \times 10^{8} \mathrm{~K}$, helium burning (fusion of helium nuclei) begins. The onset of helium burning in the core halts the star's cooling and increase in luminosity, and the star instead moves down and leftwards in the HR diagram. This is the horizontal branch.
- After the completion of helium burning in the core, the star again moves to the right and upwards on the diagram. Its path is almost aligned with its previous red-giant track, hence the name asymptotic giant branch. Stars at this stage of stellar evolution are known as AGB stars. $\mathrm{YOR}_{\substack{\text { Niversite } \\ \text { Nivensity }}}$
Niventin
95

97

Medium mass stars $\mathrm{M}=0.4$ to $8 \mathrm{M}_{\text {sol }}$

- Our sun is a medium mass star
- $4^{1} \mathrm{H} \rightarrow 1^{4} \mathrm{He}+{ }^{\prime} \mathrm{s}+2 \mathrm{v} \quad \mathrm{H}$ fusion ($p-\mathrm{p}$ cycle) in the core.
- $3^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}+{ }^{\prime} \mathrm{s}$, He fusion (burning) in the core, H fusion in the shell around the core.
$1^{4} \mathrm{He}+{ }^{12} \mathrm{C} \rightarrow{ }^{16} \mathrm{O}+\mathrm{y}^{\prime} \mathrm{s}$
- No further fusion (burning).

YORK】U
94

96

The Structure of an Old Medium-Mass Star

Electron degeneracy pressure

- The He-rich core of a medium-mass giant is supported by electron degeneracy pressure. It is based on the...
- Pauli exclusion principle: Two identical particles cannot exist at the same place at the same time
- Electron degenerate pressure does not change with temperature.

99

101
102

- The "planetary nebula" is composed of the ejecta from the star. The core remains as a degenerate and inert mass of (primarily) Carbon and Oxygen in roughly equal amounts.
- At first, the core's temperature is >100 million K , but it rapidly cools, contracts a bit and stabilizes as a White Dwarf.
- The Sun will end its life as a White Dwarf with a radius of about $10,000 \mathrm{~km}$, not much larger than that of Earth.

YORKU

Rayleigh scattering
$I=I_{0} \frac{N}{2 R^{2}}\left(\frac{2 \pi r}{\lambda}\right)^{4} r^{2}\left(\frac{n^{2}-1}{n^{2}+2}\right)^{2}\left(1+\cos ^{2} \theta\right)$

I: intensity

N : number of scattering particles
R distance to scatterer
r : radius of particle
r : radius of part
n : refractive index
θ : scattering angle
Integrating over all angles
gives the
YORK U
Rayleigh scattering cross section, σ.

105

107

106

Meaning of cross section

- Fraction of light scattered per $\mathrm{m}: \mathrm{n} \bullet \sigma$
- At surface there are about $\mathbf{2 \bullet 1 0 2 5}$ molecules per m^{3}.
- $\sigma\left(\mathrm{N}_{2}\right)$ at $\lambda=532 \mathrm{~nm}$ (green) $=5.1 \cdot 10^{-31}$ m^{2}
- $\mathrm{n} \cdot \sigma=10^{-5} \mathrm{~m}^{-1}$ for every meter light travels through the atmosphere YORK 108

110

111

113

115

112

114

116

117

Absorption processes

- Photodissociation ($\lambda \leq 242 \mathrm{~nm}$)
$-\mathrm{O}_{2}+$ photon $\rightarrow \mathrm{O}+\mathrm{O}$
- Photoionization ($\lambda \leq 103 \mathrm{~nm}$)
$-\mathrm{O}+$ photon $\rightarrow \mathrm{O}^{+}+\mathrm{e}$
$-\mathrm{N}_{2}+$ photon $\rightarrow \mathrm{N}_{2}{ }^{+}+\mathrm{e}$
$-\mathrm{O}_{2}^{+}$photon $\rightarrow \mathrm{O}_{2}{ }^{+}+\mathrm{e}$
- Dissociative photoionization ($\lambda \leq 72 \mathrm{~nm}$)
$-\mathrm{N}_{2}+$ photon $\rightarrow \mathrm{N}^{+}+\mathrm{N}+\mathrm{e}$
YORK U

119

Optical depth

- We know about collision of particles with other particles and the mean free path.
- Now we want to consider the collision of photons with particles.
- How is the photon flux (intensity of radiation) lowered by gas, or how is the final photon flux related to the initial photon flux?
- Several factors have to be considered
- The greater the distance the beam of radiation travels the more light will be extinguished (scattered or absorbed).
- The greater the density of the gas, the more extinction.
- The cross section of the gas atoms or molecules.

YORK
122

118

120

123

Extinction of photon flux in a gas volume

- Number of photons per unit area and time that get absorbed while passing through a distance ds of gas is.. $\phi_{p h}(s) d w_{c o l}(d s)$
- Change in photon flux is...

$$
d \phi_{p h}(s)=-\phi_{p h}(s) d w_{c o l}(d s)=-\phi_{p h}(s) \sigma_{A} n(s) d s
$$

- Integration leads to..
$\phi_{p h}(s)=\phi_{p h}\left(s_{0}\right) e^{-\tau(s)}$
$\tau=\int_{s_{0}}^{s} \sigma_{A} n\left(s^{\prime}\right) d s^{\prime} \longleftarrow \mathrm{T}$: Optical depth
YORK U

124

- Instead of photon flux we often have also in the literature the intensity, I. For a density, $\rho=$ constant, of a gas, we can then also write:
$\frac{I}{I_{0}}=e^{-x \rho s}=e^{-\tau}$
- For an optically thin medium, the optical depth is $\ll 1$. Then...
$\frac{I}{I_{0}} \approx 1-\tau$
- Note: the cross section, opacity and optical YORK depth are in general functions of wavelength

126

Measurement of $\quad \boldsymbol{\tau}$

Opacity

- The differential optical depth is...
$d \tau=\sigma_{A} n(s) d s$
- This can also be written in terms of the density, ρ, and opacity, к, as.
$d \tau=\kappa \rho(s) d s$
- The opacity or absorption coefficient, k , is a measure of the efficiency with which the gas absorbs or scatters light.
- Its unit is $\mathrm{m}^{2} \mathrm{~kg}^{-1}$

Vertical atmospheric path and slant path

- how to measure the optical depth in the atmosphere

Sun photometer
Cimel 318A in Toravere, Wikipedia

127

Where does absorption occur?

129

130

Sources of attenuation of radiation particularly at radio frequencies

- Precipitation
- Faraday rotation --- proportional to $1 / \mathrm{f}^{2}$ important for $\mathrm{f}<1 \mathrm{GHz}$
- Scintillation --- caused by refractive index variation due to temperature, pressure, humidity variations
- Multipath ---radiation arrives via different paths leading to interference and fading
- Wave front incoherence --- decrease of effective antenna gain due to decorrelation across the aperture of an antenna
- Ionospheric scintillation --- caused by free electrons in ionosphere, proportional to $1 / \mathrm{f}^{2}$
important for $\mathrm{f} \ll 1 \mathrm{GHz}$

131

