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Figure 7 — Formant merging Figure 11 — Dynamic 2-D MRI
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Figure 1 — Feynman & Tuva (or bust!) Figure 6 — Overtone focusing
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®» The otherworldly sound of Tuvan throat singing was in part introduced to Western 215/ \A/
audiences by Richard Feynman, who himself first heard the acoustically mesmerizing 1 3 -
phenomenon in 1981 (while with his friend & biographer Ralph Leighton) having had £ - |
. . y g 8 3 0.5 ) .
received a record from fellow physicist Kip Thorne. g 1o & | | | | | | | | | | Oral cavity reconstruction (rotated clockwise)
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® Tuva, a small Russian republic located in the geographic center of Asia (Fig.2), is
renowned and celebrated for its unique style of song. There are deep cultural aspects to
the music, such as sound mimesis.
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Spectral Analysis MRI Figure 13 — Modeling the dynamics

Flg ure 2 — Tuva Dynamic 2-D - These data (including the associated sound spectra) allow us to examine changes i — 1and 4 12] — 1and 4
heading into a focused state as well as how manipulations in song " pitch" are achieved. There are

two distinct constrictions located at 8 cm and 14 cm from glottis, respectively, and correspond 1
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Overtone focusing - As shown in Fig.6, overtone structure appears as the
horizontal bands and is relatively constant throughout the time courses. Note
the lack of subharmonics. However, the formant structure (which appears as a

# £ ™ A particularly striking feature of Tuvan singing,
characteristic of the Sygyt style, can best be
described as “the simultaneous performance by one
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, - . E : superimposed color map) varies significantly in both time and frequency roughly to the uvula and alveolar ridge (Fig.11). Additionally, the vocal tract is expanded in the A
singer of a held pitch in the lower register and a g " : . region just anterior to the alveolar ridge. This occurs because the retroflex position of the tongue ti £ £
: : * about the transition (V). Once in the Sygyt-style, all three singers demonstrate gion ) 199 : : PO d P S S
W melody (composed of overtones) in the higher that overtone eneray is effectively ““focused” into a narrow spectral band(s) and blade that produces the constriction at 14 cm results in opening the sublingual space. It is the @ 6 %
S register [...] similar at times to a cello playing e ra9y Y P ' degree of constriction at these two locations that is hypothesized to be the primary mechanism for
R W : b Not only is just a single (or small group of ) overtones accentuated, but also ) : : . : 4l
o ponticello” [Aksenov, 1973]. controlling the frequency at which an overtone is enhanced in the output signal.
7 O e LR that nearby ones are greatly attenuated.
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R inqgi ¢ . Y. . ¥ : . Area functions — From the dynamic mid-sagittal frames (Fig.11 top), we can estimate the 2 oa \ 04
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SRl SRR o) involve any physiology unique to Turco-Mongol e 3 _ Multiole f d stat el i S e raing of formantaIE? & 3 (Fig.7) cross-sectional distance as a function of distance along the glottis (Fig.11 bottom). Area functions
5 e peoples; anybody can, given the effort, learn to igure o — IVIUIltipie Tocused statles can then be determined (e.g., Fig.14 inset; see Modeling section).
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S GRS throat-sing” [Levin & Edgerton,1999]. : _ Multiple focused states — One of the singers (RT) demonstrated multiple g o S
,,,,,,,,,,,,,,,,,,, {7 et L I t=40s P 9 (. ) ) P Volumetric 3-D - Singer RT was able to sustain a steady-state Sygyt-style note to allow the 3-D data < 05| =
AAAAAAAAAA s at , I focused states. A second state was present at higher frequencies that was not st to.be collectonle. GiFic, 21T Al e TR N (Fe i e TS 1 A
4 sor I . . . . .g. . . N . 5000
: : : - : : L ' % | / explicitly dependent (e.g., harmonically) upon the first state (Fig.8). Note that a : o : '
®» However, while this salient vocal signature has been described impressionistically, the t R I ’rﬂ \ XPICILY AEp (B : Y) P ) os) . Careful attention was paid to the parts of the oral cavity that were affected by shadow from the 00T
s : 11— le sharply defined h | ffi he sal :
: , : : : .4 : ¥ S A 2 ile b single sharply defined harmonic alone Is not sutficient to get the salient : : : . . . : 4000 - §
precise biomechanics and resulting acoustic characteristics remain less understood. - o ST eIl L : : ) dental implant. The air cavity was manually repainted to be approximately symmetric in this ws00| 23 G500
g Lol 1P o9 got \ perception of a focused state: It is not until the cluster of overtones about : - ) . 5 =
S A - R v ﬂ : : : affected part using the coronal and axial view (Fig.12 right). < 3000 =
: 2 gl ¢ Y \ 3-3.5 kHz (Fig.8) is brought into focus that the perceptual effect becomes S 2s00] 2500
® For example, Levin & Edgerton (1999) concluded that three components at play: |5 : s calient 2 000 2 200
“tuning a harmonic in the middle of a very narrow and sharply peaked formant; 1 ‘ LAl ' Piriform sinuses — A potentially revealing feature is apparent in the volumetric data: the piriform " 1500/ -
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i e e i i - 3 : - e state were observed (g el L0 [IghtThese roperties of the vocal tract and thereby may be an important to facilitate overtone focusin Time (sec Time (sec
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