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Phase plane portrait of chaotic dynamics of the 
driven "Duffing oscillator" (see EXduffing.m)

Duffing Equation



https://movement.osu.edu/Courses/ME8230NonlinearDynamics_Sp2016/LectureNotes/L14_ForcedNonlinearSystemsPhenomena.pdf

Hardening – b > 0

Softening – b < 0



French (1971)



VDPode45EX.m

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x [m]

dx
/d

t [
m

/s
]

Phase space

What about things that 
oscillate on their own!?! 
(e.g., limit cycles)
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van der Pol Equation



http://www6.miami.edu/UMH/CDA/UMH_Main/

Ear actually EMITS sound! otoacoustic emissions – OAEs

Aside....

What about things that 
oscillate on their own!?! 
(e.g., limit cycles)



Aside....

Ø Healthy ears can actually spontaneous emit sound! ("SOAEs")

human threshold curve

What about things that 
oscillate on their own!?! 
(e.g., limit cycles)

Note the abscissa (i.e., horizontal "x" axis) here: Frequency



Pulkki & Karjalainen (2015)

Moving along....



What is sound?

Position

Pressure

Speaker Ear

Snapshot in time

Pulkki & Karjalainen (2015)

à Note the periodic nature present....



Ex.

Shaskol’Skaya & El’Tsin (1963)



What is sound? (REVISITED)

Pulkki & Karjalainen (2015)

à The notion of acoustics deals not just with oscillations, but waves as well....



à We are going to perform a specific type of spectral analysis called the 
‘Short Time Fourier Transform’ (STFT) to make what is called a spectrogram

Imagine 
recording a 
timewaveform
of your own 
speech...



EXspectrogram.m
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EXspectrogram.m
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Looking Ahead: Fourier Analysis

Ø Allows one to go from a time domain description (e.g., our recorded mic signal) 
to a spectral description (i.e., what frequency components make up that signal)

§ One axis is time, 
the other is 
frequency

§ These two are 
fundamentally 
tied together 



EXfourier2D.m
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Note: Only ½ of the information is shown on the right (amplitude only; phase not shown)

Aside: This stuff scales up to higher dimensions too...



EXfourier2D.m
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à ‘Low-pass filtered’ version of the image



Canonical Anchor Point: Harmonic oscillator

“mass-on-a-spring”

Ø One of the more fundamental/canonical problems in all areas of physics...



Looking Ahead: (examples of) Resonance

http://physics.stackexchange.com/questions/159728/forced-oscillations-resonance

Slightly different type of “resonance”...

“Tonotopy” of the inner ear

MRI



Wikipedia

Looking Ahead: (examples of) Resonance



Wikipedia

Looking Ahead: (examples of) Resonance



MEMS (Microelectromechanical systems)

http://dspace.mit.edu/handle/1721.1/87312#files-area

Þ Resonant behavior

Looking Ahead: (examples of) Resonance



http://dspace.mit.edu/handle/1721.1/87312#files-area

Þ Stroboscopic imaging allows 
dynamics to be characterized

Looking Ahead: (examples of) Resonance

MEMS (Microelectromechanical systems)



http://dspace.mit.edu/handle/1721.1/87312#files-area

MEMS (Microelectromechanical systems)

Looking Ahead: (examples of) Resonance



All this brings us back to here....

“mass-on-a-spring”

Ø One of the more fundamental/canonical problems in all areas of physics...



(Rough/Tentative) Outline looking ahead.... (BEFORE THE MIDTERM)

Ø Review SHO à Foreshadows linear superposition + Fourier 

Ø Notion of amplitude vs period (or frequency) vs "phase"

Ø Geometric representations (e.g., rotating vector) and complex #s

Ø Superposition of sinusoids and examples (e.g., beats, Lissajous)

Ø SHO via complex exponentials à Eigenvalues!

Ø Several canonical examples (e.g., buoyancy "bobbing", Helmholtz resonator)

Ø Damping and decayed oscillations

Ø Sinusoidal driving forces à Resonance

Note: 
Will start weaving Matlab code/results into lectures to help set stage for project 
(as well as help strengthen connections to PHYS 2030 and MATH 2271) 



(Rough/Tentative) Outline looking ahead.... (BEFORE/AFTER THE MIDTERM)

Ø Tuning and effects of damping à "Filtering"

Ø Transient behavior à Impulse Response

Ø Notion of a transfer function à Connection to convolutions....

Ø Variety of examples: RLC circuits, optical, NMR, ....

Ø Fourier analysis and approaches

Ø Coupled oscillators (+ excursion to normal modes)

Ø Pendulum à Transition to nonlinear systems (+ excursion to nonlinear dynamics)

Ø Duffing (à Chaos!) &  van der Pol (à Limit Cycles!)

Note: 
Will start weaving Matlab code/results into lectures to help set stage for project 
(as well as help strengthen connections to PHYS 2030 and MATH 2271) 

ß Our likely break 
point re the midterm



Knight

Review: Periodicity

Frequency & period

Angular frequency



Newton�s Second Law
Hooke�s Law

Second order ordinary differential
equation

(no need worrying about how to “solve”, yet...)

Þ Solution is oscillatory!

System has a 
natural frequency

Undamped, Undriven

Review: SHO à Natural Frequency



Consider the system�s energy:

“phase plane” 
portrait for HO

Ø Oscillation results as energy transfers back 
and forth between these two modes (i.e., 
system is considered second-order) 

Ø Two means to store energy: mass & spring

Review: Energy & Natural Frequency

à Through this lens, the natural frequency 
represents an optimal rate at which energy 
is swapped between these two



Equation of motion: One possible form of solution: 

French (1971)

Initial conditions 
(i.e., at t = 0):

Exploring alternative representations....

Magnitude

Phase

Note we could have gone w/ cos instead:

where



Sinusoid has 3 basic properties:
i. Amplitude - height 
ii. Frequency = 1/T [Hz]
iii. Phase - tells you where the peak is 

(needs a  reference)

Þ Phase reveals timing 
information

(x2)

Review: Sinusoids



French (1971)

Exploring alternative representations....



French (1971)

Exploring alternative representations....

Consider "motion" as a rotating vector Coords. given by:

In "cartesian form":
Exercise: 
What are 
they then in 
"polar form"?

In vector form:

Or better yet....



French (1971)

Complex Representations

Basic stipulations:



French (1971)

Complex Representations

And thus we transition into the realm of complex numbers....





French (1971)



i2 = �1

i3 = �i

i4 = 1

i5 = i

· · ·

z1 + z2 = (a+ ib) + (c+ id) = (a+ b) + i(c+ d) = z3

Communicative rule:

i =
p
�1 (= j)

Definition:

à Other basic algebraic manipulations? (e.g., division)

wikipedia (complex number)

Polar form & 
complex conjugate

z = a+ ib
Cartesian form:

Re(z) = a, Im(z) = b

Multiplicative rule:

z1z2 = (a+ ib)(c+ id) = (ac� bd) + i(ad+ bc) = z3

Complex #s



Cartesian Form

Û

Polar Form

Euler’s formula

à Very useful to consider complex numbers 
geometrically via a circle centered about the 
origin in the complex plane

Ø At the most basic level, simply consider a complex number as a means to 
compactly express two real numbers (along with the remarkable number i)

à Polar form

|a+ ib| = A \(a+ ib) = ✓
Magnitude Phase

Complex Exponentials



à Very useful to consider complex numbers 
geometrically via a circle centered about the 
origin in the complex plane

ei0 = 1

ei⇡/2 = i

ei⇡ = �1

ei3⇡/2 = �i

Ex. ii = (ei⇡/2)i

= ei
2⇡/2

= e�⇡/2

⇡ 0.2079

Complex Exponentials



Ex.

Shaskol’Skaya & El’Tsin (1963)



Ex.

Shaskol’Skaya & El’Tsin (1963)



Ex. (SOL)

Shaskol’Skaya & El’Tsin (1963)

à This is actually a 
center-of-mass question!



Review: Harmonic oscillator 101




