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Dvnamic Range

Humans hear over a pressure range of 120 dB [that’s a factor of a million]
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Dvnamic Range

Humans hear over a pressure range of 120 dB [that’s a factor of a million]
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- Ear actually EMITS sound! Otoacoustic Emissions — OAEs

http://www6.miami.edu/UMH/CDA/UMH_Main/



> OAEs used for newborn hearing
screening (only healthy ears emit)

» Much faster/easier than evoked

potentials (i.e., Auditory Brainstem
Response, ABR)




Otoacoustic Emissions (OAESs)
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> OAEs apparently a byproduct of the ampilification mechanism

> Provide means to non-invasively probe inner ear



Evoked OAEs & Delays

> Stimulate with single tone (‘Stimulus Frequency’) and an ‘echo’ returns (SFOAE)

> Delay of echo
varies across
species

> Delay tied

to tuning
(i.e., resonant filter

build-up)

SFOAE Phase gradient delay [ms]

> Frog delays appears
exceptional...

SFOAE: Lp =40 dB SPL
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Froqg Auditory Neurophysiology

SFOAE Phase gradient delay [ms]

14,

12r

10+

O Human (32-35mm)

< Tiger (36-39 mm)

X Rhesus monkey (~25 mm)
s O Frog (0.5-0.6 mm)*
— A

+

[ ]

*

Domestic cat (22-26 mm)
Guinea Pig (18-19 mm)
Tokay gecko (1.8-2 mm)
Chicken (3-4 mm)

---------

- ¢ 1 n PR S S T R |

1 10 40
Emission Frequency [KHZ]

> Despite long SFOAE delays, frog
neural tuning is relatively broad
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So where is the delay coming from in frogs?

Ronken (1991)



Artistic inspirations....




Amphibian Middle Ear
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> Eardrum (TyM) is a (relatively)
flat circular membrane
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van Dijk et al. (2011)



Amphibian Middle Ear = Long Delays

l< »le
a' Inner ear : Middle ear
Periotic canal Stapes_footplate
(pars interna) Ascending
process Tympanic
membrane
Amphibian
papilla

Stapes shaft
(pars media)

Extrastapes

Basilar gaccu1us

\ papilla

Operculum

m. opercularis

Round
window
b [
Stapes  Ascending Tympanic
footplate process membrane

< 0.0

A\

[-

Rotatory axis

Stapes

shaft Extrastapes

Phase (cycles)

How does such a long
middle ear delay arise?

> Large delay through middle
ear (~0.5 ms inwards)

» More than an order of
magnitude longer than
mammals

Footplate re.
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Mason & Narins (2002)

van Dijk et al. (2011)



Eardrum as the source
of the delay?



Methods - Scanning Laser Doppler Vibrometry (sLDV)
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Methods - Scanning Laser Doppler Vibrometry (sLDV)
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> Scan velocity (magnitude & phase) across eardrum surface

> Anesthesia required (otherwise non-invasive)



Results - Radial profile
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(Arbitrary) Radial profile:
» Darker = closer to edge
* Lighter = closer to center

» Complex magnitude
profile along radial path

Magnitude [dB, arb.]

> Progressive phase
accumulation towards
center
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Results - Contour plots

Data shown here from one
representative ear

magnitude
[dB re 1 mm/s/Pa]

dorsal

caudal

————

513 Hz 613 Hz 813 Hz 1913 Hz 13 Hz

phase [cycle] ISR | |
0 0.2 0.4 0.6 0.8 1




Results 2 Group delays

Data shown here from one
representative ear
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Results - Compiled responses

Magnitude [dB, arb.]

Phase [cyc]

10

=10

‘Transfer function’ shows responses
- at eardrum center re pressure

Déta shown here cdme
- from 7 ears of 4 frogs
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- Eardrum diameter varied 6-16 mm,
reflected in the differing delays



Results 2 Animation Female, 1.25 kHz

Female, 1.2 kHz

Male, 1.5 kHz

Note the lack of nodes
(i.e., these are inward-traveling waves, not standing waves)



Circular membrane - Standing wave modes

e.g., drumhead

(0,2) mode

(0,3) mode

http://www.acs.psu.edu/drussell/demos/membranecircle/circle.html



Circular membrane - Standing wave modes

(1,2) mode

Note clear presence of nodes

http://www.acs.psu.edu/drussell/demos/membranecircle/circle.html



Summary

Inward traveling wave along eardrum surface is source of delay:
- Energy (relatively) slowly propagates inwards to center point

Further questions raised:

> Different from generic circular membrane (no nodes). What
determines transition between traveling and standing waves?

> Is the delay reciprocal (for OAE energy coming back out)?

> In terms of biomechanical design, is this optimal given ecological
constraints (i.e., living both above and below water) to act as impedance
matcher?

> Optimal strategies for modeling? (e.g., transmission line vs finite element)



Summary
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MIDDLE | 1
EAR

mechanical
stimulus

endolymph

perilymph
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TNEURAL
TSFOAE

Tiuia
Tmech
Tsynapse
Tm
T™ME

Tmech

"Tfiuid

Tuid * Tmech
TME* Tia + Tmech * Tsynapse
=2X TMe + 2% Thuig + Tmech

: one-way delay of longitudinal waves in inner ear fluids = 0

: filter delay of mechanical response of the tectorial membrane
: synaptic delay

: tectorial membrane delay

: middle ear delay

TNEURAL

Table 2
Group delays in the middle ear and the basilar papilla.
Delay from A to B Reference
Sound pressure to tympanic 0.53 (+0.07) ms Mason and
membrane Narins,
(personal
communication)
Tympanic membrane to footplate/ 0.170 (£0.005) Mason and

operculum™ ms

Total middle ear delay (tmE) 0.53 +0.170 =
0.70 (£0.07) ms
Operculum to tectorial membrane (try)  0.60 (+0.08) ms

SFOAE delay (from stimulus sound
pressure in front of the tympanic
membrane to BP and back) (tspoak)

Neural group delay from Wiener kernels
(delay from sound pressure in front of
the tympanic membrane to neuronal
response) (TNEURAL)

2.0 (+0.1) ms”

2.9 (+0.4) ms”

Narins (2002a)

Schoffelen et al.
(2009)
Meenderink and
Narins (2006)

Van Dijk et al.
(1997a,b)

* Mean and standard deviation obtained by averaging across the values in the
interval 1700—2300 Hz, excluding one outlier near 0.1 ms in the SFOAE data.
« There is essentially no phase lag between the footplate and operculum response

(Mason and Narins, 2002b).

van Dijk et al. (2011)



Results - Trans-TyM pressure change

Data compiled from all
Trans-TyM pressure change ears measured
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Results - Input impedance
Data compiled from all

Bullfrog ME input impedance (Ptym/Vtym) ears measured
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Results - Misc. contour maps
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Results - Misc. contour maps Data here are from one

individual

FigD2.: ../06202013/RC3Lear1.mat & ../06202013/RC3Lear8.mat
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SFOAE overview
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Hair cell = ‘mechano-electro’ transducer

Mammalian Cochlea Uncoiled

to
Vestibular
System

Helicotrema

pliant &
massive

Cochlear
Round Partition

Window C.D. Geisler (modified)
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PERILYMPH

Inner
Hair Cell

Martin (2008)

-60 mV

Afferent Auditory
Nerve Fiber (ANF)



Hair cell = amplifier?
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(forming basis for OAES)
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Phase-Gradient Delay < Sharpness of Tuning

Amplitude

10
O = f,/ bandwidth

(quality factor)

First consider a single
2nd order filter

QxN
Phase
07 ===
%\ | Group delay = -Phase slope
= N =, * phase slope
& (phase-gradient delay)
~0.5- Tl P
| I |
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Normalized frequency f/ f,

Shera et al. (JARO, 2010)
Bergevin & Shera (JASA, 2010)



Basic ldea: Tuned Responses Take Time

build-up time

—

Second Order System
(resonant frequency w,,)
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