Figure 2.19
Passive Transport: More than diffusion?

- Adding in other sugars affects things in a selective way.
- Saturation occurs.
Passive Transport: More than diffusion?

Structure of different solutes can have a big effect
Notion of a “carrier”

Carrier-Mediated Transport: glucose transporter as example

Distinguishing characteristics of glucose transport:
- facilitated -- i.e., faster than dissolve and diffuse
- structure specific -- different rates for even closely related sugars
- passive -- given a single solute, flow is down concentration gradient
- transport saturates -- solute-solute interactions
- transport can be inhibited -- solute-other interactions
- pharmacology (cytochalasin B)
- hormonal control (insulin)

similar to water channels
(Hg, vasopressin)
Possible ‘Carrier’ Mechanisms

Initial State

Binding

Translocation

Release

Reset
General Four-State Carrier Model

Binding & Unbinding

Translocation
First-order, reversible reaction

\[R \xleftrightarrow{\alpha \beta} P \]

\[\frac{dc_R(t)}{dt} = \beta c_P(t) - \alpha c_R(t) \quad \text{AND} \quad \frac{dc_P(t)}{dt} = \alpha c_R(t) - \beta c_P(t) \]

Equilibrium:

\[\frac{dc_R(t)}{dt} = \frac{dc_P(t)}{dt} = 0 \rightarrow \beta c_P(\infty) = \alpha c_R(\infty) \]

\[\frac{c_P(\infty)}{c_R(\infty)} = \frac{\alpha}{\beta} = K_a \quad \text{(association, equilibrium, affinity, stability, binding, formation constant)} \]

Kinetics: assume total amount of reactant and product is conserved

\[c_R(t) + c_P(t) = C \]

\[\frac{dc_R(t)}{dt} = \beta \left(C - c_R(t) \right) - \alpha c_R(t) \]

\[\frac{dc_R(t)}{dt} + (\alpha + \beta) c_R(t) = \beta C \]
First-order, reversible reaction

\[R \xrightarrow{\alpha} P \xrightleftharpoons{\beta} P \]

First-order linear differential equation with constant coefficients

\[c_R(t) = c_R(\infty) - \left(c_R(\infty) - c_R(0) \right) e^{-t/\tau}, \text{ for } t > 0 \]

\[c_R(\infty) = \frac{\beta}{\alpha + \beta} C = \frac{1}{1 + K_a} C \quad \text{AND} \quad \tau = \frac{1}{\alpha + \beta} \]

First-order, reversible reaction

\[R \xrightarrow{\alpha} P \xrightleftharpoons{\beta} P \]

\[C \]

\[c_R(0) \]

\[c_P(t) \]

\[K_a C / (1 + K_a) \]

\[c_P(0) \]

\[c_R(t) \]

\[C / (1 + K_a) \]

\[t \]

\[\tau = \frac{1}{\alpha + \beta} \]
Chemical Kinetics (v2)

Second-order reversible (binding) reaction

\[S + E \xrightleftharpoons[\beta]{\alpha} ES \]

\[
\frac{dc_{ES}(t)}{dt} = \alpha c_S(t)c_E(t) - \beta c_{ES}(t), \\
\frac{dc_S(t)}{dt} = \frac{dc_E(t)}{dt} = \beta c_{ES}(t) - \alpha c_S(t)c_E(t),
\]

→ Law of mass action

Equilibrium:

\[
\frac{dc_{ES}(t)}{dt} = \frac{dc_S(t)}{dt} = \frac{dc_E(t)}{dt} = 0 \\
\alpha c_S(\infty)c_E(\infty) - \beta c_{ES}(\infty) = 0 \\
\frac{c_{ES}(\infty)}{c_S(\infty)c_E(\infty)} = \frac{\alpha}{\beta} = K_a \quad \text{(association constant)} \\
\frac{1}{K_a} = \frac{c_S(\infty)c_E(\infty)}{c_{ES}(\infty)} = K \quad \text{(dissociation constant)}
\]

Assume enzyme conserved: \(c_E(t) + c_{ES}(t) = C_E \)
How does \(c_{ES} \) depend on \(c_S \)? Eliminate \(c_E \).

\[C_E = c_E(\infty) + c_{ES}(\infty) \]

\[C_E = \frac{Kc_{ES}(\infty)}{c_S(\infty)} + c_{ES}(\infty) = \left(\frac{K}{c_S(\infty)} + 1 \right)c_{ES}(\infty) \]

\[c_{ES}(\infty) = \left(\frac{c_S(\infty)}{K + c_S(\infty)} \right)C_E \]

→ Michaelis-Menten kinetics
Second-order reversible (binding) reaction

\[S + E \xrightleftharpoons[\beta]{\alpha} ES \]

\[C_{ET} = c_E(\infty) + c_{ES}(\infty) \]

\[C_{ET} = \frac{K_{cES}(\infty)}{c_S(\infty)} + c_{ES}(\infty) = \left(\frac{K}{c_S(\infty)} + 1 \right) c_{ES}(\infty) \]

\[c_{ES}(\infty) = \left(\frac{c_S(\infty)}{K + c_S(\infty)} \right) C_{ET} \]

Rectangular hyperbola: Michaelis-Menten Relation

Doubly-reciprocal coordinates: Lineweaver-Burk plot

\[\frac{1}{c_{ES}(\infty)} = \left(1 + \frac{K}{c_S(\infty)} \right) \frac{1}{C_{ET}} = \left(\frac{K}{C_{ET}} \right) \frac{1}{c_S(\infty)} + \frac{1}{C_{ET}} \]

\[\frac{1}{C_{ET}} \]

\[\frac{1}{c_S(\infty)} \]

\[\frac{1}{c_{ES}(\infty)} \]

\[K \]

\[slope = \frac{K}{C_{ET}} \]

→ Linear way to plot nonlinear relationship!
Aside: Anscombe's Quartet

Anscombe (1973) Graphs in Statistical Analysis
General Four-State Carrier Model

Binding/Unbinding

Translocation
Possible ‘Carrier’ Mechanisms

Initial State
- Mechanism 1: Initial state with solute in the membrane.
- Mechanism 2: Initial state with solute in the membrane.
- Mechanism 3: Initial state with solute in the membrane.

Binding
- Mechanism 1: Binding process.
- Mechanism 2: Binding process.
- Mechanism 3: Binding process.

Translocation
- Mechanism 1: Translocation process.
- Mechanism 2: Translocation process.
- Mechanism 3: Translocation process.

Release
- Mechanism 1: Release process.
- Mechanism 2: Release process.
- Mechanism 3: Release process.

Reset
- Mechanism 1: Reset process.
- Mechanism 2: Reset process.
- Mechanism 3: Reset process.
Chemical Kinetics & ‘Carriers’

Binding

\[
S^i + E^i \xrightarrow{\alpha_1/\beta_1} ES^i
\]

\[
\frac{dC_{ES}^i}{dt} = \alpha_1 C_S^i C_E^i - \beta_1 C_{ES}^i
\]

\[
\frac{dC_S^i}{dt} = \frac{dC_E^i}{dt} = \beta_1 C_{ES}^i - \alpha_1 C_S^i C_E^i
\]

Translocation

\[
ES^i \xrightarrow{\alpha_2/\beta_2} ES^o
\]

\[
\frac{dC_{ES}^o}{dt} = \alpha_2 C_{ES}^i - \beta_2 C_{ES}^o
\]

\[
\frac{dC_E^i}{dt} = \beta_2 C_{ES}^o - \alpha_2 C_{ES}^i
\]
Chemical Kinetics & ‘Carriers’

Unbinding

\[E S^o \overset{\beta_3}{\underset{\alpha_3}{\rightleftharpoons}} E^o + S^o \]

\[
\frac{dC_{ES}^o}{dt} = \alpha_3 C_S^o C_E^o - \beta_3 C_{ES}^o \\
\frac{dC_S^o}{dt} = \frac{dC_E^o}{dt} = \beta_3 C_{ES}^o - \alpha_3 C_S^o C_E^o
\]

Translocation

\[E^i \overset{\alpha_4}{\underset{\beta_4}{\rightleftharpoons}} E^o \]

\[
\frac{dC_E^o}{dt} = \alpha_4 C_E^i - \beta_4 C_E^o \\
\frac{dC_E^i}{dt} = \beta_4 C_E^o - \alpha_4 C_E^i
\]
Numerous free parameters. Can we simplify?

\[
\begin{align*}
\frac{dC_{ES}^i}{dt} &= \alpha_1 C_S^i C_E^i - \beta_1 C_{ES}^i \\
\frac{dC_S^i}{dt} &= \frac{dC_E^i}{dt} = \beta_1 C_{ES}^i - \alpha_1 C_S^i C_E^i \\
\frac{dC_{ES}^o}{dt} &= \alpha_2 C_{ES}^o - \beta_2 C_{ES}^o \\
\frac{dC_E^o}{dt} &= \frac{dC_E^i}{dt} = \beta_3 C_{ES}^o - \alpha_2 C_{ES}^o \\
\frac{dC_E^i}{dt} &= \alpha_3 C_S^o C_E^o - \beta_3 C_{ES}^o \\
\frac{dC_E^o}{dt} &= \alpha_4 C_E^i - \beta_4 C_E^o \\
\frac{dC_E^i}{dt} &= \beta_4 C_E^o - \alpha_4 C_E^i
\end{align*}
\]
Simple, Symmetric Four-State Model

Binding/Unbinding (at equilibrium)

Translocation

Assumption: Steady-state
(i.e., carrier densities are independent of time)
Simple, Symmetric Four-State Model

1. Conservation of enzyme:

\[\mathcal{N}_E^i + \mathcal{N}_E^o + \mathcal{N}_{ES}^i + \mathcal{N}_{ES}^o = \mathcal{N}_{ET} \]

2. Binding is fast (always in steady state):

\[K = \frac{c_S\mathcal{N}_E^i}{\mathcal{N}_{ES}^i} = \frac{c_S\mathcal{N}_E^o}{\mathcal{N}_{ES}^o} \]

3. Translocation characterized by fluxes:

\[\phi_{ES} = \alpha\mathcal{N}_{ES}^i - \beta\mathcal{N}_{ES}^o \]
\[\phi_E = \alpha\mathcal{N}_E^i - \beta\mathcal{N}_E^o \]

4. Net flux of enzyme is zero:

\[\phi_E + \phi_{ES} = 0 \]

→ Steady-state
(i.e., carrier densities are independent of time)
Simple, Symmetric Four-State Model

\[\mathbf{n}_E^i + \mathbf{n}_E^o + \mathbf{n}_{ES}^i + \mathbf{n}_{ES}^o = \mathbf{n}_{ET} \]

\[\phi_{ES} = \alpha \mathbf{n}_{ES}^i - \beta \mathbf{n}_{ES}^o \]

\[\phi_E = \alpha \mathbf{n}_E^i - \beta \mathbf{n}_E^o \]

\[\phi_E + \phi_{ES} = 0 \]

Combining equations...

\[\mathbf{n}_{ES}^i = \left(\frac{\beta}{\alpha + \beta} \right) \left(\frac{c_S^i}{c_S^i + K} \right) \mathbf{n}_{ET} \]

\[\mathbf{n}_E^i = \left(\frac{\beta}{\alpha + \beta} \right) \left(\frac{K}{c_S^i + K} \right) \mathbf{n}_{ET} \]

\[\mathbf{n}_{ES}^o = \left(\frac{\alpha}{\alpha + \beta} \right) \left(\frac{c_S^o}{c_S^o + K} \right) \mathbf{n}_{ET} \]

\[\mathbf{n}_E^o = \left(\frac{\alpha}{\alpha + \beta} \right) \left(\frac{K}{c_S^o + K} \right) \mathbf{n}_{ET} \]

Solving for the solute flux yields:

\[\phi_S = \left(\frac{\alpha \beta}{\alpha + \beta} \right) \mathbf{n}_{ET} \left(\frac{c_S^i}{c_S^i + K} - \frac{c_S^o}{c_S^o + K} \right) \]
\[K = \frac{c_s^i \mathcal{M}_E^i}{\mathcal{M}_{ES}^i} = \frac{c_s^o \mathcal{M}_E^o}{\mathcal{M}_{ES}^o} \]
\[\phi_s = \left(\frac{\alpha \beta}{\alpha + \beta} \right) \mathcal{M}_{ET} \left(\frac{c_s^i}{c_s^o + K} - \frac{c_s^o}{c_s^i + K} \right) \]

Figure 6.22
→ Steady-state
(i.e., carrier densities are independent of time)

\[c_s^i = 0, c_s^o = 0 \]
\[c_s^i = K, c_s^o = 0 \]
\[c_s^i = K, c_s^o = K \]
\[c_s^i > K, c_s^o = 0 \]
\[c_s^i = 0, c_s^o > K \]
\[c_s^i \gg K, c_s^o \gg K \]

Figure 6.23

\[K = \frac{c_s^i n_E^i}{n_{ES}^i} = \frac{c_s^o n_E^o}{n_{ES}^o} \]

\[\phi_s = \left(\frac{\alpha \beta}{\alpha + \beta} \right) n_{ET} \left(\frac{c_s^i}{c_s^i + K} - \frac{c_s^o}{c_s^o + K} \right) \]
6.8 Consider the simple, symmetric, four-state carrier shown in Figure 6.21. For each of the following conditions, find η^i_E, η^o_E, η^i_{ES}, η^o_{ES}, and ϕ_S. Explain the physical significance of each of your answers.

a. $\alpha = 0$.
b. $\beta = 0$.
c. $K = 0$.

6.9 For the simple, symmetric, four-state carrier shown in Figure 6.21, let $c^i_S = c^o_S = 0$. Sketch the carrier density in each of its four states as a function of α/β. Give a physical interpretation of the results.
6.8 Consider the simple, symmetric, four-state carrier shown in Figure 6.21. For each of the following conditions, find η^i_E, η^o_E, η^i_{ES}, η^o_{ES}, and ϕ_S. Explain the physical significance of each of your answers.

a. $\alpha = 0$.
b. $\beta = 0$.
c. $K = 0$.

6.9 For the simple, symmetric, four-state carrier shown in Figure 6.21, let $c^i_S = c^o_S = 0$. Sketch the carrier density in each of its four states as a function of α/β. Give a physical interpretation of the results.

\[
\eta^i_{ES} = \left(\frac{\beta}{\alpha + \beta} \right) \left(\frac{c^i_S}{c^i_S + K} \right) \eta_{ET}
\]

\[
\eta^i_E = \left(\frac{\beta}{\alpha + \beta} \right) \left(\frac{K}{c^i_S + K} \right) \eta_{ET}
\]

\[
\eta^o_{ES} = \left(\frac{\alpha}{\alpha + \beta} \right) \left(\frac{c^o_S}{c^o_S + K} \right) \eta_{ET}
\]

\[
\eta^o_E = \left(\frac{\alpha}{\alpha + \beta} \right) \left(\frac{K}{c^o_S + K} \right) \eta_{ET}
\]

\[
\phi_S = \left(\frac{\alpha \beta}{\alpha + \beta} \right) \eta_{ET} \left(\frac{c^i_S}{c^i_S + K} - \frac{c^o_S}{c^o_S + K} \right)
\]
Practice problems (SOL)

Exercise 6.8

a. Since \(\alpha \) is zero, none of the enzyme can translocate to face the extracellular solution. Therefore the densities of outward facing enzymes \(\mathcal{N}_E^o \) and \(\mathcal{N}_E^i \) are zero. The inward facing densities partition in proportion to the intracellular concentration of solute and the dissociation constant for the binding reaction. Therefore,

\[
\mathcal{N}_E^i = \frac{c_S^i}{c_S^i + K} \mathcal{N}_{ET} \quad \text{and} \quad \mathcal{N}_E^o = \frac{K}{c_S^i + K} \mathcal{N}_{ET}.
\]

Since the enzyme cannot translocate, the flux of solute \(\phi_S \) is also zero.

b. The case \(\beta = 0 \) is similar to the case \(\alpha = 0 \) except that the enzyme can not face the intracellular solution. Therefore the densities of inward facing enzymes \(\mathcal{N}_E^i \) and \(\mathcal{N}_E^o \) are zero. The outward facing densities partition in proportion to the extracellular concentration of solute and the dissociation constant for the binding reaction. Therefore,

\[
\mathcal{N}_E^o = \frac{c_S^o}{c_S^o + K} \mathcal{N}_{ET} \quad \text{and} \quad \mathcal{N}_E^i = \frac{K}{c_S^o + K} \mathcal{N}_{ET}.
\]

Since the enzyme cannot translocate, the flux of solute \(\phi_S \) is also zero.

c. If \(K = 0 \), the enzyme cannot dissociate. Therefore, if there is any extracellular or intracellular solute, it will bind to the enzyme and never unbind. Therefore the unbound densities \(\mathcal{N}_E^i \) and \(\mathcal{N}_E^o \) will be zero. The bound densities will partition by the forward and reverse translocation rate constants, so that

\[
\mathcal{N}_E^i = \frac{\beta}{\alpha + \beta} \mathcal{N}_{ET} \quad \text{and} \quad \mathcal{N}_E^o = \frac{\alpha}{\alpha + \beta} \mathcal{N}_{ET}.
\]

Since the solute cannot unbind, there will be no transport, \(\phi_S \) will be zero.
Exercise 6.9 For $c_S^i = c_S^o = 0$ there is no carrier bound to enzyme. Therefore, on this basis and by inspection of Equations 6.55 and 6.57 (Weiss, 1996a) $\pi_{ES}^i = \pi_{ES}^o = 0$. However, from Equations 6.56 and 6.58 (Weiss, 1996a) it follows that

$$\pi_E^i = \frac{\beta}{\alpha + \beta} \pi_{ET} = \frac{1}{(\alpha/\beta) + 1} \pi_{ET},$$

$$\pi_E^o = \frac{\alpha}{\alpha + \beta} \pi_{ET} = \frac{(\alpha/\beta)}{(\alpha/\beta) + 1} \pi_{ET}. $$

These relations are plotted in Figure 6.2. If $\alpha/\beta = 1$ then half the carrier is in the inside configuration and the other half is in the outside configuration. As α/β is increased, more of the carrier is found in the outside configuration, whereas as α/β is decreased, more of the carrier is found in the inside configuration.

Figure 6.2: Density of carrier for a case when the solute concentration is zero on both sides of the membrane (Exercise 6.9).