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Abstract

The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions,
such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the
transformation from visual input to oculomotor command has been difficult because of spatial confounding between
stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade
preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space
(the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent
(the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected,
contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover,
saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection,
indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention
control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are
generated by internal cognitive processes, including visual short-term memory and long-term associative memory.
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Introduction

Initially recognized as an oculomotor area [1], the FEF have

also been shown to play a role in much broader behavioral

contexts, such as target selection [2–4], motor preparation [5],

internal monitoring [6], adjustment of on-going saccades [7],

inhibition of reflexive saccades [8], and shift of spatial attention

[9]. Recently, numerous studies have implicated its function even

in perceptual domains, such as in building and maintaining a

visual saliency map [10], visual prediction [11], working memory

of the visual world [12], and shifting visual attention [13–15].

Indeed, a majority of FEF neurons exhibit phasic or sustained

visual responses with or without motor activity [16].

However, whether the FEF is causally involved in these various

visual and cognitive functions remains unclear. While reversible or

permanent lesions of the FEF lead to demonstrable errors in visuo-

oculomotor tasks [17–21], it has been difficult to specify whether

the lesions impinge upon visual or oculomotor functions, because

the visual target and the saccade response were spatially

confounded in the tasks employed in the investigations. Further-

more, visual attention was co-localized with saccade planning in

most previous task paradigms: A transient visual change occurred

at a position in the peripheral fields, triggering a shift of bottom-up

attention as well as a saccadic movement of the eyes to the same

position. Recently, a few studies have provided evidence that the

oculomotor and the attentional roles by the FEF are in fact

separable: FEF inactivation disrupted covert visual search in the

absence of eye movements [22]. Shifts of gaze and shifts of

attention may be carried out by different cell types [23] and

different dopaminergic receptors [24] in this cortical area.

Here, using reversible inactivation techniques and two novel

behavioral tasks, we aimed at dissecting cognitive processes

underlying the visuo-oculomotor transformation often ascribed

to this area. The results suggested a distinction between visual

detection and saccade generation in FEF functions, as well as

between bottom-up attention shift and saccade target selection by

the cortex.

Materials and Methods

Ethics Statement
All experimental procedures were approved by the Seoul

National University Hospital Animal Care and Use Committee

(IACUC No: 09–0166, Project Title: Neural mechanisms of

saccade choice in primate frontal cortex).

Subjects and Surgical Preparation
Two adult female rhesus monkeys (Macaca mulatta, M9 and

M10) weighing between 4 and 5 kg were used. A head-restraint

post and recording cylinders were implanted under isoflurane
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anesthesia and sterile surgical conditions. The recording cylinders

(20 mm, internal diameter) were positioned over craniotomies

centered on the right arcuate sulcus in all animals.

Procedures to Minimize Animal Discomfort, Distress, Pain
and Injury

Three situations existed in which a monkey might experience

discomfort, distress and/or pain in our experimental protocols: a)

survival surgery; b) restraint for handling or routine testing and c)

training and experimental recording sessions. The following steps

were taken to ameliorate animal suffering in each situation. a)
Survival surgery. The purpose of the surgical procedures was to

implant recording chambers and a head restraint device for

neurophysiological experiments. All surgeries were carried out in

the animal surgical suite at the Primate Center of Seoul National

University Hospital. Animals were prepared with sterile, anesthetic

surgical procedures. A licensed veterinarian was present through-

out the surgical procedures and the recovery period for anesthetic

induction and for monitoring and recording all measured

physiological variables. Animals were allowed free access to water

but no food the night prior to scheduled surgery. One hour before

the surgery the animal was given atropine sulfate (0.08 mg/kg,

I.M.) to prevent excessive salivation during the surgery. One-half

hour later it was sedated with zoletil chloride (10 mg/kg, I.M.),

intubated, and placed under Isofluorane anesthesia. A saline drip

was maintained through an intravenous catheter placed into a leg

vein. Throughout the surgery, core body temperature, heart rate,

blood pressure, oxygen saturation and respiratory rate was

continuously monitored. The animal was returned to its home

cage after waking from the anesthesia and allowed to recover fully

from the effects of surgery before behavioral training started.

During the period of post-surgical recovery the animal was

monitored closely and given injections of an analgesic agent

(meloxicam 0.4 mg/kg I.M.) and antibiotics (cephazolin, 25/mg/

kg) in consultation with the veterinarian for 3 days post-op. b)
Restraint for handling or routine testing. Restraint for

certain procedures, such as physical examination or blood

sampling for health check, was accomplished with zoletil chloride

(10 mg/kg, I.M.). c) Training and experimental recording
sessions. After recovery from the surgical procedure the animal

was trained to be held by the arms and moved into a large plastic

primate chair. This was done by supplying the animal with

rewards of fruit and juice. The chair had a perch with an

adjustable height for each animal’s comfort. Wastes fell into a

collection pan below the animal, and thus, did not cause the

animal discomfort. The animals were trained by the delivery of

water or fruit juice rewards in daily sessions during which time

they received their entire liquid intake in the experimental

apparatus. When the animal was fully trained the experiments

began. During the experimental sessions the animal’s head was

painlessly restrained through the use of the implanted head post

which mated to a vertical rod attached to the primate chair. The

animals did not show any sign of discomfort by the head restraint

device: They continued to train steadily for the period of time that

they were in restraint and often fell asleep as they sat in the

darkened room between blocks of trials.

Behavioral Tasks
A) The extended memory-guided saccade task

(Figure 1a). A trial began with illumination of a central fixation

spot (a gray disc, 0.5 degree in diameter). Visual stimuli were

presented 400 ms after the animal acquired fixation at the spot.

When a single stimulus was briefly (200 ms) shown on either side,

as in the traditional version of the task, the animal was required to

remember the location, wait through a delay period ranging

between 800 and 1200 ms, and make a saccade to the now-empty

location as soon as the fixation spot was extinguished. More crucial

for our current aim, two new conditions were added: When two

stimuli, one on each side, had appeared at the same time, the

animal was trained to make an upward saccade. On the other

hand, a downward saccade was the correct response if no stimulus

had appeared before the fixation target turned off. Notice that

these two additional conditions forced the animal to detect,

remember and explicitly report whether it had seen the visual

stimuli or not, and that the direction of saccade response was

disjoint from that of the visual stimuli. The discs were 1.0 degree in

diameter with luminance of 1.24 cd/m2, unless specified otherwise

in the text, against a background luminance of 0.12 cd/m2

(measured by a chromameter, CS-100; Minolta Photo Imaging,

Mahwah, NJ). The eccentricity of the visual stimuli were adjusted

to match the amplitude of saccades evoked by electrical

stimulation before each muscimol injection (see below 2.4.

Muscimol inactivation). However, we chose not to adjust the

direction of visual stimuli, since 1) the evoked saccades were all to

the upper left quadrant and the directional variation across

inactivated sites was smaller than the separation between visual

stimuli which was 90 degrees or more, and 2) we reasoned that the

effect of inactivation would spread over time to a larger volume of

tissue that included the nearest stimulus direction.

B) The four-alternative delayed saccade task

(Figure 1b). Upper panel shows the pre-trained location and

color association, e.g. red is associated with the upper-right

visual field. The association remained the same for both

monkeys throughout the experiments. Lower panel depicts the

events in the task: A trial began when the animal fixated at a

central gray fixation disc (0.5 degree in diameter). Soon after

the fixation, four gray targets appeared in the peripheral visual

field, and after 400 ms the central disc changed to one of the

four colors each associated with a particular target location.

After a random delay ranging between 500 and 1000 ms, the

central disc disappeared, which served as the cue for the animal

to make a saccade response. The discs were 1.0 degree in

diameter, with luminance of 1.24 cd/m2 against a background

luminance of 0.12 cd/m2. The colors used for the fixation spot,

peripheral targets, and central cue were equiluminant and

chosen based on the CIE 1976 (L*a*b*) space, which is

approximately uniform in perception of color difference [25],

such that the colors were at the same distance in the space from

the two neighboring ones and the gray. A chromameter (CS-

100; Minolta PhotoImaging, Mahwah, NJ) was used for

measuring luminance and chromaticity of the colors. The

eccentricity of the peripheral targets were adjusted to match the

amplitude of saccades evoked by electrical stimulation before

each muscimol injection (see below 2.4. Muscimol inactivation).

The direction of visual stimuli were not adjusted for the reasons

stated above.

Note that, since the four gray peripheral targets were

indistinguishable, a bottom-up shift of attention to the targets

was not prompted by the targets nor needed for performing the

task. In fact, successful performance of the task required the

animal to volitionally maintain top-down attention focused on the

fixation point in order to detect the color change and decide on

where and when to make the saccade. The target selection was

based solely on pre-learned associative memory. Here we defined

attention shift in the usual sense as bottom-up visual processing of

salient targets in the visual field, not disputing that the act of a

saccade would entail or ensue an attentional shift.

Dissecting Visual and Motor Roles by Monkey FEF
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Figure 1. Two tasks used in the study are schematically depicted. a, The extended memory-guided saccade task. Visual events in task
conditions are shown in rows of panels as a function of time: from the top row, two single-target conditions, bilateral stimulus condition, and no-
stimulus condition. Arrows in the right-most panels indicate the correct saccade direction. b, The four-alternative delayed saccade task. The
associations between color and spatial location shown in the top panel were pre-trained before inactivation experiments. Visual events in a trial are
schematically depicted along the time line: the appearance of fixation target at the center, display of four alternative gray targets in the periphery,
the onset of a color cue at the center, the color-cue turning-off signaling when to make the saccade, and the saccade to the color-matched target.
doi:10.1371/journal.pone.0039886.g001
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Experimental Procedures and Data Analysis
The performance in the task was monitored by infrared video-

oculography with a sampling rate of 500 Hz (Eyelink2, SR

Research Ltd, Kanata, Ontario, Canada). Saccade behavior was

measured off-line using programs written in MATLAB (The

Mathworks, Natick, MA, USA). Markers were available for all

experimental events used in each task. The onset and offset of

saccades were determined by velocity criteria (30u/s radial velocity

for onset and 10u/s for offset). Correct placement of these marks

was checked manually and adjusted where necessary.

Forty trials of a task was presented in a block with task

conditions randomly mixed (typically, 8,12 trials per condition).

The two tasks alternated over a set of eight blocks, i.e., four blocks

per task. This task alternation ensured that the inactivation effect

which might change rather rapidly was monitored equally for both

tasks. The block sets were run immediately before muscimol

injection, and at approximately half-an-hour interval after the

injection. The percent correct was assessed over the same task

blocks in a block set. Error trials were classified as fixation error,

motor error, and choice error, in a similar manner to our previous

study [26].

Muscimol Inactivation
Details of the inactivation methods were the same as described

previously [26]. After completing the mapping of the FEF for the

low-threshold region for evoking saccades, we initiated a series of

experiments using muscimol injections. In each monkey, the

injection sites were selected based on the following criteria: 1)

Electrical stimulation at the site evoked saccades at a current level

below 70 mA with a probability higher than 50% (cathode-first

bipolar pulse duration 0.2 ms, pulse frequency 200 Hz, train

duration 100 ms). 2) The evoked saccades were directed con-

tralaterally, closer to the horizontal meridian than to the vertical

meridian, and with the amplitude between 5 and 20 degrees of

visual angle. This criterion was applied since we fixed the direction

of the visual stimuli, as explained above, and the range for

eccentricity adjustment was limited. For each injection site, we first

lowered a microelectrode inside a guide tube. After the electrode

had penetrated the dura and eye movement-related activity began

to be recorded, we applied electrical stimulation at sites separated

by 1 mm of electrode advancement. We located the site associated

with the lowest current threshold for evoking a saccade on each

penetration. The depth of this site was carefully measured using an

electronic microdrive (NAN Instruments Ltd, Nazareth, Israel),

and the electrode was withdrawn leaving the guide tube in place.

A 33-gauge hypodermic cannula was inserted into the guide

tube and was lowered until its tip was located at the same depth

previously occupied by the tip of the stimulating electrode.

Injections of muscimol were made through the cannula using

pressure injection from a minipump (Aladdin 1000, World

Precision Instruments, Sarasota, FL, USA). The concentration of

the muscimol solution was kept constant at 5 microgram/

microliter. The normal volume of solution injected was 1

microliter over a period of about 2 minutes. The amount of

solution injected was monitored by watching the movement of a

small bubble against fiduciary marks located on the Teflon tubing

connecting the pump to the injection cannula. Following the

injection, the cannula was left in place for about 10 minutes and

was withdrawn. Data collection began immediately after the

injection and continued up to several hours in some cases. Control

data were collected on the following day, and full recovery was

always noted.

In each monkey, we made at least two injections of one

microliter of sterile saline in each hemifield and recorded a

complete set of data to control for the possibility that any negative

effects produced by muscimol inactivation might have been caused

by local pressure on cortical neurons or local dilution of the

extracellular fluid at the injection sites.

Results

Visual Detection is not Affected in the Field where
Saccades were Impaired by FEF Inactivation

The first task that we developed to dissociate the spatial

confounding of visual and saccade functions was an extension of

the memory-guided saccade task (Figure 1a). During FEF

inactivation, the performance was severely impaired in contralat-

eral single stimulus trials (Figure 2b,f), consistent with observations

by previous investigators [18,27]. Performance when a single

target appeared in the ipsilateral field (Figure 2c,g) was nearly

perfect as expected. More informatively, the inactivation had no

significant impact on the bilateral- and no-stimulus conditions

(Figures 2a, e and d, h, respectively). Thus, it appeared that while

unable to make memory-guided saccades to contralateral visual

fields, the animal showed no difficulty in monitoring visual events

in the fields and reporting the brief appearance or absence of a

stimulus during the delay period. These findings were consistent

over six and four injection experiments in M10 and M9,

respectively. Two-way analysis-of-variance test was performed on

the percent correct data pooled over all injections in each monkey.

The post-injection time was set as a continuous independent

variable and the injection type (muscimol vs. saline) as the other

discrete independent variable. The interaction between the two

main effects indicated whether there was a significant difference

between the injection types in the change of performance over

time. The interaction was significant (p,0.05) in the case of the

contralateral single stimulus condition, whereas it failed to reach

significance in other conditions (p value given in each panel of

Figure 2).

The direction of saccades in error trials were analyzed for

further insights on the effects of FEF inactivation. The animals

made error responses in a small portion of bilateral stimulus trials,

which grew worse over time after muscimol or saline injections

(Figures 2a, e). Most of the errors arose in target selection, rather

than in saccade execution, in that the end-points were not deviated

much from the target locations. The selection errors were

distributed comparably between the right or left targets in both

animals (two hours after muscimol injections, rightward error

saccades occurred in 44.1% of total error trials and leftward ones

in 39.3% in M9; 35.7% rightward and 42.7% in M10). Thus,

there was no sign of propensity toward the rightward errors in this

condition which would have suggested a perceptual deficit in the

inactivated field. Furthermore, the proportion of rightward

saccades over total error responses was not different between

muscimol and saline injections: 44.1% and 35.7% for M9 and

M10, respectively, after muscimol injections and 42.3% and

38.2% after saline injections (p.0.05, chi-squared test, for both

animals).

With the contralateral single stimulus and two hours after

muscimol injection, both monkeys made more downward errors

than upward ones. Downward errors were 63.2% and 70.4% of

total error trials in M9 and M10, respectively. (They never made

erroneous rightward saccades in the left stimulus trials.) The

downward bias of error responses might by itself be interpreted as

a sign of perceptual or mnemonic disruption by FEF inactivation:

That is, the animal responded as if they did not see or remember

the left stimulus. However, this interpretation contradicted with

Dissecting Visual and Motor Roles by Monkey FEF
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the preserved performance in the bilateral condition and no

rightward biasing in the error trials as stated above.

We therefore tested the visual threshold more directly by

dimming the bilateral stimuli in three experiments with M10

(Figure 3). We reasoned that if the detection threshold were

affected by the inactivation, the animal, having not perceived one

stimulus, would act as if the trial were an ipsilateral single-stimulus

condition, and make an incorrect, rightward saccade. The

performance in the bilateral stimulus condition would then decline

during the inactivation. However, the percent correct in the

bilateral stimulus condition did not change significantly from what

had been before inactivation. Nor did we observe changes in the

Figure 2. The effect of FEF inactivation on the extended memory-guided saccade task is shown. Changes in performance on the task by
M10 (a–d) and M9 (e–h) are plotted as a function of time after muscimol injection into the FEF on the right side. Each data point was the percent
correct out of 36 to 45 trials. Data points of a marker type were from the same inactivation session. Six inactivation experiments were performed in
M10 and four in M9. Two control experiments with normal saline injection were performed in each animal with the data indicated by filled markers
(circles and squares). The solid and broken lines indicate the regression over the pooled data with muscimol and saline injections, respectively. The p
values are for the interaction between time-after-injection and injection type (muscimol vs. saline) in two-way ANOVA. The small icon in each panel
indicate the correct saccade direction for the task condition.
doi:10.1371/journal.pone.0039886.g002
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direction of error saccades: When the luminance of stimuli was

low, the monkey made downward saccades as if they had seen no

targets at all, rather than rightward ones which would have

increased if the detection threshold was elevated only in the

inactivated field. No rightward saccade was observed with or

without FEF inactivation at the lowest luminance level (0.5 cd/

m2). The proportions of downward saccades in total error trials

with the luminance at 0.74 cd/m2 were 74.3% and 76.5% before

and two hours after muscimol injections, respectively, while the

proportion of rightward errors were 12.8% and 10.2% in the same

sessions. Evidently then, although the performance got worse at

lower luminance levels, the visual threshold remained the same in

both hemi-fields, before and after muscimol injection.

The Saccade Dysfunction during FEF Inactivation is not
Secondary to Dysfunction in Bottom-up Attention Shift

Given the results above that elementary visual detection was

unaffected by FEF inactivation and previous reports that the FEF

contributed to covert visual search [22,28], we asked whether the

inactivation primarily interfered with high-level visual processing,

such as the spatial deployment of attention, and led to the

impairment of memory-guided saccades as a secondary effect to

the high-level visual dysfunction.

Perhaps the oculomotor function of FEF is tightly linked to and

therefore conditional on its role in bottom-up shift of visual

attention [9]. In other words, the impact of FEF inactivation may

be specific to situations where a saccade is preceded and mediated

by an exogenous attentional shift to a peripheral visual stimulus.

According to this idea, it may be argued that no deficit is observed

in the bilateral stimulus condition in our first task, because visual

attention is not lateralized or attracted toward one side, first by the

bottom-up processing of visual stimuli.

With this possibility in mind, we trained the animals on a four-

alternative delayed-saccade task. In this task, a saccade target was

chosen based on arbitrary learned associations between color and

spatial location in the visual field (Figure 1b, the upper panel).

Since the four peripheral targets were indistinguishably gray, a

bottom-up shift of attention to the targets was not required for

generating a saccade response. Instead, target selection was based

solely on pre-learned associative memory. This task was similar to

that used in our previous study [26], but was modified by a slight

but important variation that dissociated visual attention and

saccade intention: The animal was required to hold fixation at the

central colored disc until it disappeared. This variation served two

purposes: 1) the animal’s top-down attention was required to

remain focused on the central disc until a saccade response was

generated; 2) the determination of the correct target and the actual

response, i.e., the central color cue vs. the saccade to a peripheral

target, was separated in time as well as in space, reducing even

further the possibility that the saccade was triggered by a bottom-

up drive from the visual transients in the peripheral fields, or by a

bottom-up shift of visual attention.

After muscimol injections to FEF, the performance on the four-

alternative delayed saccade task deteriorated in a spatially specific

manner (Figure 4). Errors occurred only when the correct target

associated with a color cue was on the contralateral side to the

injected FEF. The errors were comparable in types and

proportions to those reported in our previous study [26]. Two-

way analysis of variance on the percent correct data with the post-

injection time and the injection type (muscimol vs. saline) revealed

that the interactions between the two main effects were significant

only when the correct target was in the contralateral fields (p value

given in each panel of Figure 4).

Discussion

Transformation of Visual Input into Saccade Command
by FEF

Previous studies have shown that the detrimental effects induced

by surgical or reversible chemical lesions in FEF depended on task

contexts [17–21]: The impairment is severe specifically when the

saccade response is made to a remembered target. Surgical

removal of FEF resulted in long-term deficits in memory-guided

saccades only [20,27], whereas muscimol inactivation produced

deficits in both memory-guided and visually guided saccades, with

a much worse effect on the former [18,26]. Such task selectivity of

FEF inactivation indicates that the basic processes for visual

perception and saccade execution are unaffected by the lesion. On

the other hand, this selectivity has often been taken as evidence for

the area’s importance in high-level visual functions, such as

constructing the saliency map from a visual stimulus array, or

controlling visual attention based on the map [2,5,10,12,13]. A

common line of thinking behind these notions is that visual input is

transformed into a saccade command at the FEF, taking

advantage of the co-existence of visual, visuo-movement, and

movement cells with similar response fields within the same area

[4].

Here, we dissected cognitive components associated with the

transformation from visual input to oculomotor output, by

developing two novel behavioral paradigms. Using the extended

memory-guided saccade task, we spatially separated visual and

motor processing, and with the four-alternative delayed saccade

task, the functional linkage between bottom-up attention shift and

saccadic eye movements was dissociated. Based on these cognitive

dissections, we observed that the FEF inactivation did not disrupt

visual detection at the affected visual fields (Figure 2). Nor was the

contralateral stimulus neglected, as evidenced by the correct, up-

saccade response in the bilateral stimulus condition.

Figure 3. Performance in the bilateral-stimulus trials before
and during FEF inactivation is plotted as a function of the
luminance of the stimuli. The percent correct was calculated from a
block of trials (n = 22,25) at the luminance, administered before
muscimol injections (open circles) and about two hours after them
(filled circles). The mean and standard deviation (error bar) are given for
the percent correct data over three muscimol injections on M10.
doi:10.1371/journal.pone.0039886.g003
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The reasons remain unclear to us why the animals responded

with downward saccades when a single stimulus was flashed to the

left, inactivated side. This finding by itself may indicate a

perceptual deficit. However, given the preserved performance

with bilateral stimuli, even with low luminance stimuli, we would

prefer to interpret it as a manifestation of mnemonic dysfunction

either of the stimulus or of the intention to move to the left.

Perhaps an instability of memory trace of the left target, in

conjunction with the lack of experiencing a stimulus on the intact

field might have misled the animals into judging that there had

been no stimulus at all.

It did not matter for saccade impairment induced by FEF

inactivation which part of the visual field received information

specifying a saccade target. Saccade impairment was observed

regardless of whether the information was given in the periphery

as in the memory-guided saccade task, or at the center as in our

four-alternative delayed saccade task. This finding suggests a

rather loose functional linkage between visual and movement

neurons in the FEF, contrary to the view that takes the spatial co-

registration between visual and saccade response fields in the FEF

neurons as evidence for a direct transformation from visual

information into oculomotor commands.

The Relationship between Attention and Oculomotor
Functions by FEF

In this study, we also learned that a bottom-up attention shift

was not a necessary pre-condition for FEF to generate a saccade

(Figure 4). Therefore, the muscimol effect on saccade generation

was independent of and likely additional to its effect on orienting

bottom-up attention which was previously demonstrated using a

covert visual search task [22].

As stated earlier, we do not dispute that the eye movements

entail top-down attention shifting, nor that FEF plays a role in top-

down or bottom-up attention control. Rather, our aim here was to

examine how the role of FEF in attention control was related to

that in saccade generation. Specifically, we asked whether the

oculomotor aspect in FEF’s functional role depended on its role in

attention, and if saccade impairments were inducible when

bottom-up attention shift was not required.

It is noteworthy that the common component of the FEF

inactivation effects was an inability to generate a saccade and that

the disability was specific to certain task situations. The

inactivation effect seemed to hinge on the requirement that

saccades be created based on memorized information regardless of

the memory type, be it from the short-term spatial memory stored

briefly as in the memory-guided saccade task or from the long-

term associative memory as in the four-alternative delayed saccade

task. We speculate, in generalization of the current findings, that

the FEF is specifically required in situations where saccades are

generated based on internal information and in the absence of

perceptually salient external stimuli specifying the target.

This notion that the FEF is critically needed for ‘‘cognitively-

driven’’ saccades is in keeping with previous reports that

demonstrated the effects on FEF activities of the feature similarity

between a target and distractors [29] and feature-based attention

[30]. These studies showed correlates of visual top-down selection

in FEF, without the concomitant production of a saccade,

indicating that the activities indeed reflected internal cognitive

information which could be used for the control of top-down

attention or saccade generation.

Implications for Human Neuropsychology
Our findings demonstrate that FEF is not essential for visual

detection and that the inactivation effect on saccade generation is

independent of that on visual bottom-up attention. In this regard,

the behavioral deficits observed in our animals resemble oculo-

motor apraxia in human patients in which the formation of

saccade intention is considered defective.

The pattern of deficits during FEF inactivation was also

consistent with hemispatial neglect, but distinct from visual

extinction. In fact, a normal performance was observed in the

condition with double simultaneous stimuli, ruling out the

Figure 4. The effect of FEF inactivation on the four-alternative
delayed saccade task is shown. Changes in performance on the task
by two animals (M10 and M9 in a and b, respectively) are plotted as a
function of time after muscimol injection into the FEF on the right side.
Each data point was the percent correct out of 36 to 45 trials. Data
points of a marker type were from the same inactivation session. Six
inactivation experiments were performed in M10 and four in M9. Two
control sessions with normal saline injection were performed in each
animal with the data shown in filled circles and squares. The solid and
broken lines indicate the regression over the pooled data with
muscimol and saline injections, respectively. The p values are for the
interaction between time-after-injection and injection type (muscimol
vs. saline) in two-way ANOVA. The small icon in each panel indicate the
direction of a correct saccade.
doi:10.1371/journal.pone.0039886.g004
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possibility that FEF lesions underlie visual extinction. This finding

is consistent with human neuropsychological data which localized

the neural substrates for visual extinction to more posterior parts of

the cerebral cortex [31].
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