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f 77. Four Dite \

The four dice are identical. Which one does
not belong?




Duffing Equation

i+ 0% + ax + Bz* = vy cos(wt)

driven "Duffing oscillator" (see EXduffing.m)




&+ 0% + ax + Bz® = ycos(wt)

Force f(x)

Softening
spring

Linear
spring Hardening
spring

Hardening

sprin
Prng Linear spring

Softening
spring

Displacement x

Hardening— >0

Softening — <0

Softening
0]
gravity g E length |
i e
8
X A

mass m

https://movement.osu.edu/Courses/ME8230NonlinearDynamics_Sp2016/LectureNotes/L14_ForcedNonlinearSystemsPhenomena.pdf



These are the Phenomena of Springs and springy bodies,
which as they have not hitherto been by any that I know
reduced to Rules, so have all the attempts for the
explications of the reason of their power, and of springiness
in general, been very insufficient.

ROBERT HOOKE, De Potentia Restitutiva (1678)

French (1971)
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What about things that 1
oscillate on their own!?! o5l
(e.g., limit cycles)

dx/dt [m/s]
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Aside....

What about things that
oscillate on their own!?!
(e.g., limit cycles)

Ear actually EMITS sound! otoacoustic emissions — OAEs

http://www6.miami.edu/UMH/CDA/UMH_Main/



Aside....

> Healthy ears can actually spontaneous emit sound! ("SOAEs")
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Note the abscissa (i.e., horizontal "x" axis) here: Frequency



Moving along....
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chirp chirp

Pulkki & Karjalainen (2015)
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What is sound?

Ear

- Note the periodic nature present....

Pulkki & Karjalainen (2015)



Why does the sound in a hall filled with people sound
deader than in the same hall empty?

Shaskol’Skaya & EI'Tsin (1963)



What is sound? (REVISITED)
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— The notion of acoustics deals not just with oscillations, but waves as well....

Pulkki & Karjalainen (2015)
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- We are going to perform a specific type of spectral analysis called the
‘Short Time Fourier Transform’ (STFT) to make what is called a spectrogram
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EXspectrogram.m
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Looking Ahead: Fourier Analysis

> Allows one to go from a time domain description (e.g., our recorded mic signal)
to a spectral description (i.e., what frequency components make up that signal)

One axis is time,
the other is
frequency

These two are
fundamentally
tied together




Aside: This stuff scales up to higher dimensions too... EXfourier2D.m

‘Spatial domain’ ‘Frequency domain’
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Note: Only % of the information is shown on the right (amplitude only; phase not shown)



EXfourier2D.m
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- ‘Low-pass filtered’ version of the image



Canonical Anchor Point: Harmonic oscillator

“mass-on-a-spring”

<
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> One of the more fundamental/canonical problems in all areas of physics...



Looking Ahead: (examples of) Resonance

“Tonotopy” of the inner ear

Mammalian Cochlea Uncoiled
to
Vestibular
Stapes Helicotrema
\ to ‘ -
N K Middle . —— Y - =
Ear f

Cochlear

Round "~ Partition

Window C.D. Geisler (modified)

http://physics.stackexchange.com/questions/159728/forced-oscillations-resonance

MRI

Slightly different type of “resonance”...




Looking Ahead: (examples of) Resonance

Wikipedia



Looking Ahead: (examples of) Resonance

Wikipedia



Looking Ahead: (examples of) Resonance

MEMS (Microelectromechanical systems)

— Resonant behavior

Figure 1-1: Microelecromechanical systems encompassing a wide variety of appli-
cations and a broad spectrum of fabrication processes: (A) SEM image of CMOS
MEMS (Fedder et al., 1996) multiple degree-of-freedom microresonator fabricated at
Carnegie Mellon University, (B) Optical micrograph of surface micromachined polysil-
icon diffraction gratings fabricated at the State University of New York at Albany,
(C) Optical micrograph of surface micromachined lateral resonator fabricated using
Cronos MUMPs, (D) Optical micrograph of platinum diffraction gratings fabricated
at the Massashusetts Institute of Technology, (E) Optical micrograph of indexing
motor fabricated using Sandia SUMMiT4 fabrication process, and (F) SEM image
of Draper Laboratory tuning fork gyroscope (SEM picture courtesy Charles Stark
Draper Laboratory, Cambridge MA).
http://dspace.mit.edu/handle/1721.1/87312#files-area



Looking Ahead: (examples of) Resonance

MEMS (Microelectromechanical systems)

Zeiss 20x objective
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http://dspace.mit.edu/handle/1721.1/87312#files-area



Looking Ahead: (examples of) Resonance

MEMS (Microelectromechanical systems)
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Figure 4-5: Magnitude and phase of frequency response for translation along z (left
panel), translation along z (center panel), and rotation about y (right panel)

http://dspace.mit.edu/handle/1721.1/87312#files-area



All this brings us back to here....

“mass-on-a-spring”

<

ANRNNNRNY

> One of the more fundamental/canonical problems in all areas of physics...



(Rough/Tentative) Outline looking ahead.... (BEFORE THE MIDTERM)

» Review SHO - Foreshadows linear superposition + Fourier

> Notion of amplitude vs period (or frequency) vs "phase"

> Geometric representations (e.g., rotating vector) and complex #s

> Superposition of sinusoids and examples (e.g., beats, Lissajous)

» SHO via complex exponentials = Eigenvalues!

> Several canonical examples (e.g., buoyancy "bobbing", Helmholtz resonator)
> Damping and decayed oscillations

> Sinusoidal driving forces = Resonance

Note:

Will start weaving Matlab code/results into lectures to help set stage for project
(as well as help strengthen connections to PHYS 2030 and MATH 2271)



(Rough/Tentative) Outline looking ahead.... (BEFORE/AFTER THE MIDTERM)

» Tuning and effects of damping = "Filtering"

» Transient behavior =2 Impulse Response

» Notion of a transfer function > Connection to convolutions....

> Variety of examples: RLC circuits, optical, NMR, .... & Our likely break
point re the midterm

> Fourier analysis and approaches

> Coupled oscillators (+ excursion to normal modes)

» Pendulum -2 Transition to nonlinear systems (+ excursion to nonlinear dynamics)

» Duffing (= Chaos!) & van der Pol (= Limit Cycles!)

Note:

Will start weaving Matlab code/results into lectures to help set stage for project
(as well as help strengthen connections to PHYS 2030 and MATH 2271)



Review: Periodicity

Examples of position-versus-
time graphs for oscillating systems.

Position The oscillation takes

T place around an

/_\ _~equilibrium position.
® . p

T . The motion is periodic.
»¥  One cycle takes time 7.

A A
‘2" AN

Position

Position

T This oscillation
....... 1s sinusoidal.

|
Frequency & period f — ;

1 Hz = 1 cycle per second = 157"

Units of frequency

Frequency Period

10° Hz = 1 kilohertz = 1 kHz I ms
10° Hz = 1 megahertz = 1 MHz 1 us
10° Hz = 1 gigahertz = 1 GHz I ns

Angular frequency

. 21 .
w (In rad/s) = T = 27f (in Hz)

Knight



Review: SHO - Natural Frequency

Undamped, Undriven

k
T+ —x =0
m

x(t) = Acos (wot + ¢)

Wo =V k/m

—’UUO\—m<—F

ANRRNRNNY

Newton’ s Second Law
Hooke’ s Law

Second order ordinary differential

equation
(no need worrying about how to “solve”, yet...)

= Solution is oscillatory!

System has a
natural frequency



Review: Energy & Natural Frequency

Consider the system’ s energy: | |
dx/dt
A E:T+U:§m:i32—|—§ka;2

> Two means to store energy: mass & spring

X
>

> Oscillation results as energy transfers back

and forth between these two modes (i.e.,
system is considered second-order)

“phase plane”
portrait for HO

- Through this lens, the natural frequency
represents an optimal rate at which energy Wo =— \/ k/m

is swapped between these two



Exploring alternative representations....

Equation of motion: One possible form of solution:

d’x x = Asin(wt + ¢o)
m-—— = —kix

dr?

Magnitude
° 0o 271/2

Initial conditions X0 = A $11 @0 4= [Xo T (;) ]
(i.e., att=10):

Vo = wACOSs ¢o

Phase

—1 f WX0
= tan ——
¥0 ( bo )

™
where @0 = a + 5

Note we could have gone w/ cos instead:

A sin(wt 4+ ¢o) = Acos(wt + «)

French (1971)



Review: Sinusoids

Sinusoid has 3 basic properties:
i. Amplitude - height
ii.  Frequency =1/T [Hz]

iii.  Phase - tells you where the peak is
(needs a reference)
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Exploring alternative representations....

French (1971)



Exploring alternative representations....

Consider "motion" as a rotating vector

Coords. given by:
x = Acos(wt + a)
y = Asin(wt + a)

In "cartesian form":

x =rcosf Exercise:
. What are
y=rsng they then in
"polar form"?

In vector form:

r=ix+jy

Or better yet....
r=x-+jy

French (1971)



Complex Representations

r=x-+jy

Basic stipulations: OJ
1. A displacement, such as x, without any qualifying factors,

is to be made in a direction parallel to the x axis.

2. The term jy is to be read as an instruction to make the
displacement y in a direction parallel to the y axis. It is, in fact,
customary to dispense with the usual vector symbolism altogether,
by introducing a quantity z, understood to be the result of adding
Jy to x—1i.e., identical with r as defined above. Thus we put

z=x+]y

We now proceed to broaden the interpretation of the symbol j, by

reading it as an instruction to perform a counterclockwise rotation
of 90° upon whatever it precedes.

French (1971)



Complex Representations

r=x-+jy

And thus we transition into the realm of complex numbers.... /

2= ~1

1The use of the symbol j for /—1 has emerged rather naturally from our
quasi-geometrical approach. Very often, however, in mathematics texts, one
will find the symbol i used for this purpose. Physicists and engineers tend to

prefer the j notation, so as to reserve the symbol i for electric current—a not
insignificant consideration because the mathematical techniques we are de-

veloping here find some of their most important uses in connection with
electrical circuit problems.

French (1971)



OM, THATS A TRIQY ONE..

YOU HAYE TO USE CALQULUS
AND [MAGINARY NUMBERS

R THIS.

WonDID YOV |

INSTINCT,

HERE'S ANOTHER MATH

k?‘ZDBLEM 1 QAT FIGURE
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|MAQINARY

ELEVENTEEN, | | LEARN ALL | TIGERS ARE

THIRTY-TWEIVE] [ THIS? YOUVE | BORNWITHIT,
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Whether or not you have been introduced to this kind of
analysis previously, you will be able to recognize that we are
walking along a dividing line—or, more properly, a bridge—
between geometry and algebra. If the quantities @ and b are real
numbers, as we have assumed in example c, then the combination
z = a + jb is what is known as a complex number. But in
geometrical terms it can be regarded as a displacement along an
axis at some angle 8 to the x axis, such that tan 6 = b/a

Imaginary (iy)
A

French (1971)



Complex #s

’1:2 — _1 Im

Dfefinition: | i3 _ A Z=X+1y
i=v-1(=7) Vi---- .
it =1 r/ |
Cartesian form: ’i5 =1 (p i

z=a+1b 5 )(p EX » Re
Re(z) =a, Im(z) =0 |
"\ |
Communicative rule: _y ______ I y
=X—1y

21+ 2= (a+1ib)+ (c+id) = (a+b)+i(c+d) =23

Polar form &

S complex conjugate
Multiplicative rule: P Jug

z129 = (a +ib)(c + id) = (ac — bd) + i(ad + bc) = 23
—> Other basic algebraic manipulations? (e.g., division)

wikipedia (complex number)



Complex Exponentials

Imaginary (iy)
A
Euler’s formula - Polar form , -
.9 /
. (3
a +1b = Ae /
|
= A(cos + isin ) \
\
N /
/7
N -~
Cartesian Form Polar Form N -
a = Acos () A=+va%+b?
. e b - Very useful to consider complex numbers
b= Asin ((9) H = tan_l (—) geometrically via a circle centered about the
a origin in the complex plane
Magnitude Phase

a+ibl=A  Lla+ib) =86

> At the most basic level, simply consider a complex number as a means to
compactly express two real numbers (along with the remarkable number i)



Complex Exponentials

ImagiRary (iv)
”~
a+ib = Ae 00 — 1 ,/
B /
6?Z7r/2 — I
LT — 1 \
€ — \ . ,
61237r/2:_2- .~ ) 7
B gt = (e7/?) seomenicaly i acrce cenered about e

origin in the complex plane

P27 /2

—7 /2

~ 0.2079



A load of mass m lies on a perfectly smooth plane, being
pulled in opposite directions by springs 1 and 2, whose coeff-
cients of elasticity are &, and &, respectively (Fig. 60). If the load
be forced out of its state of equilibrium (by being drawn aside), it
will begin to oscillate with period 7. Will the period of oscillation

be altered if the same springs be fastened not at points 4; and 4,,

but at B, and B,? Assume that the springs are subject to Hooke’s
law for all strains.
B,

B; A} AZ
2

o

o

GO i)
SIS0

Fic. 60

Shaskol’Skaya & EI'Tsin (1963)



Why is a tuning-fork made with two prongs
(Fig. 69)? Would a tuning-fork be of any use for its
normal purpose if one of the prongs were sawn off?

Shaskol’Skaya & EI'Tsin (1963)



Ex. (SOL)

The prongs of a tuning-fork working
normally move in opposite phase, i.e. they are
always moving in opposite directions (Fig. 213).
Therefore the centre of gravity of the tuning-fork
remaix.ls stationary and consequently no external
force is required to cause these oscillations. The

tuning-fork can make its oscillations without bei
rigidly fixed. hout being

I-f one of the prongs be cut off, and the remaining prong makes
os.cﬂlations of the same sort as before, then the centre of gravity
will no longer remain stationary. Consequently an external force
must act in order that these oscillations should occur, i.e. the
tuning-fork must be rigidly fixed (e.g. the handle S}’IOI;I('II be
clamped in a vice); there is then an outside force acting, on the
Fic. 213 part of the clamp, which brings the centre of gravity intog;notion
But if the handle be simply held in the hand, the fork will not be:
sufficiently rigidly fixed and oscillations of the previous type can-
not occur.

Thus the existence of two prongs makes it unnecessary to clamp
the tuning-fork rigidly, i.e. it allows the instrument to be yged
when the handle is held in the hand.

- This is actually a
center-of-mass question!

Shaskol’Skaya & EI'Tsin (1963)



Review: Harmonic oscillator 101

x(t) = Acos (wot + ¢)

wo =V k/m

\\\%\\\\

_ 1
I=7

A prototype simple-
harmonic-motion experiment.
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A prototype simple- Position and velocity graphs

harmonic-motion experiment. of the experimental data.
p
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