4 Recall: History • 1970 Nobel Prize for work on magnetohydrodynamics Hannes Alfven 1908-1995 YORK 1733 de Mairan –description of auroras and speculation about the cause: solar particles penetrate Earth's atmosphere and generate polar lights. 1741 Hjorter & Celsius – Intense magnetic field perturbations occurred during enhanced auroral activity 1866 Ångström- Recording of prominent greenish yellow auroral line at 557.7 nm - ~1895 Birkeland First experimental simulation of an aurora - ~1895 Størmer Calculation of trajectories of electrical particles in Earth magnetic field 7 8 Comet Hale Bopp 10 ### Components of the interplanetary medium - Solar wind : p, e, He⁺⁺ at 1AU nsw-5 x10⁶ m⁻³ (5 cm⁻³) - Originates in the coronacarries out the magnetic field from the Sun - deflects magnetosphere and tail of comets away from Sun - cosmic rays High-energy atomic nuclei , 90% p, 9% He⁺⁺ (α particles), even Fe - Only 2% e - Minority from Sun Most from Galaxy (supernovae) and extragalactic space (perhaps from black hole environment in the centers of galaxies - dust particles - Micrometeoroids orbiting Sun in plane of solar system - Origin: collision between asteroids and from comets when passing near Sun $3x10^7$ kg yr 1 into atmosphere of earth - magnetic field - Solar wind carries out magnetic field from surface of Sun. Attached to Sun. Rotation causes spiral pattern - electric field - Induced by magnetic field YORK #### Components of the interplanetary medium - Solar wind : p, e, He⁺⁺ at 1AU nsw-5 x10⁶ m⁻³ (5 cm⁻³) - Originates in the corona - carries out the magnetic field from the Sun deflects magnetosphere and tail of comets away from Sun - cosmic rays - High-energy atomic nuclei , 90% p, 9% He⁺⁺ (α particles), even Fe - Only 2% e - Minority from Sun - Most from Galaxy (supernovae) and extragalactic space (perhaps from black hole environment in the centers of galaxies - dust particles - Micrometeoroids orbiting Sun in plane of solar system - Origin: collision between asteroids and from comets when passing near Sun - 3x10⁷ kg yr¹ into atmosphere of earth magnetic field - Solar wind carries out magnetic field from surface of Sun. Attached to Sun. Rotation causes spiral pattern - electric field - Induced by magnetic field ## Components of the interplanetary medium Solar wind : - p, e, He⁺⁺ at 1AU nsw~5 x10⁶ m⁻³ (5 cm⁻³) - Originates in the corona - carries out the magnetic field from the Sun deflects magnetosphere and tail of comets away from Sun - cosmic rays - High-energy atomic nuclei , 90% p, 9% He⁺⁺ (α particles), even Fe - Only 2% e Minority from Sun - Most from Galaxy (supernovae) and extragalactic space (perhaps from black hole environment in the centers of galaxies - dust particles - Micrometeoroids orbiting Sun in plane of solar system - Origin: collision between asteroids and from comets when passing near Sun - 3x10⁷ kg yr¹ into atmosphere of earth magnetic field - Solar wind carries out magnetic field from surface of Sun. Attached to Sun. Rotation causes spiral pattern - electric field 14 Induced by magnetic field 13 Properties of solar wind at 1 AU | • | | | | |-------------------------|---|----------|--| | Composition: | $\simeq 96\%~{\rm H^+,~4\%}$ (0–20%) ${\rm He^{++},~e^-}$ | | | | Density: | $n_{ m p} \simeq n_{ m e}$ | \simeq | 6 (0.1-100) cm ⁻³ | | Velocity: | $u_{\rm p} \simeq u_{\rm e} = u$ | \simeq | 470 (170-2000) km/s | | Proton flux: | $n_p u$ | \simeq | $3 \cdot 10^{12} \text{ m}^{-2} \text{s}^{-1}$ | | Momentum flux: | $n_{\rm p}~m_{\rm H}~u^2$ | \simeq | $2 \cdot 10^{-9} \text{ N/m}^2$ | | Energy flux: | $n_{\rm p}~m_{\rm H}~u^3/2$ | \simeq | 0.5 mW/m^2 | | Temperature: | T | \simeq | $10^5~(35005\cdot10^5)~\mathrm{K}$ | | Plasma sound velocity: | v_{PS} | ~ | 50 km/s | | Random velocity: | \vec{c}_{p} | ~ | 46 km/s | | | \overline{c}_{e} | \simeq | $2\cdot 10^3$ km/s | | Particle energy: | E_{p} | \simeq | 1.1 keV (flow energy) | | | $E_{\rm e}$ | \simeq | 13 eV (thermal energy) | | Mean free path: | $l_{ m p,p} \simeq l_{ m e,e}$ | \simeq | 10 ⁸ km | | Coulomb collision time: | $ au_{ m p,p} \simeq 30 au_{ m e,p}$ | > | 20 d | Proelss YORK Solar wind characteristics - Mean velocity of 500 km s⁻¹ →3-4 d from Sun to Earth - Mass loss per year $$\frac{dM_{SW}}{dt} = n_p u m_H 4\pi (1AU)^2$$ - That is <109 kg s-1 - $\frac{dM_{sw}}{dt}$ ~1x10-14 M_{sol} yr-1 – With M_{sol} =2x10³⁰ kg, that is dM – compare to some red supergiants : $\overline{\it dt}$ ~1x10⁻⁴ M_{sol} yr⁻¹ the solar wind mass loss is extremely small. YORK 15 16 Movie of SN1993J Explosion from t = 50d (r=200 AU) to t = 22 yr (r=40,000 AU) YORK Solar wind characteristics - Mean velocity of 500 km s⁻¹ →3-4 d from Sun to Earth - · Mass loss per year $$\frac{dM_{SW}}{dt} = n_p u m_H 4\pi (1AU)^2$$ - That is <109 kg s-1 - With M_{sol} =2x10³⁰ kg, that is $\frac{dM_{sw}}{dt} \sim 1x10^{-14} M_{sol} \text{ yr}^{-1}$ - compare to some red supergiants : $\frac{dM}{dt}$ ~1x10⁻⁴ M_{sol} yr⁻¹ the solar wind mass loss is extremely small. 19 • Energy flux $\phi_{sw}^{\mathcal{E}}(1AU) = n_{p}uE_{iss} = n_{p}u\left(\frac{1}{2}m_{H}u^{2}\right) = 0.5 \text{ mW m}^{-2}$ - compare with 15 mW m⁻² for UV - Compare with 1.37 kW m⁻² for all EM radiation from Sun • Total energy loss due to solar wind is $\left(\phi_{sw}^{\mathcal{E}} + \phi_{sw,por}^{\mathcal{E}}\right) 4\pi \left(1AU\right)^{2} = 4\times 10^{20} \text{W} \text{ with } \qquad \phi_{sw,por}^{\mathcal{E}} = n_{p}uE_{pot}$ --compare with L=4x10²⁶ for all EM radiation • Solar wind energy loss only 10⁻⁶ of EM energy loss! • YORK 20 Temperature profile Assumption: adiabatic gas expansion into interplanetary medium. , ← no heat exchange takes place between the gas and the environment of the gas. The work for the expansion of the gas is taken 100% from the internal energy of the gas. Note: Volume grows with $$r^2$$ $$T = T_0 \left(\frac{V}{V_0} \right)^{\frac{2}{f}} \qquad \qquad dV = r^2 \sin \vartheta d\vartheta d\varphi dr$$ $$T(r) = T(r_0) \left(\frac{r}{r_0} \right)^{\frac{4}{f}}$$ For $T(r_0) = 10^6$ K at $r_0 = 3R_{sol} \rightarrow T(1 \text{ AU}) = 3400 \text{ K}$ The lowest T(1AU) measured is indeed so low. So adiabatic expansion plays some role. However, extra heat perhaps from electrons. YORK 21 22 ## Recall:Adiabatic changes of state - Assume change of state of a gas proceeds with no heat exchange with the environment, i. e. AQ=0 - Work during expansion done at the expense of own internal energy $$\Delta Q = \Delta U - \Delta W = 0$$ $$\Delta W = -p\Delta V = \Delta U = Nf\left(\frac{k}{2}\Delta T\right)$$ $$dW = -pdV = dU = Nf\left(\frac{k}{2}dT\right)$$ $\left(\frac{k}{2}dT\right)$ $n = const \bullet p^{\frac{1}{\gamma}}$ or $p\rho^{-\gamma} = const$ alternative form if N=const. 24 3/16/21 Escape velocities - Can protons and electrons actually leave the corona of the Sun? For a realistic calculation, one has to take into account that electric forces, similar to the scenario in the ionosphere, ion. h(cp), 10-6s/m p and e escape from corona YORK 100 25 29 30 - · The solar wind spiral is structured into different sectors - · Each zone is anchored to a coronal hole - · Slow solar wind produces broad sectors, fast solar wind produces narrow sectors - That leads to rarefaction and compression at the boundaries YORK ## Interplanetary magnetic field - · Parameters measured with interplanetary spacecraft - Strength of magnetic field at 1AU, B ~ 3.5 (0.2 50) nT $$B_r[nT] \cong \frac{2.6}{r^2[AU]}$$ $B_{\lambda}[nT] \cong \frac{2.4}{r[AU]}$ $|X| \cong \arctan\left(\frac{B_{\lambda}}{B}\right) \cong \arctan(0.9 \cdot r[AU])$ - Magnetic field lines are oriented parallel to the solar wind jetlines - Magnetic field polarity changes typically with a cycle of 2 times per Sun rotation period (27 d). YORK Heliospheric current sheet Heliospheric T. 88888 40 $\mathcal{B}_r(\varphi > 0) \varphi$ σσσσσ $B_r(\varphi < 0)$ Current sheet filament Ecliptic view View from north YORK Similar to the magnetotail neutral current in the terrestrial magnetosphere, there is a heliospheric neutral current - It is a current flowing in the large circumsolar disc which is basically the ecliptic plane. - The neutral sheet is between the torn-out magnetic field lines with opposite polarity 39 Earth experiences these oscillations with a period equal to the synodic rotation period of the Sun Coronal projection of the heliospheric current sheet Earth's orbit Magnetic field (\mathcal{B}_r) YORK 41 42 - The temporal and spatial fluctuations are largely caused by magnetohydrodynamic waves - There are three physically different kinds of such waves - -Plasma acoustic waves - -Alfvén waves - -Magnetosonic waves YORK 43 44 #### Plasma acoustic waves - · Plasma (p and e) moves along magnetic field - No magnetic force is experienced, perturbations are described solely by density, pressure and plasma velocity - Plasma acoustic wave characterized by rhythmic back and forth motion along magnetic field 45 Alfvén waves - No density and pressure variations of the plasma - Variations in the magnetic and electric field and the current density occur together with the transverse velocity $$v_A = \sqrt{\frac{B^2}{\mu_0 \rho}} \approx 30 \, km s^{-1} \qquad \text{at 1 AU}$$ YORK 46 47 # Magnetosonic wave Combination of plasma acoustic waves and Alfvén waves Solar system is moving through the outer edge of an interstellar gas cloud Parameters of the very local interstellar medium | composition | H: 90%, He: 10% | | |-------------------------|--|--| | Density, n _H | 0.2 cm ⁻³ = 2 x 10 ⁵ m ⁻³ | | | $n_p = n_e$ | 0.1 cm ⁻³ | | | Velocity, u | 25 km s ⁻¹ | | | Temperature, T | 7000 K | | | Magnetic field, B | 0.15 nT | | YORK L 50 Galactic Loryshode 210' 180' (Cars Najer) (Grippi) 270' (Cars Najer) (Gandreia) 270' (Cardaurus) (Cardau 49 Neutral gas particles from the interstellar medium can enter the solar system - Charged particles from the interstellar medium are reflected by the solar system magnetic field - Charged particles from the interplanetary medium are reflected by the interstellar magnetic field - Heliopause is boundary where both velocities are 0. - Bow shock: where interstellar wind is decelerated to subsonic velocities - Termination shock: where solar wind is decelerated to subsonic velocities YORK YORK Termination shock: where solar wind is decelerated to subsonic velocities YORK 52 $v_{ISM} > v_{S} \qquad \text{Heliospheric bow shock}$ $v_{ISM} = v_{S} \qquad \text{Solar wind}$ $v_{ISM} = v_{S} \qquad \text{Solar wind}$ $v_{SW} = v_{S} \qquad \text{Termination shock}$ Stagnation line $v_{SW} > v_{S} \qquad \text{Termination shock}$ $v_{SW} > v_{S} \qquad \text{Termination shock}$ $v_{SW} > v_{S} \qquad \text{Termination shock}$ Recall 53 54 Aurorae · An aurora is caused by energetic particles impinging on the atmosphere · Particles are mostly electrons with energies of 100 to 10,000 eV. Some ions are also observed. Origin of aurora particles probably from the magnetotail of the magnetosphere YORK - The electrons are slowly decelerated in the upper atmosphere in the polar regions - The energy is absorbed at heights between 100 and 200 km, depending on the energy of the electrons. - · Redistribution of the absorbed energy is complex. - · Ionization and excitation of atoms and molecules in the upper atmosphere lead to emission of light in different colours. - Violet-blue (N_2^+) , yellow-green (O), red (O, N_2) - IR and even X-ray auroras can also be measured. YORK 59 60