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Scaling-Up and Model Inversion Methods with
Narrowband Optical Indices for Chlorophyll

Content Estimation in Closed Forest Canopies with
Hyperspectral Data

Pablo J. Zarco-Tejada, John R. Miller, Thomas L. Noland, Gina H. Mohammed, and Paul H. Sampson

Abstract—Radiative transfer theory and modeling assumptions
were applied at laboratory and field scales in order to study the
link between leaf reflectance and transmittance and canopy hyper-
spectral data for chlorophyll content estimation. This study was
focused on 12 sites ofAcer saccharumM. (sugar maple) in the Al-
goma Region, Canada, where field measurements, laboratory-sim-
ulation experiments, and hyperspectral compact airborne spectro-
graphic imager (CASI) imagery of 72 channels in the visible and
near-infrared region and up to 1-m spatial resolution data were
acquired in the 1997, 1998, and 1999 campaigns. A different set
of 14 sites of the same species were used in 2000 for validation of
methodologies. Infinite reflectance and canopy reflectance models
were used to link leaf to canopy levels through radiative transfer
simulation. The closed and dense ( 4) forest canopies of
Acer saccharumM. used for this study, and the high spatial resolu-
tion reflectance data targeting crowns, allowed the use of optically
thick simulation formulae and turbid-medium SAILH and MCRM
canopy reflectance models for chlorophyll content estimation by
scaling-upand by numerical model inversionapproaches through
coupling to the PROSPECT leaf radiative transfer model. Study of
the merit function in the numerical inversion showed that red edge
optical indices used in the minimizing function such as 750 710

perform better than when all single spectral reflectance channels
from hyperspectral airborne CASI data are used, and in addition,
the effect of shadows and LAI variation are minimized. Estimates
of leaf pigment by hyperspectral remote sensing of closed forest
canopies were shown to be feasible with root mean square errors
(RMSE’s) ranging from 3 to 5 5 g cm2. Pigment estimation by
model inversion as described in this paper using these red edge in-
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dices can in principle be readily transferred to the MERIS sensor
using the 750 705 optical index.

Index Terms—Chlorophyll, hyperspectral, leaf reflectance, op-
tical indices, radiative transfer.

I. INTRODUCTION

EXTENSIVE research has been carried out at the leaf level
in order to assess the physiological condition based on the

study of the light interaction with the foliar medium. The total
chlorophyll content in leaves decreases in stressed vegetation,
changing the proportion of light-absorbing pigments and
leading to less overall absorption with chlorophylland
( ) being the most important plant pigments absorbing
blue and red light in the 430–660 nm region, respectively [1],
[2]. Differences in reflectance between healthy and stressed
vegetation due to changes in pigment levels have been detected
in thegreen peakand along thered edge(690 to 750 nm) (e.g.,
[3]–[6]), allowing remote detection methods to identify vege-
tation stress and mapping through the influence of chlorophyll
content variation [7]. Several narrowband leaf-level optical
indices have been reported in the literature that might be applied
to hyperspectral canopy reflectance data for estimation
at larger scales [8], [9]. Nevertheless, most studies related
to optical indices for vegetation functioning are based on
measurements made at the leaf level rather than at the canopy
level, where correlation between chlorophyll content and
spectral reflectance can be readily observed [10]–[14]. These
potentially valuable optical indices, both traditional and new
developed narrowband indices derived from recent research
based on reflectance and derivative spectra, are grouped into
four categories, based on the spectral region and the type of
parameter used [8], [9], [15]–[17].

1) Visible Ratios: SRPI ; NPQI
; PRI calculated as
,

and ; NPCI
; Carter , G

and Lichtenthaler ;
2) Visible/NIR Ratios: NDVI ;

SR ; Lichtenthaler
, ; and SIPI
;
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3) Red Edge Reflectance-Ratio Indices: Vogelmann
, ,

; Gitelson and Merzylak
, ; Carter ; cur-

vature index , and the area of the
derivative under the red edge ;

4) Spectral and Derivative Red Edge Indices: the red
edge inflection and chlorophyll-well wavelengths,
and , respectively, from red edgeinverted-gaussian
curve fitting [18], as well as spectral indices calcu-
lated from derivative analysis: ; DPR1

, DPR2 , DP21
and DP22 , where

is the value of the reflectance derivative at thespectral
wavelength.

The successful application of such extensive research on
leaf-level optical indices to earth observing instruments at much
broader scales in order to predict canopy condition, requires
the development of links between the leaf and the canopy,
where photon-vegetation interactions are affected by the two
different media. The estimation of pigment content at a canopy
level can be performed using simple statistical relationships at
a leaf level through the use of optical indices [19]–[23], using
modeling methods through radiative transfer by numerical
model inversion [24]–[29] and by a combination of leaf-level
empirical relationships coupled with a canopy reflectance (CR)
model [16], [17]. Research on the application of radiative
transfer models for coupling leaf and canopy models shows
promising results in the simulation of the pigment effect on leaf
reflectance and in turn the effect of the geometrical arrangement
of leaves on the canopy reflectance. Such developments have
the potential to replace the statistically-based approaches for
estimation of leaf bioindicators with quantitative model-based
methods. The application of such methods in forestry canopies,
where canopy structure plays an important role, the selection
of the merit function used in the optimization of simulated
canopy reflectance coupling a leaf and a canopy model, and
the effect of leaf area index (LAI), shadows an understorey
in the modeled reflectance, and therefore, in the estimated
pigment content, we need continued extensive research with
real airborne or satellite-level data. Throughout this paper, the
term LAI represents effective leaf area index, as defined
in [30], since can be conveniently defined in terms of
canopy gap fraction. Inherently, this usage ignores the effects
of woody material and foliar clumping needed for a more
detailed specification of LAI [31], but for flat deciduous leaves,
this simplification is considered acceptable. Methodologies
for the application of radiative transfer theory and modeling
assumptions at laboratory and field scales in order to define
the link between leaf reflectance and transmittance and canopy
airborne hyperspectral data acquired with the compact airborne
spectrographic imager (CASI) are discussed in the following
sections. Airborne data acquired with different spectral and
spatial characteristics over twelveAcer saccharumM (sugar
maple) study sites in four consecutive years at 1 m, 2 m, and
3 m spatial resolutions and in 72 spectral channels in the
visible and NIR facilitated the investigation of such important
questions through leaf and canopy radiative transfer models for

estimation.

II. M ETHODOLOGIES FORESTIMATION OF PIGMENT CONTENT

IN VEGETATION CANOPIES: SCALING UP AND MODEL

INVERSION

Predictions of chlorophyll content or any other canopy bio-
physical parameter from airborne or satellite canopy reflectance
can been carried out through four different methodologies:
1) directly studying the statistical relationships between
ground-measured biochemical data and canopy-measured
reflectance [19], [20]; 2) applying the leaf-level relationships
derived between optical indices and the pigment content
directly to canopy-measured reflectance [21]–[23]; 3) scaling
up the leaf-level relationships based on optical indices related
to pigment content through models of canopy reflectance or
infinite reflectance [8], [15]–[17]; and 4) inverting the
observed canopy reflectance through a canopy reflectance or
infinite reflectance model coupled with a leaf model to estimate
the optimum pigment content [17], [24]–[29].

The four proposed methodologies have advantages and dis-
advantages that are related to the complexity of the modeling
approach selected and the degree of general or local applica-
bility of the methodology in remote sensing. The first method
studies the correlations between canopy-measured reflectance
by a field, airborne or satellite sensor with ground-measured
pigment, or any other biophysical constituent. In this case, no
leaf reflectance is measured, and therefore, the link between
canopy reflectance and biochemical content is found through
statistical relationships. Multivariate analysis between visible
infrared imaging spectrometer (AVIRIS) reflectance and total
nitrogen, lignin, starch, chlorophyll content, and LAI [19]
and with nitrogen and chlorophyll [20] applied by stepwise
multiple-regression procedure using the AVIRIS spectral
bands showed good statistical relationships derived at specific
wavebands. Although significant correlations were found, no
predictive capabilities could be inferred to other study sites
since the locally-derived relationships are affected by species
and canopy structure.

The second method, which uses statistical leaf-level relation-
ships applied to canopy reflectance for pigment estimation, is
also site and species specific [32], [33] and therefore requires
relationship calibration that is a function of the canopy struc-
ture and viewing geometry at the time of remote sensing data
collection. Therefore, the statistical relationships derived at leaf
level need to be “calibrated” in order to be useful for estima-
tion at the canopy level, due to the differences between the two
media: one where the relationship is derived (leaf) and the other
where it is applied for estimations (forest canopy). This method-
ology allows the derivation of relationships based on optical in-
dices calculated at wavelengths where subtle changes in leaf re-
flectance correspond to specific biophysical processes that are
targeted for measurement at the canopy level. Stepwise mul-
tiple-regression is often used to develop predictive algorithms
from leaf reflectance , which are then applied to airborne data:
AVIRIS [23] and airborne imaging spectrometer (AIS) spectra
[21]. Laboratory canopy studies [22] and those using AVIRIS
spectra [34] were directed to the identification of spectral bands
at both leaf and canopy levels which are less sensitive to changes
between levels, thereby minimizing effects due to the canopy,
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thus selecting spectral bands that could be used directly for pre-
diction at canopy level. Application of leaf-level relationships
to canopy reflectance through optical indices has been the tra-
ditional method used in the past, and a summary of the optical
indices derived at the leaf level was described in the introduc-
tion.

In the third methodology, the same relationships between
leaf constituent content and canopy reflectance are derived
by scaling up the optical indices through infinite or canopy
reflectance models [8], [9], [17]. A primary advantage is that
the use of infinite or canopy reflectance models as part of the
calculation of relationships avoids the post-calibration step to
compensate for canopy structure or viewing geometry. There-
fore, scaled-up leaf-level relationships can be used directly
for bioindicator predictions on measured canopy reflectance
data by considering canopy structure and viewing geometry
information in the model scaling-up step. The objective of this
method is the derivation of predictive algorithms to be used
under certain canopy assumptions, not simply the evaluation of
statistical correlations between sensor reflectance and ground
measurements. In closed dense vegetation canopies, the re-
flectance canopy model can sometimes be replaced by different
infinite reflectance formulations, as explained later, therefore
simplifying the need for input parameters defining structure and
geometry. As in the first methodology, this approach enables
a search for subtle changes in leaf reflectance due to specific
biophysical processes, and the reflectance model permits direct
prediction of the canopy biochemical parameter. The main
disadvantage is the requirement for leaf sample collection for
the derivation of leaf-level relationships.

The fourth methodology, inversion of a canopy reflectance
model coupled with a leaf model, attempts to avoid the develop-
ment of leaf-level relationships through the use of a leaf model.
In this approach [24]–[27], [29], the leaf radiative transfer simu-
lation uses leaf biochemical constituents as input to model leaf
reflectance and transmittance that is in turn used as input for
the canopy reflectance model. The main advantage of this ap-
proach is that no leaf sample collection is needed to derive rela-
tionships, but suffers from the constraint that only biophysical
parameters considered in the leaf model can be estimated from
measured canopy reflectance. No subtle changes due to spe-
cific functioning effects can be sought, and therefore no changes
at specific absorption wavelengths due to chlorophyll degrada-
tion at different senescence stages can be studied. That is, it is
implicitly assumed that the leaf model captures all actual ra-
diative processes accurately. Furthermore, the method is com-
putational intensive, and no validation has been found in the
literature reporting results in forest canopies from airborne or
satellite-measured reflectance with ground truth; previous work
has focused on synthetic data [24], [28], field spectrometer data
[25], estimation of results with no validation due to a lack of
ground truth [26], comparison of different model inversion tech-
niques using simulated data [35], and simulation studies mod-
eling three-dimensional (3-D) canopies used for applying in-
version techniques [27], [28]. Successful and LAI es-
timation results were reported for agricultural crops observed
with airborne CASI data in which comparisons of inversions
from four radiative transfer models coupled to PROSPECT [29],

using Minolta SPAD-502 for estimation of leaf , are de-
scribed. Other studies with lower spatial and spectral resolu-
tion data [36], [37] use canopy model inversion for extracting
canopy biophysical information from large swath satellite data
at global scales using the advanced very high resolution ra-
diometer (AVHRR) and VEGETATION/SPOT4, respectively,
and therefore, its applicability and portability to narrow-band
hyperspectral high-spatial airborne data cannot be evaluated.

Simulation of the tree crown reflectance spectral content for
comparison to the measured canopy reflectance and retrieved
optical indices may be done through and CR models,
depending upon the complexity and assumptions made with
respect to the type of vegetation canopy and viewing geometry.
Infinite reflectance formulations model reflectance without
canopy structure or viewing geometry considerations, based
solely on leaf reflectance and transmittance. These formula-
tions correspond to optically thick leaf material with different
assumptions for the multiple scattering between leaf layers.
This thick-leaf or leaf-stack concept may have applicability
to closed deciduous canopies characterized generally by
high LAI, therefore with little effect of soil background and
understorey. CR models, such as SAILH [38] and MCRM
[39], [40] used in this research, on the other hand, take into
account viewing geometry and canopy structure, therefore
modeling those effects in the canopy reflectance by different
approximations generally based on the RTE and geometrical
optical considerations.

Different infinite reflectance formulations have been derived
based on assumptions related to the scattering between layered
leaves forming the optically thick canopy. In each case, the
reflectance for an optically thick medium is expressed in
terms of the inherent single leaf reflectance and transmittance.
Lillestaeter [41] derived a simple formulation (referred to here
as ) from measurements of leaf-stack apparent reflectance
over known dark and bright backgrounds, ignoring multiple
scattering, and considering equal reflectance for both sides of
the leaf (1a). This simple formulation was found inadequate by
Miller et al. [42] to simulate the measured reflectance of leaf
stacks. A matrix formulation by Yamada and Fujimura [43]
was used in a simulation that included multiple reflectance
between leaves and considering different adaxial and abaxial
reflectance for the leaf ( , (1b). The Hapke [44] infinite
reflectance formulae corresponds to a medium with a
single scattering albedo assumed approximately equal to
reflectance transmittance for a pile of leaves, (1c).
The corresponding formulae approximating thick leaf canopies
are

approx. leaf stack (1a)

leaf stack (1b)

thick leaf (1c)

Both CR and models have been used in this research for
estimation from airborne hyperspectral data collected

over closedAcer saccharumM. forest canopies using the
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Fig. 1. Schematic view of the overall analysis methodology followed for the
scaling-up method. Leaf-level reflectance and transmittance measurements are
scaled-up to canopy level through infinite and CR models and input parameters
related to the canopy structure and viewing geometry. Relationships between
optical indices calculated from above-canopy simulated reflectance and
ground-truth bioindicators are applied to above-canopy hyperspectral CASI
reflectance to obtain bioindicator estimation. Assessment is made comparing
ground-truth measured with estimated bioindicators.

scaling-up and numerical model inversion methods explained
below.

A. Parameter Estimation by Scaling-Up Optical Indices

A schematic view of the approach used here for estimation
of leaf bioindicators through the scaling-up of leaf-level optical
indices is shown in Fig. 1. Single leaf reflectance and trans-
mittance measurements from field data sampling are
used for the simulation of above-canopy reflectance through
infinite reflectance and canopy reflectance models, constrained
by a specific canopy model parameter assumption set.
A specific set of assumed input parameters to the CR model
defines the canopy structure, by a more or less complex set
of canopy parameters, and the viewing geometry, defined by
the solar zenith and azimuth, and viewing angles, needed for
simulating canopy reflectance from single leaf reflectance
and transmittance measurements. Canopy spectral reflectances
(denoted ), or more precisely the above-canopy spectral
bidirectional reflectance factor, simulated through the canopy
simulation model are used to calculate specific optical indices

(denoted ). For a given optical index, a set of values
are calculated from the leaf-level spectral measurements used
for CR simulation. Leaf bioindicators (denoted ) measured
in each leaf sample ( , carotenoids, etc) are used to derive
relationships with the optical indices calculated from the
above-canopy simulated spectra. Therefore, the relationship
between a given bioindicator (e.g.,g cm ) and a
given optical index (e.g., ) is calculated from simu-
lated canopy reflectance rather than from leaf-level measured
reflectance. This relationship is therefore affected by canopy
structural parameters and viewing geometry, which permits its
application to above-canopy measured reflectance. Thus, the
relationships between the set of optical indices and the
set of bioindicators are then applied to hyperspectral CASI
reflectance data to obtain bioindicator estimations. To do so,
above-canopy measured CASI reflectance is used to calculate
the CASI-optical indices input using relationships of the form

( ), e.g., g cm ,
with and constant parameters for above-canopy simulation,
and an optical index derived from the above-canopy
reflectance. This methodology enables the direct application
of sensor-derived optical indices in scaled-up algorithms that
are therefore a function of the canopy structure and viewing
geometry, precluding the need for calibration of prediction
relationships. Assessment of optical indices as estimators
of bioindicators is then made comparing in-field measured
bioindicators (measured ) with CASI-derived estimations
(estimated ).

B. Parameter Estimation by Model Inversion

The estimation of a biophysical canopy parameter by numer-
ical model inversion can generally be carried out by different
methodologies: 1) look-up tables (LUT); 2) iterative optimiza-
tion (OPT); and 3) neural networks (NNT). The look-up table
technique is conceptually the simplest [35] and consists of the
generation of an output table for a discrete set of input param-
eters covering the expected range of the parameters. The table
is used to find the measured value that is directly related to a
given set of input parameters. This method requires the gen-
eration of large number of cases that are subsequently used to
compare with measured data. Iterative Optimization is the clas-
sical technique for inverting radiative transfer models in remote
sensing [25], [26], [45], [46] and consists of minimizing a func-
tion that calculates the root mean square error (RMSE) between
the measured and estimated quantities by successive input pa-
rameter iteration. Neural networks are nonphysical methods that
relate a set of input variables to a set of output variables by a
learning process and have been shown to be efficient in inver-
sion of canopy models [47], [48].

Iterative-optimization numerical model-inversion techniques
to estimate chlorophyll content using a coupled leaf model and a
canopy model requires three consecutive steps: 1) estimation of
leaf reflectance and transmittance from a set of leaf model
input parameters such as the parameter to be estimated, ,
and other leaf cellular structural or scattering parameters; 2) es-
timation of canopy reflectance from leaf-level, model-estimated
, , and set of canopy model parameters that define canopy

structure and viewing geometry; and 3) error calculation by
comparison of estimated canopy reflectanceto the at-sensor
measured reflectance . Error calculation consists in deter-
mining the set of parameters ,
which minimizes a merit function over the whole spectrum

(2)

where is the measured canopy spectral reflectance, and
is the modeled canopy spectral reflectance with a set

of parameters. Different merit functions have been defined
in the literature, each based on different assumptions. The mini-
mizing function for numerical model inversion using reflectance
data in several spectral bands can be calculated 1) from single re-
flectance channels, comparing the estimated with the measured
reflectance in all spectral bands [(2), [24], [25]; 2) using
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weighting factors that represent the weight given to theth wave-
length. The usual protocol is to choose weighting coefficients

to be proportional to the inverse of the measured canopy re-
flectance , thereby placing more weight to wave-
lengths in the visible part of the spectrum where pigment ab-
sorption is maximum, and minimizing the impact of errors be-
tween measured and estimated reflectance in the NIR, where
chlorophyll absorption decreases and reflectance is driven by
canopy structure; 3) by a more sophisticated construction of
merit functions [26], where penalization to the merit function
[49] is introduced if the best fit is found when a parameter
being inverted falls outside the prior-established range of al-
lowed values; and 4) building merit functions based on spectral
transforms or vegetation indices [46], in which the merit func-
tion generated is based on the optical index that is supposed to
be related with the parameter subject to estimation, in this case

.
As an example, (3) presents a merit function when the

red-edge spectral parameter is used for pigment
estimation, which could easily be modified if a combination of
optical indices is used

(3)

where is the optical index calculated from mea-
sured canopy reflectance, and is the optical
index calculated from modeled canopy reflectance for a given
set of input parameters. The use of optical indices in the merit
function has not been found reported in any of the validation
work found in the literature, in spite of the significant inherent
potential of this approach for remote sensing applications. Re-
flectance values measured from airborne or satellite sensors are
a function of illumination, canopy structure, and atmospheric
condition at the time of data collection. On the other hand, esti-
mation of biophysical parameters through optical indices maxi-
mizes the sensitivity to such biophysical parameters, while nor-
malizing external effects due to atmosphere, illumination con-
ditions, and viewing geometry [50], [51]. Therefore in this re-
search, leaf-level optical indices and ratios that showed good
correlation with pigment content are proposed here to be used as
a basis for the merit function for model inversion, as discussed
later.

These different approaches have been tested in this research,
in order to compare the pigment estimation by different tech-
niques using hyperspectral airborne data collected in 1998,
1999, and 2000. This data set provides a valuable validation
database for model inversion with hyperspectral data in closed
dense maple canopies. The experimental methods and materials
used to carry out the pigment investigations are described
below.

III. M ETHODS AND EXPERIMENTAL DATA

CASI airborne hyperspectral data were collected in deploy-
ments over 12 sites ofAcer saccharumM. in the Algoma Re-
gion, ON, Canada, in 1997, 1998, and 1999. A validation of the
methodologies developed with 1997, 1998 and 1999 data over

the 12 study sites was carried out in June 2000 selecting a dif-
ferent set of 14 plots of the same species. The above-canopy
data acquisition using the CASI sensor was divided into three
missions, each with a specific sensor mode of operation: the
Mapping Mission, with 0.5 m spatial resolution and seven spec-
tral bands (Fig. 2); theHyperspectral Mission, with 2 4 m
spatial resolution, 72 channels and 7.5 nm spectral resolution
(Fig. 3), and the Full-Spectral Hyperspectral Mission, with 288
channels and 2.5 nm spectral resolution. The 12-bit radiometric
resolution data collected by CASI were processed to at-sensor
radiance using calibration coefficients derived in the labora-
tory by the Centre for Research in Earth and Space Technology
(CRESTech). Aerosol optical depth data at 340, 380, 440, 500,
670, 870, and 1020 nm were collected using a Micro-Tops III
sunphotometer in the study area at the time of data acquisition
in order to derive aerosol optical depth at 550 nm to be used
to process image data to ground-reflectance using the CAM5S
atmospheric correction model [52]. Reflectance data were geo-
referenced using GPS data collected onboard the aircraft. Final
registration of the hyperspectral mode imagery was achieved by
registration to the CASI mapping mission imagery using visual
identification of ground-referenced 1 m white targets, which
served to accurately identify the location of the sites.

Mean reflectance values per plot were calculated from the
hyperspectral imagery in eachAcer saccharumM. study site
of 20 20 m. The mean reflectance per plot was calculated
selecting the 25% of pixels with highest reflectances in the
NIR, therefore targeting crowns while minimizing the influence
of shadows, canopy openings and the direct understorey re-
flectance. The study sites of sugar maple were selected in 1997
from existing provincial plot networks in the Algoma Region,
representing a range of productivity and decline. In particular,
six permanent sample plots from the provincial Growth and
Yield Program [53], [54] were chosen to investigate the effects
of stand productivity in maple. Another six plots were selected
from the provincial Hardwood Forest Health Network [55],
[56] to represent a gradient in maple forest decline. Detailed
stand records exist and these sites are considered representative
of tolerant hardwood forests in the Algoma Region.

A field sampling campaign was carried out for biochemical
analysis of leaf chlorophyll concentration, along with leaf
reflectance and transmittance within the same period of the
field data acquisition. Samplings were carried out in June and
July of 1998 and 1999, and in June 2000, collecting from the
top of the crowns at each one of the twelve Sugar Maple study
sites. Four leaves per tree with five trees per study site were
sampled for measurements of and spectral measure-
ments of reflectance and transmittance, collecting a total of
440 leaf samples per year. Pigment content measurements from
the leaves were made as in [15], [16]. Biochemical analysis of
samples from 2000 showed a narrower range of content
compared to the 1998 and 1999 sites, with values falling into
the 29.8–42.7 g cm interval (while in previous years, ranges
were 19.1–41.1 g cm in 1998, and 26.6–45.8g cm in
1999). LAI measurements were acquired for all the plots using
a PCA Li-Cor 2000 instrument.

Single leaf reflectance and transmittance measurements were
acquired on all leaf samples using a Li-Cor 1800–12 integrating



1496 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 7, JULY 2001

Fig. 2. CASI image collected over one of theAcer saccharumM. study sites in the mapping mission mode of operation, with seven channels and 0.8 m spatial
resolution. The high spatial resolution facilitated target location needed in the image registration process, therefore, locating the study site of 20� 20 m (1998 and
1999) and 80� 80 m blocks (2000 validation campaign, white box in figure).

sphere apparatus coupled by a 200m diameter single mode
fiber to an Ocean Optics model ST 1000 spectrometer with a
1024 element detector array, yielding a 0.5 nm sampling interval
and nm spectral resolution in the 340–860 nm range.
The spectrometer is controlled and read out by a National In-
struments multipurpose data acquisition card (DAC-550). Soft-
ware was designed to allow detailed control of signal verifica-
tion, adjustment of integration time, and data acquisition [57].
Spectral bandpass characterization performed using a mercury
spectral line lamp source yielded full-width at half maximum
(FWHM) bandwidth estimates of 7.37 nm, 7.15 nm, and 7.25
nm, at 438.5 nm, 546.1 nm and 576.9 nm, respectively. Fiber
spectrometer wavelength calibration was performed using the
Ocean Optics HG-1 mercury-argon calibration source, which
produces Hg and Ar emission lines between 253 and 922 nm.
Single leaf reflectance and transmittance measurements were
acquired following the methodology described in the manual for
the Li-Cor 1800–12 system [58] in which six signal measure-
ments are required (see [15], [16] for measurement protocol).
An integration time of 609.3 msec was used for all sample mea-

surements. Smoothing of reflectance and transmittance was car-
ried out as described in [15], using a Savitzky–Golay approach
with a third-order polynomial function with 25 nm bandwidth
found optimum for our spectral data set.

IV. RESULTS

Leaf-level relationships were developed between
narrow-band optical indices and from the samples
collected from theAcer saccharumM. study sites in June
and July 1998 and 1999 campaigns. Red edge and spec-
tral and derivative indices consistently showed the best
relationships in the two-year study, demonstrating that

, Vog1 ,
Vog2 , Vog3

, Vog4
, GM1 , GM2
and Ctr2

(red-edge indices) and , DP21
, and DP22 (spectral and
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Fig. 3. View of a selection of the study areas of 500� 500 m acquired over themaple declineplots used for field measurements in 1997, 1998, and 1999. CASI
data of 2� 4 m and 72 channels from the study sites for leaf sampling collection (in white box). Composite image from 555.6 nm (blue), 706.8 nm (green), and
852.1 nm (red).

derivative indices) achieved the best results in both early and
mid summer when used for estimation. Optical indices
calculated from the red edge are consistently well correlated
with , since this is the spectral region where pigment
absorption decreases, therefore exhibiting increasing effects
of the medium structure in the measured reflectance, affecting
the slope. Results obtained with airborne CASI reflectance
data from the study sites for the estimation of by the

scaling-up through a radiative transfer model and by model
inversion of a coupled leaf and canopy model approaches are
shown in next sections.

A. Estimation of by Scaled-up Optical Indices Applied
To CASI Hyperspectral Data

The leaf-level relationships between optical indices and
calculated from single leaf reflectance and trans-



1498 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 7, JULY 2001

TABLE I
DETERMINATION COEFFICIENTS ANDRMSE (�g=cm ) OBTAINED IN chl ESTIMATIONS APPLYING RELATIONSHIPS FROMSINGLE LEAF REFLECTANCESET OF

MEASUREMENTS(�),R ,R , AND R OPTICALLY THICK LEAF SIMULATION MODELS, AND SAILH AND KUUSK CR MODELS TOCASI DATA COLLECTED

OVER ACER SACCHARUMM. STUDY SITES IN 1998(n = 12) AND 1999(n = 12). CODES: VISIBLE RATIOS (C1), RED-EDGEINDICES (C2), AND SPECTRAL AND

DERIVATIVE INDICES (C3). IN GREY RELATIONSHIPS WITHR > 0:3 AND RMSE < 10

mittance data collected from the ground-truth deployments
in June and July 1998 and 1999, and those scaled-up to
above-canopy level through infinite reflectance models, and
SAILH and Kuusk canopy reflectance models were applied
to CASI hyperspectral data for estimation. For the
application of the SAILH and Kuusk canopy reflectance
models nominal input parameters derived from the study areas
were: , plagiophile leaf angle distribution function
(LADF), soil reflectance data derived from CASI imagery,
and model-estimated skylight irradiance fraction based on
conditions during airborne acquisitions. Additional parameters
needed in the Kuusk model were ,
and , and , and for the LADF
assumed to be a plagiophile distribution. A model parameter
sensitivity study was carried out in order to study the effect of
such nominal structural and viewing geometry parameters on
the optical indices that are used for prediction. This sensitivity
study [9], [17] showed that low LAI values are very critical
to the accuracy of predicted bioindicator through optical
indices regardless of the considered type of canopy. The study
showed that differences between the predicted bioindicator
using nominal canopy parameters and the prediction with
variable and LADF is insignificant (less than 5%) when LAI
is higher than three, and the optical indices used are the red
edge reflectance-ratio indices and spectral and derivative red
edge indices. Furthermore, the canopy type was shown to be
irrelevant when the same optical indices are used (less than
5% difference) for the estimations when LAI is higher than
three and the is a nominal 30. It was shown that derivative
indices are less sensitive to low LAI values than other optical
indices, demonstrating that red edge and derivative indices
are more suitable for bioindicator prediction and mapping
with high spatial hyperspectral remote sensing data. Results

also demonstrated the small effect of the solar zenith angle
, especially in red edge spectral and derivative indices, with

less than 2% variation in the predicted bioindicator when
changes from 20to 60 , where the optical indices used are
Vogelmann and DP21 , respectively.
Therefore, changes in from 29 to 41 in the 12 CASI
images obtained from the study sites in 1998 and 1999 are not
expected to affect the bioindicator prediction when
was chosen as nominal input parameter in the CR model when
scaling from leaf-level to canopy-level. Presented in Table I are
the determination coefficients and RMSEs obtained in
estimation by applying relationships obtained from single leaf
reflectance set of measurements (), optically thick leaf simu-
lation models ( , , and ), and CR models (SAILH
and Kuusk) to CASI data collected over theAcer saccharum
M. study sites for 1998 and 1999 . These
results show consistency between CASI-level and leaf-level
relationships obtained between optical indices and
content. The best indices for estimation that were found
at leaf level are likewise those achieving best estimations when
applied to CASI canopy reflectance. It is also demonstrated
that a cross-seasonal consistency exists in the performance
of the best indices for 1998 and 1999, showing that the good
estimation performed by the best indices is maintained from
1998 to 1999 campaigns.

Red-edge indices, especially and DP21
and spectral and derivative indices such as ,
Vog1 , G_M2 , Vog3

, Vog2 ,
Vog4 , G_M1 , and Ctr2

are the best optical indices for esti-
mation at canopy level. Other optical indices show significance
when used as estimators of , but inconsistency exists
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Fig. 4. Estimation ofchl from CASI data using Vog1(R =R ), G_M2 (R =R ), andDP21(D =D ) optical indices developed at leaf level
through�, R and CR models in 12Acer saccharumM. study sites for 1998 (left) and 1999 (right).

between deployments such as Lic4 (area under 450–680
region) ( , 1998; , 1999), PRI2

( , 1998; ,
1999), and ( , 1998; , 1999). Traditional
and well accepted optical indices for indicators of vegetation
status such as NDVI and SR performed poorly in the two
consecutive years: , 1998; , 1999 (NDVI),
and , 1998; , 1999 (SR). These traditional
indices, calculated as ratios of NIR/VIS, are primarily tracking
canopy structural changes but are not able to track subtle
changes due to pigment content variation between study sites.
Therefore, this study provides strong evidence that canopies
with homogeneous structure but different chlorophyll content
need the use of red edge and spectral indices to estimate
changes in pigment content.

The estimation of from Vog1 , G_M2
and DP21 optical indices using ,

, , and , and the SAILH and Kuusk CR models
are illustrated in Fig. 4. It can be seen that the estimation im-
proves when SAILH and Kuusk CR models are used. For all
indices used the estimations improve (linear regression slope
progressively approaches unity) and RMSE significantly de-
creases when the optical indices are calculated using first
and then CR models (Table I), although RMSE does not improve
significantly when CR models are used. In addition, generally
lower RMSE is found with and than with
and . From the three infinite reflectance models used.

(Hapke) and (Yamada and Fujimura) are the ones
achieving best estimations, approaching the predictive ability of
SAILH and Kuusk CR models.

B. Estimation of by Model Inversion

SAILH and MCRM CR models and PROSPECT leaf model
were used for estimation by inversion using 1998 and
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TABLE II
ESTIMATION OF chl OVER 12 ACER SACCHARUMM. STUDY SITES IN 1998
AND 1999BY MODEL INVERSION AND SCALING-UP METHODS, WITH LEAF

STRUCTURAL PARAMETER N ESTIMATED BY INVERSION (N = 1:54, 1998;
N = 1:43, 1999). FOR SAILH AND PROSPECT MODEL INVERSIONTHREE

METHODSWERE USED: MINIMIZING A FUNCTION WITH ALL SPECTRAL

CHANNELS WITHOUT WEIGHTING COEFFICIENTS(w ), WITH WEIGHTING

COEFFICIENTSCALCULATED AS THE INVERSE OF THEREFLECTANCE(w ) AND

BY A FUNCTION BASED ON THEOPTICAL INDEX R =R

1999 CASI data. The inversion of the coupled MCRM and
PROSPECT models was performed as indicated in [26] by
minimizing a merit function [49]. Two different approaches
were tested: 1) setting LAI to a measured value ; and 2)
allowing both LAI and to vary. Other model parameters
for MCRM were set to nominal values derived from the study
areas, such as plagiophile LADF with , ,
solar zenith angle , hotspot parameter ,

(1998) and 1.41 (1999) estimated
with collected leaf samples by PROSPECT model inversion,
Markov parameter , viewing angle , relative
sun azimuth , and turbidity factor .

The inversion of models was per-
formed by iteration and minimizing a function as indicated in
[24], [25] for all the 72 CASI channels in the visible and NIR.
In addition, a methodology consisting of minimizing a function
based in a red edge optical index that show good correlation with
pigment content in the leaf-level study was also used, where
both and LAI were allowed to vary over a range of values
four to seven for LAI and ten to 70g cm for , with the
merit function adopted as in (4)

(4)

A comparison of results from the two estimation methodolo-
gies is shown in Table II, with and

g cm , and g cm (1999)
when all CASI channels were used as a minimizing function
with no weighting coefficients and with . When
coefficients are specified as the inverse of the measured re-
flectance, results are and g cm
(1998), and and g cm (1999),
showing that RMSE increases when weighting coefficients are
used.

Results obtained from the coupled MCRM and
PROSPECT model inversion show and

g cm (one outlier) in 1998; and
and g cm in 1999, therefore, indicating sim-
ilar RMSE but lower compared to SAILH and PROSPECT
inversion.

The results obtained with SAILH and PROSPECT model
inversions using the red edge index as a min-

Fig. 5. Estimation ofchl over 12Acer saccharumM. study sites in 1998
(top) and 1999 (bottom) by 1) SAILH and PROSPECT model inversion using
all reflectance channels in the merit function; 2) SAILH and PROSPECT
model inversion usingR =R in the merit function; and 3) scaling-up
R =R through SAILH canopy reflectance model. LAI was set to four,
andN = 1:54(1998), N = 1:41(1999), estimated from leaf samples by
PROSPECT model inversion.

imizing function by iteration are comparable to those
from the scaling-up methodology, with and

g cm in 1998 and and
g cm in 1999. These results

imply similar estimation performance as the scaling-up method
for 1998 and 1999 using the same LAI: with

g cm ; g cm
in 1998 and , g cm ;

g cm in 1999 (see Table II). Fig. 5 is
used to illustrate the comparison of estimations for 1998 and
1999 by 1) scaling up index through SAILH; 2) by
SAILH and PROSPECT inversion using all CASI reflectance
channels; and 3) by inversion using
the red edge index.

Both the scaling-up and the model
inversion methods generated comparable results when the same
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Fig. 6. Reflectance spectra obtained from oneAcer saccharumM. study site by selection of all pixels (d, in blue) and targeting the brightest 25% in the NIR (d,
in red). The plot (b)–(c) from the (a) study area is subset and a channel in the NIR (800 nm) used to select the brightest pixels. Red pixels in (c) are thoseones that
are not selected when the spectrum is calculated targeting only the crowns, therefore not including shadows and canopy openings.

minimizing function based on a red edge index was used, and
poorer estimations when all CASI reflectance bands are used.
The small effect of LAI variation in closed dense canopies can

be seen in the estimation of by
model inversion with all reflectance channels as merit function
with : , g cm for
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; , g cm for LAI variable (1998),
and , g cm for ;

, g cm for LAI variable (1999). These
results clearly demonstrate that minimizing functions based on
absolute canopy reflectance bands, weighted or not as a function
of wavelength, generate poorer determination coefficients and
RMSEs than a single optical index calculated in the red edge
spectral region, such as .

C. Effects of Shadows and Canopy Structure

SAILH, Kuusk CR models and infinite reflectance models,
used for model inversion or in the scaling-up method, pro-
vide an improvement in prediction capabilities compared to
statistical leaf-level linear relationships. Nevertheless, both
SAILH and Kuusk models are useful for infinite plane-parallel
turbid-medium canopies, and the infinite reflectance models
that correspond to a thick layer subject to the assumptions
made for the multiple scattering. Canopy openings, shadows,
and changes in the geometry of the canopy elements typical
for broad leaf forest stands are not simulated in the modeling
described above, therefore raising questions about the appro-
priateness of analysis using modeling approaches designed
for uniform vegetation canopies. In order to use plane-parallel
canopy model results with our CASI data, all the results
discussed were obtained by a preselection of the upper pixels
values in the NIR, therefore selecting the brightest pixels mini-
mizing shadows and canopy openings in all study areas (Fig. 6).
The different methodologies used here for pigment estimation
were tested for both 1) calculation of the average reflectance
from all 20 20 m study sites by selection of the brightest
25% pixels in the NIR, as done before, and 2) calculation of
the average of all pixels from the 20 20 m sites, therefore
including an effect due to shadows. Since we are dealing with
a dense forest canopy and using high spatial resolution image
data, the effects of the shadows on the different methodologies
used for pigment estimation can be studied. The results for
1998 and 1999 CASI data are summarized in Tables III and IV,
for eight methods of pigment estimation: 1, 2, and 3 scale up the

optical index through , and infinite
reflectance models, respectively; 4 scales up the
optical index through SAILH canopy reflectance model; 5
and 6 are numerical inversions of SAILH and PROSPECT
using all reflectance channels in the merit function, and using

in the merit function, respectively; and 7 and 8 are
numerical inversions of and , respectively, coupled
with PROSPECT using in the merit function.

It is clear that there is little effect due to shadows in
the estimation of the when the red edge optical
index is used in the merit function for all the
methods used: g cm (brightest 25%),

g cm (all pixels) in 1998 with SAILH and
PROSPECT inversion using in the merit function.
On the other hand, a large effect is found due to radiometric
texture (shadows) when all reflectance channels are used in the
minimizing function: g cm (brightest 25%),

g cm (all pixels) in 1998 with SAILH and
PROSPECT inversion. This finding is consistent in all cases
(Tables III and IV), demonstrating that optical indices in the

TABLE III
COMPARISON OFRMSE(�g=cm ) AND R FOR chl ESTIMATION BY

SCALING-UP LEAF-LEVEL OPTICAL INDICES IN 1998AND 1999 DEPLOYMENTS

CONSIDERINGALL PIXELS IN THE 20� 20 m AREA AVERAGED REFLECTANCE

WITH 2 M SPATIAL RESOLUTION AND 72-CHANNEL CASI DATA (100 PIXELS),
AND SELECTING THEUPPER25% PIXELS IN THE NIR TO MINIMIZE SHADOWS

AND OPENINGS IN A DENSECANOPY OF ACER SACCHARUMM

TABLE IV
COMPARISON OFRMSE (�g=cm ) AND R FORch1 ESTIMATION IN 1998
AND 1999 DEPLOYMENTSCONSIDERINGALL PIXELS IN THE 20� 20 mAREA

AVERAGED REFLECTANCE WITH 2 M SPATIAL RESOLUTION AND 72-CHANNEL

CASI DATA (100 PIXELS), AND SELECTING THE UPPER25% PIXELS IN THE

NIR TO MINIMIZE SHADOWS AND OPENINGS IN A DENSECANOPY OF ACER

SACCHARUMM. LAI = 4 WAS CONSIDERED INALL CASES, AND NO

WEIGHTING COEFFICIENTSWEREUSED IN THEMODEL INVERSIONWHEN ALL

CHANNELS ARE USED IN THE MERIT FUNCTION

red edge are less affected to structural changes and shadows
than single reflectance channels. This result is illustrated in
Fig. 7, where it can be seen that red edge optical
index used for model inversion through canopy modeling is
not perceptibly affected when all pixels are included in the
averaged reflectance from the 2020 m study sites (2 2 m
pixel size), thereby including canopy shadows and openings.

This analysis also demonstrates that estimation
by scaling up through infinite reflectance model is the
methodology, which generates the smallest RMSE, although
higher errors are found when the same infinite reflectance
model is used coupled with PROSPECT and inverted. This
suggests that leaf-level derived relationships are more accurate
for scaling up through than reflectance and transmittance
modeled by PROSPECT. If no leaf-level relationships are
derived, model inversion using showed
lower RMSE compared to , each with

in the merit function. Estimation of over the
study sites that presented extreme values of measured in
the field in 1998 and 1999 campaigns are shown in Fig. 8, with
the highest values measured in leaf samples of 38.8g cm
(1998, Fig. 8, upper left) and 45.8g/cm (1999, Fig. 8, lower
left). The lowest values of measured were 19.08g cm
(1998, Fig. 8, upper right) and 26.58g cm (1999, Fig. 8,
lower right).

Three numerical model inversion methods that showed best
results in 1998 and 1999 for estimation were used for
the validation carried out in 2000 deployment with a different
set of study sites: 1) SAILH coupled with PROSPECT with
all 72 CASI channels in the minimizing merit function, with
no weighting function; 2) SAILH coupled with PROSPECT

with optical index as merit function; and
3) coupled with PROSPECT with
optical index as merit function. The results obtained for the
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Fig. 7. Effect of shadows and canopy structure in the estimation ofchl by SAILH+PROSPECT model inversion using (left)R =R and (right) all
CASI spectral channels in the merit function. The red-edgeR =R optical index used for model inversion through canopy modeling does not get affected
when all pixels are included in the averaged reflectance from the 20� 20 m study sites (2� 2 m pixel size), therefore including canopy shadows (data from the
1998 campaign).

Fig. 8. Chl estimation over the study areas (500� 500 m) that presented extreme values ofchl measured in the field in (up) 1998 and (bottom) 1999
campaigns. The highest values ofchl (left) were measured in leaf samples from GY41 network site (upper left,chl measured = 38:8 �g=cm in 1998)
and GY15 (lower left,chl measured = 45:8 �g=cm in 1999). The lowest values of (right)chl were measured in leaf samples from MD35 (upper right,
chl measured= 19:08 �g=cm in 1998) and MD33 (lower left,chl measured= 26:58 �g=cm in 1999). White box shows the study area of 20� 20 m
where leaf sampling was carried out.

three methods when all pixels and only the brightest 25%
pixels in the NIR are targeted in the 80 80 m plots are
summarized in Table V. These results confirm the 1998 and

1999 conclusions, demonstrating that better estimations are
achieved when the merit function is based on a red edge optical
index such as : , g cm
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Fig. 9. Effect of shadows in the estimation ofch1 by SAILH + PROSPECT model inversion using (right)R =R and (left) all CASI reflectance
channels in the merit function confirmed with the CASI 2000 data. The red edgeR =R optical index used for model inversion through canopy modeling
does not get as much as affected when all pixels are included in the averaged reflectance from the 80� 80 m study sites (0.86� 3.4 m resampled to 1.5� 1.5 m
pixel size), therefore including canopy shadows.

TABLE V
COMPARISON OFRMSEAND R FORch1 ESTIMATION IN THE YEAR 2000

VALIDATION DEPLOYMENT CONSIDERINGALL PIXELS IN THE 80� 80 m
AREA AVERAGED REFLECTANCE OF0.86� 3.4 m RESAMPLED TO1.5� 1.5 m

SPATIAL RESOLUTION AND 72-CHANNEL CASI DATA (2809 PIXELS),
AND SELECTING THE UPPER25% PIXELS IN THE NIR TO MINIMIZE

SHADOWS AND OPENINGS IN A DENSE CANOPY OF ACER SACCHARUM

M. LAI = 4 WAS CONSIDERED INALL CASES, AND NO WEIGHTING

COEFFICIENTSWERE USED IN THE MODEL INVERSION

( inversion using all reflectance
channels, all pixels); , g cm
( inversion using red edge
index, all pixels).

The small effect of shadows on pigment estimation when
index is used with model

inversion was also confirmed: g cm (brightest
25%), g cm (all pixels), and a larger variation
in RMSE is observed when all reflectance channels are used:

g cm (brightest 25%), g cm
(all pixels) (see Fig. 9). Results obtained with infinite
reflectance model coupled with PROSPECT also demon-
strate its applicability in closed canopies with high LAI.
PROSPECT coupled with SAILH and with
in the merit function obtained similar results ,
although RMSE’s are slightly smaller with SAILH:

g cm ( , brightest
25%), g cm ( , brightest
25%); g cm ( , all
pixels), g cm ( , all
pixels).

V. CONCLUSIONS

Radiative transfer theory and modeling assumptions were ap-
plied at leaf, laboratory, and field scales in order to study the link
between leaf reflectance and transmittance and canopy airborne
hyperspectral data acquired with different spectral and spatial
characteristics. Approaches to estimation in closed forest
canopies ofAcer saccharumM. focused on both scaling-up
and numerical model inversion approaches. A methodology for
linking leaf-level relationships between optical indices and pig-
ment content to canopy-level reflectance was presented. It has
been demonstrated that leaf-level relationships calculated from
single leaf reflectance and transmittance data collected from the
ground can be scaled-up to above-canopy level through infinite
reflectance and canopy reflectance models using nominal input
parameters derived for these study areas consisting of closed
canopies. The high spatial resolution of the airborne hyperspec-
tral CASI data permitted the selection of crowns, eliminating
shadows and understorey, therefore allowing the use of SAILH
and Kuusk turbid-medium canopy models.

The results obtained in the scaling-up approach
through canopy reflectance models and hyperspec-
tral canopy reflectance fromAcer saccharumM. study
sites showed that red-edge indices, especially and
DP21 , and spectral and derivative in-
dices such as , Vog1 , G_M2

, Vog3 , Vog2
, Vog4 , G_M1

, Ctr2 are the best optical indices
for estimation at canopy level. Furthermore, traditional
and widely used optical indices for pigment estimation and in-
dicators of vegetation status, such as NDVI and SR, performed
poorly in the two consecutive years. These traditional indices
primarily track canopy structural changes but are not able to
track subtle changes due to pigment content variation between
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study sites. This demonstrates that canopies with homogeneous
structure but different chlorophyll content need the use of
red edge and spectral indices to estimate changes in pigment
content.

For the closedAcer saccharumM. canopies studied in this
research, the estimations using optically thick models,
which don’t need structural and viewing geometry as input pa-
rameters implying much faster and easier operational applica-
bility, demonstrated a predictive potential (low RSME in estima-
tions) that was close to, and for some indices, superior to those
using canopy models. Of the three infinite reflectance models
used, the formulae (Hapke) and (Yamada and Fu-
jimura) provided the best estimations, suggesting that infinite
reflectance models can be used for canopy reflectance modeling
in closed forest canopies of high LAI, performing as well as
canopy reflectance models when crowns are targeted and spe-
cific sensitive indices are used.

The approach of scaling-up of optical indices through canopy
models was compared to the numerical model inversion of
coupled PROSPECT leaf radiative transfer model with SAILH,
MCRM and infinite reflectance models, in which no leaf
sampling is required to develop the statistical relationships.
Results of the numerical model inversion by iteration showed
that superior results were found when a methodology consisting
on minimizing a function based in a red edge optical index was
used, rather than by matching all the CASI reflectance bands
in the visible and NIR. Results of SAILH and PROSPECT
coupled model inversion using the red edge index as
a minimizing function by iteration showed comparable results
to the scaling-up methodology, without the need for developing
leaf-level relationships. Furthermore, estimations show only a
small effect when shadow pixels are included for the estimation
of the using SAILH and PROSPECT inversion with
the red edge optical index in the merit function.
On the other hand, a large effect due to inclusion of shadow
pixels is found with SAILH and PROSPECT inversion when
all reflectance bands are used in the minimizing function. This
result might have important implications, showing the value
of red edge indices for both scaling-up and model inversion
approaches in pigment estimation of closed canopies.

Results obtained in this research for three consecutive years,
two of them with extensive leaf sampling campaigns, using a set
of 12 Acer saccharumM. sites, were validated with a new set
of 14 sites in order to test the conclusions. The successful val-
idation campaign carried out in the summer of 2000 confirmed
the hypothesis developed in previous years, obtaining compa-
rable RMSE for estimation by numerical model inver-
sion of coupled SAILH and PROSPECT models with nominal
input parameters and in the merit function. Results
presented in this paper demonstrate the capability of high spa-
tial hyperspectral sensors to map pigment content over closed
forest canopies through radiative transfer models. Moreover, it
suggests that methodologies investigated here based on pigment
estimation by model inversion using red edge indices might
be transferred to MERIS sensor using the optical
index, although the implications of the spatial heterogeneity of
the forest landscape compared to the 300 m sensor spatial reso-
lution, and the species dependence will need to be evaluated.
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