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> Cochlear (i.e., mammalian)
micromechanics still not well
understood
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A Greene

> Increasing focus

on structural detail
(e.g., tectorial membrane,
organ of Corti geometry)
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OAEs tied to forward auditory transduction W
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- But what do OAEs tell us about cochlear mechanics?



OAE Taxonomy

> BM traveling waves

to
Vestibular
System

Mammalian Cochlea Uncoiled

Helicotrema

pliant &
massive

Round
Window

Mechanism-Based Taxonomy for OAEs

Otoacoustic Emissions

OAE:s that arise by
Linear Reflection

M

Reflection Emissions
Due to coherent reflection from
‘random’ impedance perturbations

Examples: Echo emissions (SFOAEs
and TEOAEs ) at low levels

OQAEs that arise by
Nonlinear Distortion

Distortion Emissions
Due to nonlinearities acting as ‘sources’
of cochlear traveling waves

Examples: DPOAEs when coherent
reflection from the DP place is

negligible

J—

Spontaneous Emissions

Due to standing waves caused by ‘run-away’
multlplc internal coherent reflection

(from ‘random’ perturbations and stapes)
stabilized by cochlear nonlinearities

v
Evoked Emissions

Typically, a mixture of emissions

produced by both mechanisms

Shera & Guinan (1999)

Cochlear
Partition

C.D. Geisler (modified)

» \Wave-centric framework,
including notion of ‘coherent
reflection’



Present goal

Mechanism-Based Taxonomy for OAEs

Otoacoustic Emissions

OAE:s that arise by
Linear Reflection

|

Reflection Emissions
Due to coherent reflection from
‘random’ impedance perturbations

Examples: Echo emissions (SFOAEs
and TEOAEs) at low levels

OAEs that arise by
Nonlinear Distortion

Distortion Emissions

Due to nonlinearities acting as ‘sources’
of cochlear traveling waves

Examples: DPOAEs when coherent
reflection from the DP place is
negligible

J—

Spontaneous Emissions

Due to standing waves caused by ‘run-away’
multiple internal coherent reflection

(from ‘random’ perturbations and stapes)
stabilized by cochlear nonlinearities

v

Evoked Emissions

Typically, a mixture of emissions
produced by both mechanisms

Shera & Guinan (1999)

Arque that:

» Useful framework, but...

> ... wave-centric focus
hides a more general/
powerful biophysical
principle at work

- lllustrate via a comparative viewpoint






Hunting in
absolute darkness Konishi (1973)
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Comparative Approach: Morphological differences
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; Tall Short
hair cell Afferent nerve fibers halt - : e g
-& Efferent nerve fibers erent nerve fibers

* Papilla medium to long
LIZARDS ARCHOSAURS ;.. types of hair cell
* Papilla short to medium High-frequency Short
* Two types of hair cell hair cell halc:rcell Tall ‘
hair cell

cell

Efferent nerve fibers

(Low-frequency PR S papilla\ ( Low-fr ill High-frequency Papiﬂh
ow-frequency papilla .

Large variation —% 100 pym
,“\ in TM structure ‘ . \W\‘“‘“lmﬂ\tmﬁu

, 100 gm r..‘ -—_—/\ 8t -
K \ Tectorial membrane b.‘ y

Tectorial membrane /

Manley (2000)



Comparative approach: Morphological differences

Human
> BM length: ~30-35 mm
> # of hair cells: ~20000

» overlying tectorial membrane (TM)

e Barn owl (Tyto alba)
> BM length: ~10 mm
> # of hair cells: ~16000
» Thick TM coupled to papilla
> BM waves = 7?7

Lizard (Anolis)

> BM length: ~0.45 mm

> # of hair cells: ~150

> free-standing bundles (i.e., no TM)
» no BM traveling wave




How does morphology affect performance?
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* In general, high frequency hearing (>10 kHz) is unique to mammals
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Results

Magnitude [dB SPL]

: Spontaneous OAEs (SOAES)
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Results (owl): SOAE Interactions with (External) Swept Tones

Tone level = 20 dB SPL
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> Strong interactions with (flat-level) stimulus tone at ear canal

(even for small SOAE peaks)



Results (owl): SOAE Interactions with (External) Swept Tones

Data from two
Tone level = 20 dB SPL representative animals
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> SOAEs appear as horizontal lines, (external stimulus) swept tone as diagonal
> Localized interactions (e.g., ‘suppression’) apparent

> Allows for determinations of SOAE frequencies during SFOAE measurements

[dp] apniubey



Results (owl): SFOAEs Lp = 20 dB SPL
Ls= 35 dB SPL
fs= fp+ 40 Hz

Animal 1 Animal 2

SFOAE (20 dB SPL) » Determined

..... Noise floor » SOAE frequency
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» Robust SFOAES (e.g., residual can be stronger than evoking stimulus!)

> SOAE and SFOAE peak locations not always correlated

> Allows estimation of SFOAE phase accumulation between adjacent SOAEs



Results (owl): SFOAE phase accumulation re SOAEs

Data compiled from
15 ears of 9 owls
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> Integral number of cycles of phase accumulation between SOAE peaks

> Independent of frequency and phase (un)wrapping



Putting the pieces together...

Human
1/4

3/4

All species show integral # of cycles of SFOAE phase accumulation between
adjacent SOAE peaks......

.... despite gross morphological/biomechanical differences (e.g., no BM waves)

Bergevin et al. (2012)



Connecting back to models (of SOAE generation)

Traveling wave framework Coupled oscillator framework

Resonant cavity

SOAE < Nonllnear gain medium

(oochlear ampliﬁer)
Middl ——— 7z 7 7
e traveling wave Vilfan & Duke (2008)
Wit et al. (2012)
Shera (2003)
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seemingly disparate models
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—> Is this telling us something important?



De-waving coherent reflection

Mechanism-Based Taxonomy for OAEs

Otoacoustic Emissions

OAE:s that arise by

OAE:s that arise by
Linear Reflection Nonlinear Distortion

Reflection Emissions Distortion Emlssnons
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Recast the basic biophysical picture:

Mammalian Cochlea Uncoiled

to
Vestibular
System

Helicotrema

pliant &
massive

Cochlear
Round Partition
Window C.D. Geisler (modified)

Coherent reflection - ‘phase coherence of coupled oscillators’

Basic qgist:

» Consider inner ear as collection of coupled nonlinear/active oscillators

> ‘Systems’ view: The whole is more than the sum of the parts



A more general biophysical principle emerges...

STAPES

phase coherence of SCALA VESTIBULI p, KN
coupled oscillators @ BUNDLES

> More universal/parsimonious ,
framework for describing/ :

ANN

understanding inner ear r
mechanics
- : SCALA TYMPANI o3
(i.e, huma.n/c.)wllllza.rd ears et a
are both similar & different) ROUND
WINDOW

Bergevin & Shera (2010)

Entrainment of Neuronal
Oscillations as a Mechanism of

Attentional Selection > Basic idea likely holds in other
Peter Lakatos,™? George Karmos,>> Ashesh D. Mehta,* Istvan Ulbert,?3 Charles E. Schroeder™>* areas Of hea ri ng (a nd beyond ) .

4 APRIL 2008 VOL 320 SCIENCE
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Otoacoustic Emissions (OAEs)

» Presumably by-product of
amplification mechanism

» OAEs used for newborn hearing
screening (only ‘healthy’ ears emit)

» Much faster/easier than evoked
electrical potentials




