

4

Recall: History • 1970 Nobel Prize for work on magnetohydrodynamics Hannes Alfven 1908-1995 YORK

1733 de Mairan –description of auroras and speculation about the cause: solar particles penetrate Earth's atmosphere and generate polar lights.

1741 Hjorter & Celsius – Intense magnetic field perturbations occurred during enhanced auroral activity

1866 Ångström- Recording of prominent greenish yellow auroral line at 557.7 nm

- ~1895 Birkeland First experimental simulation of an aurora
- ~1895 Størmer Calculation of trajectories of electrical particles in Earth magnetic field

7 8

Comet Hale Bopp

10

Components of the interplanetary medium

- Solar wind : p, e, He⁺⁺ at 1AU nsw-5 x10⁶ m⁻³ (5 cm⁻³)
- Originates in the coronacarries out the magnetic field from the Sun
- deflects magnetosphere and tail of comets away from Sun
- cosmic rays

 High-energy atomic nuclei , 90% p, 9% He⁺⁺ (α particles), even Fe
 - Only 2% e
- Minority from Sun
 Most from Galaxy (supernovae) and extragalactic space (perhaps from black hole environment in the centers of galaxies
- dust particles
 - Micrometeoroids orbiting Sun in plane of solar system
- Origin: collision between asteroids and from comets when passing near Sun $3x10^7$ kg yr 1 into atmosphere of earth
- magnetic field
- Solar wind carries out magnetic field from surface of Sun. Attached to Sun. Rotation causes spiral pattern
- electric field
 - Induced by magnetic field

YORK

Components of the interplanetary medium

- Solar wind : p, e, He⁺⁺ at 1AU nsw-5 x10⁶ m⁻³ (5 cm⁻³)
- Originates in the corona
- carries out the magnetic field from the Sun
 deflects magnetosphere and tail of comets away from Sun
- cosmic rays
 - High-energy atomic nuclei , 90% p, 9% He⁺⁺ (α particles), even Fe
 - Only 2% e
 - Minority from Sun
 - Most from Galaxy (supernovae) and extragalactic space (perhaps from black hole environment in the centers of galaxies
- dust particles
 - Micrometeoroids orbiting Sun in plane of solar system
 - Origin: collision between asteroids and from comets when passing near Sun
 - 3x10⁷ kg yr¹ into atmosphere of earth magnetic field

 - Solar wind carries out magnetic field from surface of Sun. Attached to Sun. Rotation causes spiral pattern
- electric field
 - Induced by magnetic field

Components of the interplanetary medium Solar wind : - p, e, He⁺⁺ at 1AU nsw~5 x10⁶ m⁻³ (5 cm⁻³)

- Originates in the corona
- carries out the magnetic field from the Sun
 deflects magnetosphere and tail of comets away from Sun
- cosmic rays
 - High-energy atomic nuclei , 90% p, 9% He⁺⁺ (α particles), even Fe
- Only 2% e Minority from Sun
- Most from Galaxy (supernovae) and extragalactic space (perhaps from black hole environment in the centers of galaxies
- dust particles
 - Micrometeoroids orbiting Sun in plane of solar system
 - Origin: collision between asteroids and from comets when passing near Sun
 - 3x10⁷ kg yr¹ into atmosphere of earth magnetic field

 - Solar wind carries out magnetic field from surface of Sun. Attached to Sun. Rotation causes spiral pattern
- electric field

14

Induced by magnetic field

13

Properties of solar wind at 1 AU

•			
Composition:	$\simeq 96\%~{\rm H^+,~4\%}$ (0–20%) ${\rm He^{++},~e^-}$		
Density:	$n_{ m p} \simeq n_{ m e}$	\simeq	6 (0.1-100) cm ⁻³
Velocity:	$u_{\rm p} \simeq u_{\rm e} = u$	\simeq	470 (170-2000) km/s
Proton flux:	$n_p u$	\simeq	$3 \cdot 10^{12} \text{ m}^{-2} \text{s}^{-1}$
Momentum flux:	$n_{\rm p}~m_{\rm H}~u^2$	\simeq	$2 \cdot 10^{-9} \text{ N/m}^2$
Energy flux:	$n_{\rm p}~m_{\rm H}~u^3/2$	\simeq	0.5 mW/m^2
Temperature:	T	\simeq	$10^5~(35005\cdot10^5)~\mathrm{K}$
Plasma sound velocity:	v_{PS}	~	50 km/s
Random velocity:	\vec{c}_{p}	~	46 km/s
	\overline{c}_{e}	\simeq	$2\cdot 10^3$ km/s
Particle energy:	E_{p}	\simeq	1.1 keV (flow energy)
	$E_{\rm e}$	\simeq	13 eV (thermal energy)
Mean free path:	$l_{ m p,p} \simeq l_{ m e,e}$	\simeq	10 ⁸ km
Coulomb collision time:	$ au_{ m p,p} \simeq 30 au_{ m e,p}$	>	20 d

Proelss YORK Solar wind characteristics

- Mean velocity of 500 km s⁻¹ →3-4 d from Sun to Earth
- Mass loss per year

$$\frac{dM_{SW}}{dt} = n_p u m_H 4\pi (1AU)^2$$

- That is <109 kg s-1
- $\frac{dM_{sw}}{dt}$ ~1x10-14 M_{sol} yr-1 – With M_{sol} =2x10³⁰ kg, that is

dM

– compare to some red supergiants : $\overline{\it dt}$ ~1x10⁻⁴ M_{sol} yr⁻¹ the solar wind mass loss is extremely small.

YORK

15

16

Movie of SN1993J Explosion from t = 50d (r=200 AU) to t = 22 yr (r=40,000 AU) YORK

Solar wind characteristics

- Mean velocity of 500 km s⁻¹ →3-4 d from Sun to Earth
- · Mass loss per year

$$\frac{dM_{SW}}{dt} = n_p u m_H 4\pi (1AU)^2$$

- That is <109 kg s-1
- With M_{sol} =2x10³⁰ kg, that is $\frac{dM_{sw}}{dt} \sim 1x10^{-14} M_{sol} \text{ yr}^{-1}$
- compare to some red supergiants : $\frac{dM}{dt}$ ~1x10⁻⁴ M_{sol} yr⁻¹ the solar wind mass loss is extremely small.

19

• Energy flux $\phi_{sw}^{\mathcal{E}}(1AU) = n_{p}uE_{iss} = n_{p}u\left(\frac{1}{2}m_{H}u^{2}\right) = 0.5 \text{ mW m}^{-2}$ - compare with 15 mW m⁻² for UV - Compare with 1.37 kW m⁻² for all EM radiation from Sun • Total energy loss due to solar wind is $\left(\phi_{sw}^{\mathcal{E}} + \phi_{sw,por}^{\mathcal{E}}\right) 4\pi \left(1AU\right)^{2} = 4\times 10^{20} \text{W} \text{ with } \qquad \phi_{sw,por}^{\mathcal{E}} = n_{p}uE_{pot}$ --compare with L=4x10²⁶ for all EM radiation • Solar wind energy loss only 10⁻⁶ of EM energy loss! • YORK

20

Temperature profile

 Assumption: adiabatic gas expansion into interplanetary medium. , ← no heat exchange takes place between the gas and the environment of the gas. The work for the expansion of the gas is taken 100% from the internal energy of the gas.

Note: Volume grows with
$$r^2$$

$$T = T_0 \left(\frac{V}{V_0} \right)^{\frac{2}{f}} \qquad \qquad dV = r^2 \sin \vartheta d\vartheta d\varphi dr$$

$$T(r) = T(r_0) \left(\frac{r}{r_0} \right)^{\frac{4}{f}}$$
 For $T(r_0) = 10^6$ K at $r_0 = 3R_{sol} \rightarrow T(1 \text{ AU}) = 3400 \text{ K}$

The lowest T(1AU) measured is indeed so low. So adiabatic expansion plays some role. However, extra heat perhaps from electrons.

YORK

21

22

Recall:Adiabatic changes of state

- Assume change of state of a gas proceeds with no heat exchange with the environment, i. e. AQ=0
- Work during expansion done at the expense of own internal energy

$$\Delta Q = \Delta U - \Delta W = 0$$

$$\Delta W = -p\Delta V = \Delta U = Nf\left(\frac{k}{2}\Delta T\right)$$

$$dW = -pdV = dU = Nf\left(\frac{k}{2}dT\right)$$

 $\left(\frac{k}{2}dT\right)$

 $n = const \bullet p^{\frac{1}{\gamma}}$ or $p\rho^{-\gamma} = const$ alternative form if N=const.

24

3/16/21

Escape velocities - Can protons and electrons actually leave the corona of the Sun? For a realistic calculation, one has to take into account that electric forces, similar to the scenario in the ionosphere, ion. h(cp), 10-6s/m p and e escape from corona YORK 100 25

29 30

- · The solar wind spiral is structured into different sectors
- · Each zone is anchored to a coronal hole
- · Slow solar wind produces broad sectors, fast solar wind produces narrow sectors
- That leads to rarefaction and compression at the boundaries

YORK

Interplanetary magnetic field

- · Parameters measured with interplanetary spacecraft
- Strength of magnetic field at 1AU, B ~ 3.5 (0.2 50) nT

$$B_r[nT] \cong \frac{2.6}{r^2[AU]}$$
 $B_{\lambda}[nT] \cong \frac{2.4}{r[AU]}$
 $|X| \cong \arctan\left(\frac{B_{\lambda}}{B}\right) \cong \arctan(0.9 \cdot r[AU])$

- Magnetic field lines are oriented parallel to the solar wind jetlines
- Magnetic field polarity changes typically with a cycle of 2 times per Sun rotation period (27 d).

YORK

Heliospheric current sheet Heliospheric

T. 88888

40

 $\mathcal{B}_r(\varphi > 0) \varphi$

σσσσσ $B_r(\varphi < 0)$

Current sheet filament

Ecliptic view

View from north

YORK

Similar to the magnetotail neutral current in the terrestrial magnetosphere, there is a heliospheric neutral current

- It is a current flowing in the large circumsolar disc which is basically the ecliptic plane.
- The neutral sheet is between the torn-out magnetic field lines with opposite polarity

39

Earth experiences these oscillations with a period equal to the synodic rotation period of the Sun

Coronal projection of the heliospheric current sheet Earth's orbit Magnetic field (\mathcal{B}_r) YORK

41 42

- The temporal and spatial fluctuations are largely caused by magnetohydrodynamic waves
- There are three physically different kinds of such waves
 - -Plasma acoustic waves
 - -Alfvén waves
 - -Magnetosonic waves

YORK

43

44

Plasma acoustic waves

- · Plasma (p and e) moves along magnetic field
- No magnetic force is experienced, perturbations are described solely by density, pressure and plasma velocity
- Plasma acoustic wave characterized by rhythmic back and forth motion along magnetic field

45

Alfvén waves

- No density and pressure variations of the plasma
- Variations in the magnetic and electric field and the current density occur together with the transverse velocity

$$v_A = \sqrt{\frac{B^2}{\mu_0 \rho}} \approx 30 \, km s^{-1} \qquad \text{at 1 AU}$$

YORK

46

47

Magnetosonic wave

Combination of plasma acoustic waves and Alfvén waves

Solar system is moving through the outer edge of an interstellar gas cloud

Parameters of the very local interstellar medium

composition	H: 90%, He: 10%	
Density, n _H	0.2 cm ⁻³ = 2 x 10 ⁵ m ⁻³	
$n_p = n_e$	0.1 cm ⁻³	
Velocity, u	25 km s ⁻¹	
Temperature, T	7000 K	
Magnetic field, B	0.15 nT	

YORK L

50

Galactic Loryshode

210'

180'

(Cars Najer) (Grippi)

270'

(Cars Najer) (Gandreia)

270'

(Cardaurus)

(Cardau

49

 Neutral gas particles from the interstellar medium can enter the solar system

- Charged particles from the interstellar medium are reflected by the solar system magnetic field
- Charged particles from the interplanetary medium are reflected by the interstellar magnetic field
- Heliopause is boundary where both velocities are 0.
- Bow shock: where interstellar wind is decelerated to subsonic velocities
- Termination shock: where solar wind is decelerated to subsonic velocities

 YORK

 YORK

 Termination shock: where solar wind is decelerated to subsonic velocities

 YORK

52

 $v_{ISM} > v_{S} \qquad \text{Heliospheric bow shock}$ $v_{ISM} = v_{S} \qquad \text{Solar wind}$ $v_{ISM} = v_{S} \qquad \text{Solar wind}$ $v_{SW} = v_{S} \qquad \text{Termination shock}$ Stagnation line $v_{SW} > v_{S} \qquad \text{Termination shock}$ $v_{SW} > v_{S} \qquad \text{Termination shock}$ $v_{SW} > v_{S} \qquad \text{Termination shock}$

Recall

53 54

Aurorae · An aurora is caused by energetic particles impinging on the atmosphere · Particles are mostly electrons with energies of 100 to 10,000 eV. Some ions are also observed. Origin of aurora particles probably from the magnetotail of the magnetosphere YORK

- The electrons are slowly decelerated in the upper atmosphere in the polar regions
- The energy is absorbed at heights between 100 and 200 km, depending on the energy of the electrons.
- · Redistribution of the absorbed energy is complex.
- · Ionization and excitation of atoms and molecules in the upper atmosphere lead to emission of light in different colours.
- Violet-blue (N_2^+) , yellow-green (O), red (O, N_2)
- IR and even X-ray auroras can also be measured.

YORK

59 60

