Ion Chemistry Laboratory
Centre for Research in Mass Spectrometry
York University

 

Proton Transfer Reactions

This is the first installment of a compilation which is intended ultimately to provide complete tables or rate constants and product channels for ion-molecule reactions which have been measured with the flowing afterglow and selected-ion flow tube techniques at York University. This first installment is restricted to positive ion and negative ion proton-transfer reactions.

INTRODUCTION AND EXPLANATION OF TABLES

During the past decade both the flowing afterglow (FA)1 and selected-ion flow tube (SIFT)2 techniques have been employed in the Ion Chemistry Laboratory at York University in measurements of the rates of positive and negative ion-molecule reactions proceeding in the gas phase. A large number and variety of ion-molecule reactions have been investigated as a consequence of our interests in chemical kinetics, thermochemistry, chemical ionization mass spectrometry, physical organic chemistry, flame-ion chemistry, and astrochemistry. Proton transfer is an important group of ion-molecule reactions which pervades all of these areas of interest and is the focus of this first installment of the compilation. Rate constants are listed both for the transfer of a proton from an ion to a molecule (which may or may not be accompanied by dissociation) and for the transfer of a proton from a molecule to an ion. Also we have appended a selection of correlations which we have reported in the literature as well as tables of proton affinities and gas-phase acidities which have been deduced from rate and equilibrium constant measurements performed in this laboratory.

The reactions are listed in order of increasing atomic number of the reactant ion and reactant neutral, respectively. Notes have been included to draw attention to special aspects of the measurements, e.g. the measurement of an equilibrium constant, the measurement of the pressure or temperature dependence of a rate constant, etc. The information tabulated for each reaction includes the product distribution (P.D.), the rate constant (K), the overall estimated accuracy of the measurements (ERROR), the temperature of the measurements (TEMP), the method employed in the measurement (METHOD) and the references (REF). Rate constants refer to the loss of reagent ions and are listed in units of cm3 molecule-1 s-1. Temperatures are given in degrees Kelvin.

1 D.K. Bohme, R.S. Hemsworth, H.W. Rundle and H.I. Schitt, J. Chem. Phys. 58, 3504 (1973).
2 G.I. Mackay, G.D. Vlachos, D.K. Bohme and H.I. Schitt, Intern. J. Mass Spectrom. Ion Phys. 36, 259 (1980).


Positive Ion Proton-Transfer Reactions

REACTANTS PRODUCTS P.D. k(×10-9) ERROR (±) TEMP METHOD REFERENCE
 
H+
C2H6 C2H4+ + H2 + H 3.9 20% 298 SIFT 25
C2H3+ + 2H2
C2H5+ + H2
 
H3+
CH4 CH5+ + H2 1 1.6 30% 298 FA 1
CH4 CH5+ + H2 1 2.4 20% 296 FA 22
CH4 CH5+ + H2 1 2.3 20% 296 SIFT 22
NH3 NH4+ + H2 1 3.6 298 FA 1
NH3 NH4+ + H2 1 4.2 20% 297 FA 5
H2O H3O+ + H2 1 3.0 298 FA 1
H2O H3O+ + H2 1 4.3 25% 297 FA 7
C2H2 C2H3+ + H2 1 1.9 30% 298 FA 1
C2H2 C2H3+ + H3 1 2.9 25% 297 FA 12
HCN H2CN+ + H2 1 7.4 20% 297 FA 11
N2 N2H+ + H2 1 1.5 30% 298 FA 1
N2 N2H+ + H2 1 1.5 20% 300 FA 2
MEASURED EQUILIBRIUM CONSTANT APPARENTLY = (9.3±4.2)×108, SEE REF 22
CO HCO+ + H2 1 1.4 30% 298 FA 1
CO HCO+ + H2 1 2.0 20% 296 FA 22
CO HCO+ + H2 1 2.0 20% 296 SIFT 1
NO HNO+ + H2 1 1.4 30% 298 FA 1
C2H4 C2H5+ + H2 0.94 2.0 30% 298 FA 1
C2H5+ + 2H2 0.06
C2H6 C2H5+ + 2H2 0.99 2.0 30% 298 FA
C2H7+ + H2 0.01
C2H6 C2H5+ + 2H2 1 2.4 20% 298 SIFT 25
CH2O CH2OH+ + H2 >0.99 6.3 25% 297 FA 19
HCO+ + 2H2 <0.01
O2 O2H+ + H2 1 >0.14 297 FA 4
MEASURED EQUILIBRIUM CONSTANT APPARENTLY = 1.05±0.12, SEE REF 22
O2 O2H+ + H2 1 0.67 20% 296 SIFT 22
MEASURED RATIO OF RATE CONSTANTS = 2.0±0.6
CH3CN CH4CN+ + H2 1 10 25% 297 FA 11
CO2 HCO2+ + H2 1 1.9 30% 298 FA 1
N2O HN2O+ + H2 1 1.8 30% 298 FA 1
NO2 NO+ + OH + H2 0.99 0.71 30% 298 FA 1
NO2+ + H2 + H 0.01
HCOOH HCO+ + H2O + H2 0.7 6.1 30% 298 FA 16
H3O+ + CO + H2 0.3
CH3NO2 CH4NO2+ + H2 0.55 8.0 25% 297 FA 15
NO+ + (CH3OH + H) 0.44
CH3NO+ + (H + H2) 0.01
CH3COOH CH3CO+ + H2O + H2 1 6.8 30% 298 FA 16
HCOOCH3 CH3OH2+ + CO + H2 >0.9 7.3 30% 299 FA 20
HCOO(CH2)2CH3 ISO-C3H7+ + HCOOH + H2 0.9 8.5 30% 2999 FA 20
HCOOH2+ + C3H6 + H2 0.1
PRODUCT DISTRIBUTION IS APPROXIMATE.
CH3COOC2H5 CH3COOH2+ + C2H4 + H2 0.75 5.7 25% 299 FA 20
CH3CO+ + C2H5OH + H2 0.2
C2H5+ + CH3COOH + H2 0.05
PRODUCT DISTRUIBUTION IS APPROXIMATE.
KR KRH+ + H2 1 >0.1 296 FA 8
MEASURED EQUILIBRIUM CONSTANT = 20±3
KR KRH+ + H2 1 1.1 20% 296 SIFT 22
MEASURED RATIO OF RATE CONSTANTS = 29±9
 
HEH+
H2 H3+ + HE 1 1.5 20% 296 SIFT 22
C2H6 C2H5+ + H2 + HE 2.1 20% 298 SIFT 25
C2H3+ + 2H2 + HE
O2 O2H+ + HE 1 1.1 20% 296 SIFT 22
KR KRH+ + HE 1 1.2 20% 296 SIFT 22
 
D3+
NH3 NH3D+ + D2 1 3.1 20% 298 FA 6
C2H2 CH2D+ + D2 1 2.3 25% 297 FA 12
O2 O2D+ + D2 1 0.59 20% 296 SIFT 22
MEASURED RATIO OF RATE CONSTANTS = 2.0±0.6
CH3NO2 CH3NO2D+ + D2 5.8 25% 297 FA 15
NO+ + (CH3OHD + D2)
CH3NO+ + (OD + D2)
 
OH+
CH4 H3O+ + CH2 0.87 1.5 25% 296 SIFT 22
CH5+ + O 0.13
CD4 HD2O+:(CD4H+) + CD2:(O) 1 1.0 20% 296 SIFT 22
N2 N2H+ + O 1 0.22 20% 296 SIFT 22
MEASURED RATIO OF RATE CONSTANTS = 1.7±0.05
CO HCO+ + O 1 0.82 20% 296 SIFT 22
C2H6 C2H4+ + H2 + OH 0.65 1.6 20% 298 SIFT 22
C2H5+ + H2 + O 0.2
H3O+ + C2H4 0.1
C2H6+ + OH 0.03
C2H7+ + O 0.02
 
CH5+
O H3O+ + CH2 1 0.26 25% 296 SIFT 22
NH3 NH4+ + CH4 1 2.5 20% 297 FA 5
H2O H3O+ + CH4 1 3.7 25% 297 FA 7
C2H2 C2H3+ + CH4 1 1.6 25% 297 FA 12
CO HCO+ + CH4 1 0.99 20% 296 FA 22
C2H6 C2H7+ + CH4 0.85 1.5 20% 298 FA 25
C2H5+ + CH4 + H2 0.15
CH2O CH2OH+ + CH4 1 4.5 25% 297 FA 19
N2O HN2O+ + CH4 1 0.95 20% 296 FA 22
MEASURED EQUILIBRIUM CONSTANT = (3.8±0.9)×104
HCOOH HCOOH2+ + CH4 1 2.9 30% 29 FA 16
CH3NO2+ CH4NO2+ + CH4 1 4.1 25% 297 FA 15
NO+ + (CH3OH + CH4)
ONLY 0.07% OF THE REACTION APPEARED TO PRODUCE NO+
HCOOCH3 HCOO(CH3)H+ + CH4 1 4.1 25% 299 FA 20
 
NH3+
NH3 NH4+ + NH2 1 2.5 20% 297 FA 5
 
H2O+
CO HCO+ + OH 1 0.53 20% 296 SIFT 22
C2H6 H3O+ + C2H5 0.83 1.6 20% 298 SIFT 25
C2H4+ + H2 + H2O 0.12
C2H6+ + H2O 0.04
C2H5+ + H + H2O 0.01
 
H3O+
NH3 NH4+ + H2O 1 2.4 20% 297 FA 5
NH3 NH4+ + H2O 1 2.4 20% 298 FA 18
HCN H2CN+ + H2O 1 3.5 20% 297 FA 11
HCN H2CN+ + H2O 1 3.5 20% 298 FA 14
MEASURED EQUILIBRIUM CONSTANT = (4.0±0.9)×103
C2H4 C2H5 + H2O 298 SIFT 24
H3O+.C2H4
THE RATE CONSTANT WAS DEPENENT ON HYDROGEN
PRESSURE BETWEEN 0.2 TORR AND 0.5 TORR.
CH2O CH2OH+ + H2O 1 3.4 25% 297 FA 19
CH3OH CH4OH+ + H2O 1 2.8 25% 298 FA 18
H2S H3S+ + H2O 1 1.9 20% 296 FA 14
MEASURED EQUILIBRIUM CONSTANT = (5.8±1.3)×102
CH3CN CH3CNH+ + H2O 1 4.7 25% 297 FA 11
CH3CHCH2 C3H7+ + H2O 1 1.5 20% 298 FA 13
CH2CO CH3CO+ + H2O 1 2.0 25% 298 FA 18
CH3CHO CH3CHOH+ + H2O 1 3.6 25% 298 FA 18
HCOOH HCOOH2+ + H2O 1 2.7 30% 298 SIFT 16
C2H5OH C2H5OH2 + H2O 1 28.0 25% 298 FA 18
CH3NO2 CH3NO2H+ + H2O 1 4.1 25% 297 FA 15
NO+ + (CH3OH + H2O) 1
ONLY 0.01% OF THE REATION APPEARED TO PRODUCE NO+
CH3COOH CH3COOH2+ + H20 0.95 3.0 30% 298 FA 16
CH3CO+ + 2H2O 0.05
HCOOCH3 HCOO(CH3)H+ + H2O 1 3.3 25% 299 FA 20
(CH3)2O (CH3)2OH+ + H2O 1 2.7 25% 298 FA 18
(CH3)2CO (CH3)2OH+ + H2O 1 3.9 25% 298 FA 18
HCOO(CH2)2CH3 ISO-C3H7+ + (HCOOH + H2O) 0.5 4.6 30% 299 FA 20
HCOO(CH2)2CH3)H+ + H2O 0.45
HCOOH2 + (C3H6 + H2O) 0.05
PRODUCT DISTRIBUTION IS APPROXIMATE
CH3COOC2H5 CH3COO(CH5)H+ + H2O >0.9 2.8 25% 298 FA 20
CH3COOH2+ + C2H4 + H2O <0.1
CH3COO(CH2)2CH3 CH3COO(CH2)2CH3)H+ + H2O 0.5 3.8 25% 298 FA 20
CH3COOH2+ + C3H6 + H2O 0.5
PRODUCT DISTRIBUTION IS APPROXIMATE
 
C2H+
HCN HCNH+ + C2 0.5 2.8 20% 299 SIFT 21
C2H2+ + CN 0.5
HCN C2H2+.HCN 0.87 0.39 20% 299 SIFT 21
H2C3N+ + H 0.08
HCNH+ + C2H 0.05
THE RATE CONSTANT WAS INDEPENDENT OF HELIUM
PRESSURE FROM 0.395 TORR TO 0.521 TORR.
 
C2H3+
HCN HCNH+ + C2H2 1 2.9 20% 299 SIFT 21
 
HCN+
C2H2 HC3N+ + H2 1.9 300 SIFT 23
C2H2+ + HCN
C2H3+ + CN
PRODUCTION OF HC3N+ PREDOMINATES.
 
HCO+
NH3 NH4+ + CO 1 2.4 20% 297 FA 5
H2O H3O+ + CO 1 3.2 25% 297 FA 7
C2H2 C2H3+ + CO 1 1.4 30% 297 FA 12
HCN H2CN+ + CO 1 3.0 20% 297 FA 11
C2H6 C2H7+ + CO 1 0.12 20% 298 SIFT 25
MEASURED EQUILIBRIUM CONSTANT = 11.3±2.4
CH2O CH2OH+ + CO 1 3.3 25% 298 FA 17
CH3OH CH3OH2+ + CO 1 2.7 25% 298 FA 17
CH3CN CH4CN+ + CO 1 4.1 25% 297 FA 11
CH2CO CH2COH+ + CO 1 1.8 30% 298 FA 17
CH3CHO CH3COOH+ + CO 1 3.4 25% 298 FA 17
HCOOH HCOOH2+ + CO 1 1.8 30% 298 FA 17
C2H5OH C2H5OH2+ + CO 0.55 2.2 25% 298 FA 17
H3O+ + (C2H4 + CO) 0.45
CH3COOH CH3COOH2+ + CO 0.8 2.5 30% 298 FA 17
CH3CO+ + (H2O + CO) 0.2
HCOOCH3 HCOO(CH3)H+ + CO 1 2.9 25% 298 FA 17
CH3NO2 HCOO(CH3)H+ + CO 1 3.3 25% 297 FA 15
SOME SMALL PRODUCTION OF NO+ COULD NOT BE EXCLUDED.
(CH3)2O (CH3)2OH+ + CO 1 2.1 25% 298 FA 17
(CH3)2CO (CH3)2COH+ + CO 1 2.7 20% 298 FA 17
 
N2H+
O OH+ + N2 1 0.14 20% 296 FA 22
CH4 CH5+ + N2 1 0.89 30% 298 FA 1
NH3 NH4+ + N2 1 2.3 20% 297 FA 5
H2O H3O+ + N2 1 0.5 298 FA 1
H2O H3O+ +N2 1 2.6 25% 297 FA 7
C2H2 C2H3+ + N2 1 1.4 30% 297 FA 12
HCN H2CN+ + N2 1 3.2 20% 297 FA 11
CO COH+ + N2 1 0.88 25% 297 FA 9
C2H6 C2H5+ + N2 + H2 0.87 1.3 35% 298 SIFT 25
C2H7+ + N2 0.13
CH2O CH2OH+ + N2 1 3.3 25% 297 FA 19
CH3CN CH4CN+ + N2 1 4.1 25% 297 FA 11
CO2 CO2H+ + N2 1 0.92 30% 298 FA 1
CO2 CO2H+ + N2 1 0.98 20% 298 FA 10
MEASURED RATE CONSTANT = 8.2×10-10±20%AT 700K.
MEASURED EQUILIBRIUM CONSTANT ≥ 4×105 AT 298K,
(2.2±0.06)×104 AT 700K AND (7.8±2.3)×103 AT 798K.
N2O N2OH+ + N2 1 0.79 30% 298 FA 1
CH3NO2 CH4NO2+ + N2 0.99 3.3 25% 297 FA 15
NO+ + (CH3OH + N2)
CH3NO+ + (OH + N2)
ABOUT 0.5% AND 0.01% OF THE REACTION APPEARED TO
PRODUCE NO+ AND CH3NO+, RESPECTIVELY.
XE XEH+ + N2 1 0.66 20% 300 FA 5
XE XEH+ + N2 1 0.66 25% 297 FA 10
MEASURED EQUILIBRIUM CONSTANT = 58±8.ALSO MEASURED AT 378 AND 800K
WITH ΔH° = -0.63±0.19 KCAL/MOLE AND ΔS° = +5.8±1.9 CAL/MOLE/DEG.
 
C2H5+
NH3 NH4+ + C2H4 1 2.1 20% 297 FA 5
H2O H3O+ + C2H4 1 1.4 25% 298 FA 24
MEASURED RATIO OF RATE CONSTANTS = 25±7
HCN H2CN+ + C2H4 1 2.7 20% 299 SIFT 21
CH2O CH2OH+ + C2H4 1 3.1 25% 297 FA 19
 
H2CN+
CH2O CH2OH+ + HCN 1 ≥1.6 297 FA 19
MEASURED EQUILIBRIUM CONSTANT = 1.6±0.3
CH3NO2 CH4NO2+ + HCN 1 3.8 25% 297 FA 15
 
CH2OH+
NH3 NH4+ + H2CO 1 1.7 25% 297 FA 19
 
C2H7+
NH3 NH4+ + C2H6 1 2.0 20% 297 FA 5
HCN H2CN+ + C2H6 0.9 2.2 20% 299 SIFT 21
CH3CNH+ + CH4 0.1
 
O2H+
H2 H3+ + O2 1 0.33 20% 296 SIFT 22
KR KRH+ + O2 1 0.43 20% 296 SIFT 22
MEASURED RATIO OF RAT CONSTANTS = 16±4
 
CH3OH2+
CH3NO2 CH3NO2H+ + CH3OH 1 1.3 25% 297 FA 15
 
O2D+
D2 D3+ + O2 1 0.3 20% 296 SIFT 22
 
H3S+
HCN H2CN+ + H2S 1 1.5 35% 296 FA 14
MEASURED EQUILIBRIUM CONSTANT = 5.1±0.6
CH2O CH2OH+ + H2S 1 2.2 25% 297 FA 19
MEASURED EQUILIBRIUM CONSTANT = 10.0±2.9
 
C3H7+
NH3 NH4+ + C3H6 1 1.9 20% 297 FA 5
THE C3H7+ WAS DERIVED FROM THE REACTION OF C2H5+ WITH ETHANE.
CH3NO2 CH4NO2+ + C3H6 1 2.3 25% 297 FA 15
THE C3H7+ WAS DERIVED FROM THE PROTONATION OF PROPENE.
MEASURED EQUILIBRIUM CONSTANT = 3±1.
CH4 CH5+ + CO2 1 0.78 20% 300 FA 2
MEASURED EQUILIBRIUM CONSTANT = 23±5
 
CO2H+
CH4 CH5+ + CO2 1 0.78 20% 296 FA 3
MEASURED CONSTANT MEASURED BETWEEN 196AND 553K
WITH ΔH° = 0.064±0.004 EV AND ΔS° = 1.4±0.3 CAL/MOLE/DEG.
H2O H3O+ + CO2 1 3.0 25% 297 FA 7
C2H2 C2H3+ + CO2 1 1.4 30% 297 FA 12
CH3CN CH4CN+ + CO2 1 4.1 25% 297 FA 11
CH3NO2 CH4NO2+ + CO2 1 2.0 25% 297 FA 15
NO+ + (CH3OH + CO2) 1
ONLY 0.3% OF THE REACTION APPEARED TO PRODUCE NO+
 
N2OH+
NH3 NH4+ + N2O 1 2.1 20% 297 FA 5
H2O H3O+ + N2O 1 2.8 25% 297 FA 7
C2H2 C2H3+ + N2O 1 1.2 25% 297 FA 12
CO COH+ + N2O 1 0.5 20% 296 FA 3
MEASURED EQUILIBRIUM CONSTANT = 143±18. ALSO MEASURED BETWEEN 277
AND 505K WITH ΔH° = -0.151±0.009 EV AND ΔS° = -1.8±0.7 CAL/MOLE/DEG.
C2H6 C2H7+ + N2O 1 1.1 20% 300 FA 5
C2H6 C2H7+ + N2O 0.95 1.1 20% 298 SIFT 25
C2H+ + N2O + H2 0.05
MEASURED EQUILIBRIUM CONSTANT FOR PROTON TRANSFER= (1.5±0.3)×103
CH3CN CH4CN+ + N2O 1 3.8 25% 297 FA 11
CH3NO2 CH4NO2+ + N2O 1 2.7 25% 297 FA 15
 
C4H9+
NH3 NH4+ + C4H8 1 1.9 20% 297 FA 5
THE C4H9+ WAS DERIVED FROM THE REACTION OF C2H5+ WITH ETHANE.
 
CH3NO2H+
CH3OH CH3OH2+ + CH3NO2 1 1.7 25% 297 FA 15
MEASURED EQULIBRIUM CONSTANT = 1.3±0.4
 
KRH+
H2 H3+ + KR 1 0.038 20% 296 SIFT 22
N2 N2H+ + KR 1 0.58 20% 300 FA 5
O2 O2H+ + KR 1 0.037 20% 296 SIFT 22
 
XEH+
N2 O2H+ + KR 1 0.011 25% 296 FA 22
CO2 N2H+ + XE 1 0.66 20% 800 FA 10
MEASURED EQUILIBRIUM CONSTANT = 95±25.
Back to Top

References [1] Some Ion Molecule Reactions of H3+ and the proton Affinity of H2.
J.A. Burt, J.L. Dunn, M.J. McEwan, M.M. Sulton, A.E. Roche, and H.I. Schiff, J. Chem. Phys. 52, 6062-6075 (1970).

[2] Determination of Proton Affinity the Kinetics of Proton-Transfer Reaction. II. Kinetic Analysis of the Approach to and Attainment of Equilibrium.
D.K. Bohme, R.S. Hemsworth, H.W. Rundle and H.I. Schiff, J. Chem. Phys. 58, 3504-3518 (1973).

[3] Determination of Proton Affinity from the Kinetics of Proton transfer Reactions. III. The Measurement of the Equilibrium Constant at Various Temperatures.
R.S. Hemsworth, H.W. Rundle, D.K. Bohme, H.I. Schiff, D.B. Dunkin and F.C. Fehsenfeld, J.Chem. Phys. 59, 61-69 (1973).

[4] Determination of the Proton Affinity from the Kinetics of Proton Transfer Reactions. IV. The Equilibrium O2H+ + H2 = H3+ + O2 and the Relative Proton Affinity of O2 and H2.
P.F. Fennelly, R.S. Hemsworth, H.I. Schiff and D.K. Bohme, J. Chem. Phys. 59, 6405-6411 (1973).

[5] Rate Constants at 297°K for Proton Transfer Reactions with NH3. Comparisons with Classical Theories and Exothermicity.
R.S Hemsworth, J.D. Payzant, H.I. Schiff and D.K. Bohme, Chem. Phys.Letters 26, 417-421 (1974).

[6] The Kinetics and Energetic of Proton Transfer.
D.K. Bohme, in Interactions Between Ions and Molecules' (P. Ausloos, ED.), Plenum Press, New York, 1975.

[7] Rate Coefficients at 297°K for Proton Transfer Reactions with H2O. Comparisons with Classical Theories and Exothermicity.
D. Betowski, J.D. Payzant, G.I. Mackay and D.K. Bohme, Chem. Phys. Letters 31, 321-324 (1975).

[8] Determination of the Proton Affinity from the Kinetics of Proton-Transfer Reactions. V. The Equilibrium H3+ + Kr = KrH+ + H2 and the Relative Proton Affinity of Kr and H2O.
J.D. Payzant, H.I. Schiff and D.K Bohme, J. Chem. Phys. 63, 149-153 (1975).

[9] Rate of the Reaction N2H+ + CO = HCO+ + N2 and its Significance for the Interstellar Chemistry of N2H+.
E. Herbst, D.K Bohme, J.D. Payzant and H.I. Schiff, The Astrophys. J. 201, 603-606(1975).

[10] Determination of the Proton Affinity from the Kinetics of Proton Transfer Reactions. VI. The Relative Proton Affinities of N2, Xe and CO2.
F.C. Fehsenfeld, W. Lindinger, H.I. Schiff, R.s. Hemsworth and D.K. Bohme, J. Chem. Phys. 64, 4887-4891 (1976).

[11] Rate constant at 297°K for Proton Transfer Reactions with HCN and CH3CN. Comparisons with Classical Theories and Exothermicities.
G.I. Mackay, L.D. Betowski, J.D. Payzant, H.I. Schiff and D.K. Bohme, J. Phys. Chem. 80, 2919-2922.

[12] Rate Constants at 297°K for Proton-Transfer Reactions with C2H2. An assessment of the Average Quadrupole Orientation Theory.
G. I. Mackay, K. Tanaka and D.K. Bohme, Intern. J. Mass Spectrom. Ion Phys. 24, 125-136 (1977).

[13] Experimental and Theoretical Studies of Proton Removal from Propene.
G. I. Mackay, M.H. Lieu, A.C. Hopkinson and D.K. Bohme, Can. J. Chem. 56, 131-140 (1978).

[14] Experimental and Theoretical Studies of Proton Removal from Propene.
K. Tanaka, G.I. Mackay and D.K. Bohme, Can. J. Chem. 56, 193-204 (1978).

[15] Proton-Transfer Reactions in Nitromethane at 297°K.
G.I. Mackay and D.K. Bohme, Intern. J. Mass Spectrom Ion Phys. 26, 327-343 (1978).

[16] Acid Catalysis in the Gas-Phase: Dissociative Proton Transfer to Formic and Acetic Acid.
G.I. Mackay, A.C. Hopkinson and D.K. Bohme, J. Am. Chem. Soc. 100, 7460-7464 (1978).

[17] Proton-Transfer Reactions of HCO+ at 298°K.
S.D. Tanner, G.I. Mackay, A.C. Hopkinson and D.K. Bohme, Inter. J. Mass Spectrum Ion Phys., 29, 153-169 (1979).

[18] Gas-Phase Proton-Transfer Reactions of the Hydronium Ion at 298°K.
G.I. Mackay, S.D. Tanner, A.C. Hopkinson and D.K. Bohme, Can. J. Chem. 57, 1518-1523 (1979).

[19] A Room-Temperature Study of the Kinetics of Protonation of Formaldehyde.
S.D. Tanner, G.I. Mackay and D.K. Bohme, Can. J. Chem. 57, 2350-2354 (1979).

[20] Acid Catalysis in the Gas-Phase: Dissociative Proton-Transfer to Formate and Acetate Esters.
A.C. Hopkinson, G.I. Mackay and D.K. Bohme, Can. J. Chem. 57, 2996-3004 (1979).

[21] Studies of Reactions Involving C2Hx+ Ions with HCN using a Modified Selected Ion Flow Tube.
G.I. Mackay, G.D. Vlachos, D.K. Bohme and H.I. Schiff, Intern. J. Mass Spectrum. Ion Phys. 36, 259-270 (1980).

[22] Determination of Proton Affinities from the Kinetics of Proton-Transfer Reactions. VII. The Proton Affinities of O2, H2, Kr, O, N2, Xe, CO2, CH4, N2O and CO.
D.K. Bohme, G.I. Mackay and H.I. Schiff, J. Chem. Phys. 74, 4976-4986 (1980).

[23] Laboratory Studies of Interstellar Carbon/Nitrogen Ion Chemistry.
H.I. Schiff G.I. Mackay, G.D. Vlachos and D.K. Bohme, Proc. Of the Int. Union of Astrophys., in Interstellar Molecules, B.H. Anderson (Ed.), 307-310 (1980).

[24] Gas-Phase Proton Affinities for H2O, C2H4 and C2H6.
D.K. Bohme and G.I. Mackay, J. Am. Chem. Soc. 103, 2173-2175 (1981).

[25] A Room-Temperature Study of the Kinetics and Energetics for the Protonation of Ethane.
G.I. Mackay, H.I. Schiff and D.K Bohme, Can. J. Chem. 59, 1771-1778 (1981).
Back to Top

Negative Ion Proton-Transfer Reactions

REACTANTS PRODUCTS P.D. k(×10-9) ERROR (±) TEMP METHOD REFERENCE
 
H-
NH3 NH2- + H2 1 0.00092 20% 297 FA 1
H2O OH- + H2 1 3.7 25% 297 FA 3
C2H2 C2H- + H2 1 4.4 25% 297 FA 9
HCN CN- + H2 1 15 20% 297 FA 8
SIH4 SIH3- + H2 1 0.57 20% 297 FA 5
H-CH3CN CH2CN- + H2 1 13 25% 297 FA 8
C2H5NH2 C2H5NH- + H2 1 1.1 25% 296 FA 7
MEASURED EQUILIBRIUM CONSTANT = 77±14
(CH3)2NH (CH3)2N- + H2 1 4.3 20% 297 FA 1
MEASURED EQUILIBRIUM CONSTANT =(5.2±1.1) × 103
CH3NO2 C2NO2- + H2 1 13 25% 297 FA 11
 
D-
C2H2 C2H- + HD 1 3.3 25% 297 FA 9
HCN CN- + HD 1 9.9 20% 297 FA 8
SIH4 H- + SIH3D ≤0.8 2.2 20% 297 FA 12
SIH3- + HD
SIH2D- + H2
CH3CN CH2CN- + HD 1 9.9 25% 297 FA 8
CH3NO2 CH2NO2- + HD 1 9.6 25% 297 FA 11
 
C-(4S)
HCN CN- + CH 1 1.1 25% 296 FA 7
SIH4 SIH3- + CH 1 0.062 25% 296 FA 7
H2S SH- + CH 1 0.58 25% 296 FA 7
HCL Cl- + CH 1 1.7 25% 296 FA 7
CH3COCH3 CH3COCH2- + CH 1 0.071 25% 296 FA 7
 
NH2-
H2 H- + NH3 1 0.023 20% 297 FA 7
MEASURED EQUILIBRIUM CONSTANT = 27±9
H2O OH- + NH3 1 2.6 25% 297 FA 3
C2H2 C2H- + NH3 1 1.8 25% 297 FA 9
HCN CN- + NH3 1 4.8 20% 297 FA 8
CH3NH2 CH3NH- + NH3 1 ≥0.1 296 FA 6
MEASURED EQUILIBRIUM CONSTANT = 2.4±0.4
CH3CN CH2CN- + NH3 1 5.1 25% 297 FA 8
C2H5NH2 C2H5NH- + NH3 1 2.6 30% 296 FA 6
MEASURED EQUILIBRIUM CONSTANT = (1.3±0.4) ×103
(CH3)2NH (C3)2N- + NH3 1 3 296 FA 6
(CH3)3N PRODUCTS <0.001 296 FA 6
CH3NO2 CH2NO2- + N3 1 4.9 25% 297 FA 11
 
OH-
C2H2 C2H- + H2O 1 2.2 20% 296 FA 2
MEASURED EQUILIBRIUM CONSTANT APPARENTLY = (2.±1.0) × 105
HCN CN- + H2O 1 4.1 20% 297 FA 8
CH2O + He HOCH2O- + He 1 2.00E-26 50% 298 FA 1
TERMOLECULAR RATE CONSTANT MEASURED AT A TOTAL PRESSURE OF 0.26 TORR
SIH4 SIH3- + H2O 1/.3 20% 297 FA 5
SIH3- + H2
PROTON TRANSFER IF THE PREFERRED CHANNEL BY ABOUT 2 TO 1.
CH3OH CH3O- + H2O 1 2.2 25% 298 FA 13
CH2CCH2 CH2CCH- + H2O 1 1.7 25% 298 FA 12
CH3CCH CH2CCH + H2O 0.9 1.7 20% 298 FA 13
CH3CC- + H2O 0.1
CH3CN CH2CN- + H2O 1 4.4 25% 297 FA 8
CH3CHCH2 C3H5- + H2O 1 1.1 25% 296 FA 11
MEASURED EQUILIBRIUM CONSTANT = 2.2±0.8
CH2CO CHCO- + H2O 1 2.2 25% 298 FA 13
CH3CHO CH2CHO- + H2O 1 3.1 25% 298 FA 13
C2H5OH C2H5O- + H2O 1 2.7 30% 298 FA 13
CH3OCH3 CH3OCH2- + H2O <0.001 298 FA 13
HCOOH HCO2- + H2O 0.75 2.2 30% 298 FA 1
OH-·H2O + CO 0.25
CH3COCH3 CH3COCH2- + H2O 1 3.7 25% 298 FA 13
HCOOCH3 HCO2- + CH3OH 0.8 1.9 25% 298 FA 1
CH3O-·H2O + CO 0.2
CH3NO2 CH2NO2- + H2O 1 3.8 25% 297 FA 11
C6H5CH3 C6H5CH2- + H2O 1 2.6 25% 298 FA 13
C6H5CH2D C6H5CHD- + H2O 0.5 2.6 25% 298 FA 1
C6H5CH2- + HOD 0.5
 
C2-
SIH4 C2SIH3- + H 0.37 20% 297 FA 5
(SIH3- + C2H)
 
C2H-
HCN CN- + C2H2 1 3.9 20% 297 FA 8
SIH4 SIH3- + C2H2 <.006 297 FA 5
CH3CN CH2CN- + C2H2 1 1.5 25% 297 FA 8
CH3NO2 CH2NO2- + C2H2 1 2.5 25% 297 FA 11
 
CH3NH-
H2 H- + CH3NH2 1 0.2 30% 296 FA 6
MEASURED EQUILIBRIUM CONSTANT = 12±3
C2H2 C2H- + CH3NH2 1 1.3 25% 297 FA 9
 
CH3O-
C2H2 C2H- + CH3OH 1 1.6 25% 297 FA 9
CH3CN CH2CN- + CH3OH 1 3.5 25% 297 FA 8
 
CH3NH-
H2 CH2NO2- + CH3OH 1 3.3 25% 297 FA 11
 
SH-
HCN CN- + H2S 1 2.9 20% 296 FA 9
MEASURED EQUILIBRIUM CONSTANT = 16±2
 
Cl-
SIH4 SIH3- + HCL <0.002 297 FA 5
 
C3H3-
C2H2 C2H- + C3H4 1 0.7 25% 298 FA 13
C3H3- DERIVED FROM ALLENE
C3H3- + C2H2 C2H- + C3H4 1 0.67 20% 298 FA 12
C3H3- DERIVED FROM PROPYNE
 
C2H5NH-
H2O OH- + C2H5NH2 1 2.4 25% 297 FA 3
C2H2 C2H- + C2H5NH2 1 1.2 25% 297 FA 9
C2H2 C2H- + (CH3)2NH 1 1 25% 297 FA 9
 
(CH3)2N-
C2H2 C2H- + (CH3)2NH 1 1 25% 297 FA 9
 
C2H5O-
C2H2 C2H- + C2H5OH 1 1.4 25% 297 FA 9
CH3NO2 CH2NO- + C2H5OH 1 2.8 25% 297 FA 11
 
NO2-
SIH4 SIH3- + HNO2 <0.003 297 FA 5
 
CH3S-
CH3NO2 CH2NO- + CH3SH 1 0.94 25% 297 FA 5
MEASURED EQUILIBRIUM CONSTANT = 1.9±0.3
 
C4-
SIH4 C4SIH3- + H 0.084 20% 297 FA 5
(SIH3- + C4H)
 
C4H-
SIH4 SIH3- + C4H2 <0.005 297 FA 5
 
CH3COCH2-
CH3NO2 CH2NO2- + CH3COCH3 1 1.4 25% 297 FA 11
 
(CH3)2CHO-
C2H2 C2H- + (CH3)2CHOH 1 ≥0.9 297 FA 9
Back to Top

References [1] The Chemical Equilibrium of NH2- + H2 = H- + NH3 and the Determination of D°(NH2 – H).
D.K. Bohme, R.S. Hemsworth and H.W. Rundle, J. Chem. Phys. 59, 77-81 (1973).

[2] The Equilibrium OH- + C2H2 = C2H- + H2O and the Determination of ΔHf°, 298 (C2H-).
D.K. Bohme, G.I. Mackay, H.I. Schiff and R.S. Hemsworth, J. Chem. Phys. 61, 2175-2179 (1974).

[3] Rate Coefficents at 297°K for Proton Transfer Reactions with H2O. Comparisons with Classical Theories and Exothermicity.
D. Betowski, J.D. Payzant, G.I. Mackay and D.K. Bohme, Chem. Phys. Letters 31, 321-324 (1975).

[4] The Equilibrium SH- + HCn = CN- + H2S and the Determination of D°(H-CN).
L.D. Betowski, G.I. Mackay, J.D. Payzant and D.K. Bohme, Can. J. Chem. 53, 2365-2370 (1975).

[5] Gas-Phase SN2 Reactions at Silicon and Carbon Centres. An Experimental Appraisal of Theory.
J.D. Payzant, K. Tanaka, L.D. Betowski, and D.K. Bohme, J. Amer. Chem. Soc. 98, 894-8999 (1976).

[6] Gas-Phase Acidities of CH3NH2, C2H5NH2, (CH3)2NH and (CH3)3N.
Gervaise I. Mackay, Ronald S. Hemsworth and Diethard K. Bohme, Can. J. Chem. 54, 1624-1642 (1976).

[7] Conversation of Spin Angular Momentum n Proton-Transfer to C-(4S).
K. Tanaka, L.D. Betowski, G.I. Mackay and D.K. Bohme , J. Chem. Phys. 65, 3203-3205 (1976).

[8] Rate Constants at 297°K for Proton-Transfer Reactions with HCN and CH3CN. Comparisons with Classical Theories and Exothermicities.
G.I. Mackay, L.D. Betowski, J. D. Payzant, H.I. Schiff and D.K. Bohme, J. Phys. Chem. 80, 2919-2922 (1976).

[9] Rate Constants at 297°K for Proton-Transfer Reactions with C2H2. An Assessment of the Average Quadrupole Orientation from Propene.
G.I. Mackay, K. Tanaka, and D.K. Bohme, Intern. J. Mass Spectrom. Ion Phys. 24, 125-136 (1977).

[10] Experimental and Theoretical Studies of Proton Removal from Propene.
G.I. Mackay, M.H. Lieu, A.C. Hopkinson and D.K. Bohme, Can. J. Chem. 56, 131-140 (1978).

[11] Proton Transfer Reactions in Nitromethane at 297°K.
G.I. Mackay and D.K. Bohme, Intern. J. Mass Spectrom. Ion Phys. 26, 327-343 (1978).

[12] A Flowing Afterglow Study of [C3H3]- Ions Generated from the Reactions of OH- with Allene and propyne.
G.I. Mackay and D.K. Bohme, Org. Mas Spectr. 15, 593-598 (1980).

[13] An Experimental Study of the Reactivity of the Hydroxide Anion in the Gas Phase at Room Temperature, and its Perturbation of Hydration.
S.D. Tanner, G.I. Mackay and D.K. Bohme, can. J. Chem. 59, 1615-1621 (1981).
Back to Top
Ion Chemistry Laboratory, York University 4700 Keele Street, Toronto, Ontario M3J 1P3