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Abstract

Recent studies have demonstrated the usefulness of optical indices from hyperspectral remote sensing in the assessment of vegetation

biophysical variables both in forestry and agriculture. Those indices are, however, the combined response to variations of several vegetation

and environmental properties, such as Leaf Area Index (LAI), leaf chlorophyll content, canopy shadows, and background soil reflectance. Of

particular significance to precision agriculture is chlorophyll content, an indicator of photosynthesis activity, which is related to the nitrogen

concentration in green vegetation and serves as a measure of the crop response to nitrogen application. This paper presents a combined

modeling and indices-based approach to predicting the crop chlorophyll content from remote sensing data while minimizing LAI (vegetation

parameter) influence and underlying soil (background) effects. This combined method has been developed first using simulated data and

followed by evaluation in terms of quantitative predictive capability using real hyperspectral airborne data. Simulations consisted of leaf and

canopy reflectance modeling with PROSPECT and SAILH radiative transfer models. In this modeling study, we developed an index that

integrates advantages of indices minimizing soil background effects and indices that are sensitive to chlorophyll concentration. Simulated

data have shown that the proposed index Transformed Chlorophyll Absorption in Reflectance Index/Optimized Soil-Adjusted Vegetation

Index (TCARI/OSAVI) is both very sensitive to chlorophyll content variations and very resistant to the variations of LAI and solar zenith

angle. It was therefore possible to generate a predictive equation to estimate leaf chlorophyll content from the combined optical index derived

from above-canopy reflectance. This relationship was evaluated by application to hyperspectral CASI imagery collected over corn crops in

three experimental farms from Ontario and Quebec, Canada. The results presented here are from the L’Acadie, Quebec, Agriculture and Agri-

Food Canada research site. Images of predicted leaf chlorophyll content were generated. Evaluation showed chlorophyll variability over crop

plots with various levels of nitrogen, and revealed an excellent agreement with ground truth, with a correlation of r 2= .81 between estimated

and field measured chlorophyll content data. D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Remote sensing data and techniques have already proven

to be relevant to many requirements of crop inventory and

monitoring. Different studies and experiments demonstrated

their usefulness and feasibility to address various agricul-

tural issues, such as crop classification and mapping (Erol &

Akdeniz, 1996; Grignetti, Salvatori, Cascchia, & Manes,

1997; Pax-Lenney & Woodcock, 1997), crop forecasting

and yield predictions (Clevers, 1997; Moran, Maas, &

Pinter, 1995; Rasmussen, 1992; Tucker, Holben, Elgin, &

McMurtrey, 1980), crop status and condition (Blackmer,

Schepers, & Varvel, 1994; Boissard, Pointel, & Huet, 1993;

Clevers, Büker, van Leeuwen, & Bouman, 1994; Potdar,

1993), and crop disease and micronutrient deficiency

(Adams, Norvell, Philpot, & Peverly, 2000a, 2000b; Adams,

Philpot, & Norvell, 1999; Malthus & Madeira, 1993).

Nowadays, there is an increased interest in precision farm-

ing and the development of smart systems for agricultural

resources management; these relatively new approaches aim
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to increase the productivity, optimize the profitability, and

protect the environment. In this context, image-based

remote sensing technology is seen as a key tool to provide

valuable information that is still lacking or inappropriate to

the achievement of sustainable and efficient agricultural

practices (Daughtry, Walthall, Kim, Brown de Colstoun, &

McMurtrey, 2000; Moran, Inoue, & Barnes, 1997). More

specifically, farmers and agricultural managers are inter-

ested in measuring and assessing soil and crop status at

specific critical times: first, in earlier growth stages in

order to supply adequate fertilizers quantities for a normal

growth of the crop, and second, during an advanced

development stage for health monitoring and the predic-

tion of yield. For this purpose, remote sensors can play a

valuable role in providing time-specific and time-critical

information for precision farming, due to their capabilities

in measuring biophysical indicators/parameters and detect-

ing their spatial variability. The latter is critical to the

variable rate technology, which consists of applying

specific inputs, such as fertilizers, for specific soil and

crop conditions (Moran et al., 1997). Among the fertiliz-

ing elements, nitrogen is generally the most important and

also the major limiting factor for crop growth and

agriculture productivity.

Nitrogen concentration in green vegetation is related to

chlorophyll content, and therefore indirectly to one of the

basic plant physiological processes: photosynthesis. When

nitrogen supply surpasses vegetation’s nutritional needs,

the excess is eliminated by runoff and water infiltration

leading to pollution of aquatic ecosystems (i.e., eutrophi-

cation) (Wood, Reeves, & Himelrick, 1993, cited in

Daughtry et al., 2000). This nitrogen loss to the envi-

ronment represents an economic loss for farmers. How-

ever, inappropriate reduction of nitrogen supply could

result in reduced yields, and subsequently, substantial

economic losses. With this dilemma, the optimal and

rational solution is an adequate assessment of nitrogen

status and its variability in agricultural landscapes. Since

yield is determined by crop condition at the earlier stages

of growth, it is mandatory to provide farmers with nitrogen

status at those stages in order to supply appropriate rates

based upon an accurate assessment of plant growth re-

quirements and deficiencies.

For this purpose, remote sensing techniques have been

used to assess crop conditions relative to nitrogen status

and effects. Foliage spectral properties, reflectance and

transmittance, were found to be affected by nitrogen

deficiency (Blackmer, Schepers, Varvel, & Walter-Shea,

1996): nitrogen shortage reduces leaf chlorophyll content,

and therefore, increases its transmittance at visible wave-

lengths. Thus, reflected radiation from crop leaves and

canopies has been used both to estimate chlorophyll

concentration of crop canopies (Daughtry et al., 2000)

and by implication to assess nitrogen variability and stress

(Blackmer et al., 1994, 1996). However, at the canopy

scale, nitrogen treatments do not affect leaf chlorophyll

content alone; they also induce differences in other bio-

physical parameters such as: Leaf Area Index (LAI),

biomass, and foliage (Walburg, Bauer, Daughtry, & Hous-

ley, 1982). Moreover, optical indices developed for chloro-

phyll content estimation, using crop canopy reflected

radiation, are responsive to other vegetation and envir-

onmental parameters like LAI and underlying soil reflec-

tance (Daughtry et al., 2000; Kim, Daughtry, Chappelle,

McMurtrey, & Walthall, 1994).

It is this multifactor interaction complexity, respons-

ible for canopy spectral reflectance variability at differ-

ent phenological stages, that inspired this work on

developing a methodology for an accurate estimation

of crop chlorophyll content. The objectives were: (i) to

simulate corn canopy reflectance, using PROSPECT and

SAILH radiative transfer models, for various crop

optical and biophysical variables; (ii) to elaborate a

methodology for estimating crop chlorophyll concentra-

tion, using CASI hyperspectral airborne reflectance data;

and (iii) to validate the estimates through a comparison

with chlorophyll measurements in the laboratory from plot

field sampling.

2. Material and methods

2.1. Study area

The study area is one of the four experimental sites of

the GEOmatics for Informed Decisions (GEOIDE) project

for precision agriculture. It is located near Montreal, at the

Horticultural Research and Development Centre of Agri-

culture and Agri-Food Canada, St-Jean-sur-Richelieu,

Quebec, Canada, also known as the L’Acadie experi-

mental research substation, where corn was grown on

four adjacent experimental fields. In general, the soils in

the fields were clay loam, with 31% sand, 33% silt, and

36% clay in the 0–30-cm layer. The median pHw was 6.8

and the average phosphorus and potassium levels meas-

ured were, respectively, 72 and 147 mg/kg of dry soil.

Both these values are characterized as rich by the Conseil

des productions végétales du Québec. The fields had

various cropping histories, and the actual N–NO3 con-

centration at seeding time varied from one field to the

next (52, 27, 51, and 37 kg N–NO3/ha in the 0–60-cm

layer for fields 40, 41, 48, and 49, respectively; see

Fig. 9). In each field, there were four experimental blocks,

each containing four 20� 20-m plots, to which the

nitrogen fertilizer treatments were randomly assigned.

Each plot was made up of 27 rows of planted corn. In

each field, a weedy plot and a bare soil plot were set up

between the two pairs of blocks. Nitrogen fertilization

treatments were supplied in two applications: one at the

time of seeding, the other at top dressing 6 weeks later.

The experiment comprised a total of 64 experimental plots

representing a wide range of nitrogen levels. Four major
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treatments have been supplied: (A) no fertilization, (B)

intermediate fertilization with uniform nitrogen application

at top dressing and (C) with variable nitrogen application at

top dressing based on early chlorophyll content measure-

ments, and (D) overfertilization, representing a reference plot

saturated in chlorophyll. For further details on nitrogen

treatments, quantities, and application procedures, the reader

is referred to the paper by Tremblay, Miller, Haboudane,

Bélec, and Dextraze (2001).

2.2. Airborne and field data

Hyperspectral images were acquired by the Compact

Airborne Spectrographic Imager (CASI), flown by Centre

for Research in Earth and Space Technology (CRESTech),

as part of intensive field campaigns organized by the

GEOIDE Precision Agriculture (RES54) project coinvesti-

gators during Summer 2000. At the same time, various

field and laboratory data were collected for biochemical

and geochemical analysis, optical and biophysical measure-

ments, along with other types of sensors’ measurements

(Fluorescence, Hydro N-Sensor). Other relevant ground

truth measurements include: (i) collection of leaf tissue

for laboratory determination of leaf chlorophyll concentra-

tion, (ii) corn leaf reflectance and transmittance measure-

ments using an integrating sphere (Li-Cor model 1800-12)

coupled by a single mode fibre to a spectrometer (Ocean

Optics model ST-1000), (iii) chlorophyll meter (Minolta

SPAD 502) measurements, (iv) LAI measurements using

the Plant Canopy Analyzer (Li-Cor model LAI-2000), and

(v) crop growth measures. The most recently expanded

leaves of four plants per experimental unit were brought to

the laboratory where one leaf disk (10 mm2 each) was cut

from each leaf to be used in the analysis of chlorophyll-a

and -b content. The disks were stored at � 20 �C until the

chlorophyll analysis could be carried out. They were

ground and the chlorophyll pigments were extracted in

two successive portions of cold methanol (� 20 �C). The
material was completely colorless by the end of this

process. The two portions were mixed and the concentra-

tion was measured according to Porra, Thompson, and

Kriedemann (1989).

CASI hyperspectral images were collected in three dif-

ferent deployments, using two modes of operation: the

multispectral mode, with 1-m spatial resolution and seven

spectral bands suitable for sensing vegetation properties

(489.5, 555.0, 624.6, 681.4, 706.1, 742.3, and 776.7 nm)

and the hyperspectral mode, with 2-m spatial resolution and

72 channels covering the visible and near-infrared portions

of the solar spectrum from 408 to 947 nm with a bandwidth

of 7.5 nm. Acquisition dates were planned to coincide with

different phenological development stages, but were dis-

turbed by the bad weather prevailing during that summer.

Nevertheless, three missions were successfully performed,

providing image data covering the earliest, middle, and

latest periods of the growth season.

2.3. CASI hyperspectral data processing

The processing of CASI imagery included the follow-

ing separate stages: raw data to radiance transformation,

atmospheric corrections and reflectance retrieval, removal

of aircraft motion effects and georeferencing, and flat

field adjustments of surface reflectance spectra.

The hyperspectral digital images collected by CASI

were processed to at-sensor radiance using calibration

coefficients determined in the laboratory by CRESTech.

Then the CAM5S atmospheric correction model (O’Neill

et al., 1997) was used to transform the relative at-sensor

radiance to absolute ground reflectance. To perform this

operation, an estimate of aerosol optical depth at 550 nm

was derived from ground sun photometer measurements

and Aerosol Robotic NETwork (AERONET, 2000) web-

site. Reflectance spectra of asphalt and concrete within

CASI imagery were used to calculate coefficients that

adequately compensate for residual effects of atmo-

spheric water and oxygen absorption, and therefore to

perform the flat field calibration. Data regarding geo-

graphic position, illumination, and viewing geometry as

well as ground and sensor altitudes were derived both

from aircraft navigation data recordings and ground

GPS measurements.

2.4. Simulated leaf reflectance and transmittance

Leaf optical properties were simulated using the PRO-

SPECT model (Jacquemoud & Baret, 1990; Jacquemoud

et al., 1996), which simulates upward and downward

hemispherical radiation fluxes between 400 and 2400

nm, and relates foliar biochemistry and scattering param-

eters to leaf reflectance and transmittance spectra. It

requires the leaf internal structure parameter N, the

chlorophyll-a and -b content Cab (mg/cm2), the equivalent

water thickness Cw (cm), the leaf protein content Cp (g/cm
2),

and leaf cellulose and lignin Cc (g/cm2) to determine

leaf reflectance and transmittance signatures in the

optical domain.

Input parameters Cw, Cp, and Cc were assigned the nom-

inal values of 0.001 cm, 0.0012 g/cm2, and 0.002 g/ cm2,

respectively. The N parameter has been estimated by

inverting the PROSPECT model on corn reflectance

and transmittance spectra measured in the laboratory

using an integrating sphere coupled to a spectrometer.

The mean value 1.41 thereby obtained is in agreement

with the value (N = 1.4) used for corn plants by Jacque-

moud, Bacour, Poilve, and Frangi (2000). With these

inputs, reflectance and transmittance spectra were gener-

ated for chlorophyll content varying from 0 to 70 mg/cm2

for two purposes: investigating the performance of

the Modified Chlorophyll Absorption in Reflectance Index

(MCARI) (Daughtry et al., 2000) and simulating corn

canopy reflectance (SAILH model) for a wide range of

chlorophyll concentrations.
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2.5. Simulated canopy reflectance

Canopy reflectance spectra were simulated using a vari-

ant of the SAIL (Scattering by Arbitrary Inclined Leaves)

model (Verhoef, 1984) called SAILH. It was adapted to take

into account the hotspot effect or the multiple scattering in

the canopy (Kuusk, 1985). It is a turbid-medium model that

approximates the canopy as a horizontally uniform parallel-

plane infinitely extended medium, with diffusely reflecting

and transmitting elements. Discussions and mathematical

formalisms of SAIL and SAILH are found in Goel (1988,

1989), Verhoef (1984, 1998), and Zarco-Tejada (2000).

Typical SAILH inputs are: canopy architecture defined by

the LAI and the leaf angle distribution function (LADF),

leaf reflectance and transmittance spectra for given chloro-

phyll content per unit area, underlying soil reflectance, and

the illumination and viewing geometry (solar zenith and

sensor viewing angles).

Because the CASI instrument acquires hyperspectral data

in the visible and near-infrared portions of the solar spec-

trum, simulations have been performed over the spectral

range 400–825 nm, at a spectral increment of 5 nm. This is

not a limiting factor as far as the central objective is

chlorophyll content estimation. Indeed, chlorophyll interac-

tions with the radiation are limited the optical domain

ranging from 400 to 700 nm, while water and dry matter

influences are observed beyond 900 nm (Jacquemoud et al.,

2000). Thus, using a background soil reflectance extracted

directly from the CASI imagery in bare soil plots, simulated

spectra were calculated for 13 LAI values (0.1–8), 12 leaf

chlorophyll contents (5–60 mg/cm2), and three sun zenith

angles (27�, 33�, and 45�) corresponding to those prevailing

at the time of data acquisition (Table 1) in the three

acquisition dates.

2.6. Spectral vegetation indices for chlorophyll estimation

Over recent years, expanding research activities have

focused on understanding the relationships between vegeta-

tion optical properties and photosynthetic pigments concen-

trations within green leaves tissues, namely: chlorophyll-a,

chlorophyll-b, and carotenoids. From the optical point of

view, these pigments have different spectral behavior, with

specific absorption features at different wavelengths, which

allows remote sensing techniques to discriminate their

respective effects on vegetation reflectance spectra (Black-

burn, 1998a; Chappelle, Kim, & McMurtrey, 1992). These

characteristics have promoted the development of various

approaches, based on model inversion or the use of empir-

ical and semiempirical methods, to estimate the chlorophyll

content both at the leaf and canopy scales (Blackburn,

1998b; Datt, 1999; Daughtry et al., 2000; Demarez &

Gastellu-Etchegorry, 2000; Gitelson, Merzyak, & Lich-

tenthaler, 1996; Zarco-Tejada, Miller, Noland, Mohammed,

& Sampson, 2001). Among these investigations, studies

using optical indices for chlorophyll estimation have

focused on evaluating the reflectance in individual narrow

bands, band reflectance ratios and combinations, and the

characteristics of derivative spectra. They used different

combinations of spectral bands to minimize variations

owing to extraneous factors and maximize sensitivity to

chlorophyll content. Their philosophy and formalism are

based on the relationships existing between chlorophyll

concentrations and some specific narrow spectral bands.

The spectral regions that are identified as the most suitable

to chlorophyll effects study are those around 680 nm,

corresponding to absorption peak of chlorophyll-a, and

550 nm matching with the minimum chlorophyll absorption

in the visible domain. Detailed discussions and thorough

reviews concerning appropriate optimal wavelengths and

chlorophyll indices can be found in publications such as

those by Blackburn (1999) and Zarco-Tejada (2000). In the

context of the present work, the focus is put on the index

MCARI proposed by Daughtry et al. (2000) as a variant of

the Chlorophyll Absorption in Reflectance Index (CARI)

developed by Kim et al. (1994).

CARI was designed to reduce the variability of the

photosynthetically active radiation due to the presence of

diverse nonphotosynthetic materials. It uses bands corres-

ponding to the minimum absorption of the photosynthetic

pigments, centered at 550 and 700 nm, in conjunction with

the chlorophyll-amaximum absorption band, around 670 nm.

The choice of 700 nm is due to its location at the boundary

between the region where vegetation reflectance is domi-

nated by pigments absorption and the beginning of the red

edge portion where vegetation structural characteristics have

more influence on the reflectance (Kim et al., 1994).

MCARI is a measure of the depth of chlorophyll absorption

at 670 nm relative to the reflectance at 550 and 700 nm, and

is quantified by the following equation where Rijk is the

reflectance at the ijk-th wavelength nanometer (Daughtry

et al., 2000):

MCARI ¼ ½ðR700 � R670Þ

� 0:2ðR700 � R550Þ�ðR700=R670Þ: ð1Þ

Table 1

Input parameters for SAILH model

SAILH input parameters Description/values

Leaf reflectance and transmittance PROSPECT-simulated spectra for

various chlorophyll content, from

5 to 60 mg/cm2, in 5-mg/cm2 steps

Soil reflectance extracted from CASI imagery, clay

loam soil, with 31% sand, 33% silt,

and 36% clay in the 0–30-cm layer

LAI 0.1, 0.3, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5,

6, 7, 8

Lead angle distribution function spherical

Sun zenith angle 27�, 33�, and 45�
Sensor viewing angle 0� (nadir)
Fraction of direct coming radiation 1
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The ratio (R700/R670) was introduced to minimize the

combined effects of the underlying soil reflectance and the

canopy nonphotosynthetic materials. This ratio is the slope

of the spectrum when the canopy contains no green bio-

mass. Nevertheless, MCARI is still sensitive to background

reflectance properties so that it is difficult to interpret at low

LAI (Daughtry et al., 2000).

Our interest in MCARI was motivated by its potential for

use in an operational remote sensing scenario in the context

of precision agriculture. Indeed, unlike derivative-based

indices that are strongly correlated to chlorophyll concentra-

tion (Blackburn, 1999), MCARI does not require many con-

tiguous narrow spectral bands. Even though MCARI was

developed to be both responsive to chlorophyll variation and

resistant to nonphotosynthetic materials effects, Daughtry

et al. (2000) showed that MCARI is influenced by various

parameters such as: LAI, chlorophyll, LAI–chlorophyll in-

teraction, and the background reflectance. Moreover, our

simulations have pointed out that MCARI is still sensitive to

nonphotosynthetic element effects, mainly at low chloro-

phyll concentrations. To overcome these limitations, the

present work suggests a modified MCARI version by im-

proving its sensitivity at low chlorophyll values.

Kim et al. (1994) have shown that the change of

background reflectance affects the reflectance slope be-

tween 550 and 700 nm. The ratio (R700/R550) differences

are closely linked to the variations of reflectance character-

istics of background materials (soil and nonphotosynthetic

components). To compensate for these effects, the ratio

(R700/R670) is used to counteract the background influence

only on the difference (R700�R550) so that the Transformed

Chlorophyll Absorption in Reflectance Index (TCARI) is

defined as follows:

TCARI ¼ 3½ðR700 � R670Þ

� 0:2ðR700 � R550ÞðR700=R670Þ�: ð2Þ

Despite the observed improvements regarding nongreen

biomass effects, this intrinsic index is still sensitive to the

underlying soil reflectance properties, particularly for low

LAIs (Rondeaux, Steven, & Baret, 1996). In order to

overcome this problem, Daughtry et al. (2000) proposed

that MCARI be combined with a soil line vegetation index

like Optimized Soil-Adjusted Vegetation Index (OSAVI;

Rondeaux et al., 1996). Such an integration will reduce

background reflectance contributions and enhance the sen-

sitivity to leaf chlorophyll content variability. OSAVI

belongs to the Soil-Adjusted Vegetation Index (SAVI; Huete,

1988) family and is defined by the following equation:

OSAVI ¼ ð1þ 0:16ÞðR800 � R670Þ=ðR800 þ R670 þ 0:16Þ:

ð3Þ

The reason that this index is selected, for this study, is

due to its easy use in the context of operational observations

on agricultural landscapes. In fact, its determination needs

no information on soil optical properties, and moreover, it

offered the best results for most agricultural crops (Ron-

deaux et al., 1996). Additionally, using CASI airborne data,

we found that OSAVI has similar behavior and trends as

Transformed Soil-Adjusted Vegetation Index (TSAVI;

Baret, Guyot, & Major, 1989) whose determination requires

the knowledge of soil line parameters. The latter should be

calculated from image areas corresponding to bare soils.

This assumes the presence of such areas in the observed

scene, and depends on different soil conditions, like varia-

tions in moisture levels, to establish the soil line by plotting

soil reflectance in red versus infrared space. These addi-

tional calculations (limitations) for TSAVI are not mandat-

ory for OSAVI, thereby making the latter more suitable for

observing and monitoring crops changes in the context of

precision agriculture.

Unfortunately, the canopy reflectance shape results from

a complex interaction between pigment concentrations,

canopy structural development, and in some respects the

underlying soil contribution. Moreover, vegetation indices

that are insensitive to soil optical properties seem to be

relatively insensitive to chlorophyll variations. Conversely,

indices sensitive to chlorophyll content variability are

strongly affected by the differences in the canopy LAI.

For instance, Daughtry et al. (2000) found that LAI, chloro-

phyll, and chlorophyll–LAI interaction accounted, respect-

ively, for 60%, 27%, and 13% of MCARI variation.

Consequently, an accurate assessment of crop chlorophyll

status from remotely sensed data requires spectral indices

that are both responsive to chlorophyll concentration and

insensitive to background and LAI effects. For this purpose,

it has been demonstrated that a combined use of MCARI and

OSAVI was successful in producing isolines of leaf chloro-

phyll concentrations (Daughtry et al., 2000). However, this

combination was not implemented for predictive purposes

nor have further developments dealt with LAI effects on

pigment estimation from canopy reflectance measurements.

The present paper has introduced the use of the ratio

TCARI/OSAVI to make accurate predictions of crop chloro-

phyll content from hyperspectral remote sensing imagery.

The ratio has been shown to be relatively insensitive to

canopy cover variations, even for very low LAI values. The

determination of the leaf pigment predicting functions is

based on simulations with PROSPECT and SAILH leaf and

canopy models, and optical index scaling-up approach

discussed in detail in Zarco-Tejada et al. (2001). Results

of this approach are presented, discussed, and compared to

ground truth measurements in the following section.

3. Results and discussion

3.1. Sensitivity to chlorophyll content

In a preliminary analysis for individual leaf spectra,

chlorophyll indices MCARI (Eq. (1)) and TCARI (Eq. (2))

D. Haboudane et al. / Remote Sensing of Environment 81 (2002) 416–426420



were plotted as a function of chlorophyll content for leaf

reflectances derived by simulations with the PROSPECT

model (Fig. 1). As chlorophyll content increases, MCARI

initially increases, but then decreases as chlorophyll content

exceeds 20 mg/cm2. This functional behavior denotes a

sensitivity limitation of MCARI at low pigment concentra-

tions, owing probably to its responsivity to nonphotosyn-

thetic leaf material. Consequently, MCARI will be difficult

to interpret because of the confounding effects induced by

the trend inversion at 20 mg/cm2: the same value of MCARI

may correspond to two different pigment concentrations.

The proposed TCARI exhibits a better sensitivity at low

chlorophyll concentrations: it shows a negative correlation

with chlorophyll content over a wider pigment range (10–

70 mg/cm2), but still a positive one for pigment content below

10 mg/cm2 (Fig. 1). This is a useful improvement because

leaf chlorophyll content is rarely less than 10 mg/cm2.

Nevertheless, as we intend to use TCARI for predictions at

the canopy scale, there is a need to scale up these relation-

ships to the canopy level through radiative transfer models

and examine corresponding TCARI and MCARI canopy

reflectance behavior. The next step is to evaluate these indices

for above-canopy reflectance of an optically thick canopy,

thereby assessing the effects of LAI and soil variations.

The optically thick vegetation medium reflectance

(denoted here simply as infinite reflectance R1) can be

approximately related to the single leaf reflectance r and

transmittance t through the single leaf absorptance a
(a = 1� r� t). Various infinite reflectance formulae could

be found in literature (Zarco-Tejada, Miller, Mohammed,

Noland, & Sampson, 2000); the one we used here (in Eq. (4))

characterizes the optically thick canopy with the single leaf

absorption and scattering properties and assumes isotropic

scattering (Hapke, 1993).

R1 ¼ 1� a1=2

1þ a1=2
ð4Þ

Fig. 2 highlights differences between MCARI and

TCARI in terms of characterizing chlorophyll variations

from remotely sensed data. While MCARI still shows

weakness in predicting low chlorophyll concentrations,

TCARI remains sensitive to chlorophyll variations over a

wide range of concentrations including the lower one.

However, both TCARI and MCARI drop to zero when

chlorophyll content is 0 mg/cm2. This means that bare soils

will mimic high chlorophyll content values when TCARI

(or MCARI) is used to predict chlorophyll variability from

airborne or satellite remote sensing data. This point will be

discussed later in the section concerning CASI hyperspectral

data and ground truth. This drastic drop of TCARI over soil

areas could be used as an advantage in the sense that TCARI

could be used not only for mapping chlorophyll but also to

map bare soils.

Now, at this intermediate scale, between the leaf level

and the field one, a unique relationship exists between

TCARI and chlorophyll concentrations, with coefficients

of determination (r2) exceeding .99 for different fitting

functions (logarithmic, exponential, etc.) and for chloro-

phyll content ranging from 5 to 70 mg/cm2. This result

suggests strong potential for use in operational predictions

with real data, but still there remains the uncertainty

regarding the effects of structural development of the crops.

LAI as a measure of the structural changes will be used in

the next section to examine whether TCARI could resist

those effects.

3.2. Sensitivity to LAI changes

The effects of plant growth (LAI) and chlorophyll

content on MCARI and TCARI are illustrated in Figs. 3

and 4, respectively. It can be seen that the scaling up to the

canopy level did not improve the sensitivity of MCARI at

low pigment concentrations. Ambiguity in MCARI still

exists for chlorophyll contents around 10 mg/cm2 for all

Fig. 1. Sensitivity to chlorophyll variability of TCARI and MCARI.

Application to leaf-simulated reflectances using PROSPECT model.

Fig. 2. Sensitivity to chlorophyll variability of TCARI and MCARI.

Application to infinite reflectance determined for optically thick canopy.
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LAI values (0.3–8) (Fig. 3). This phenomena is observed

only at low foliage cover (LAI < 1) for TCARI, with smaller

change rate (Fig. 4).

As expected, LAI exerts a strong influence on the

relationships between both indices and the foliar pigments.

It, however, contributes to more variability of MCARI than

TCARI. The first shows high sensitivity to LAI changes at

low and medium values (up to LAI = 2.5), while the

second remains relatively less responsive to LAI variations

even at low values (down to 1.5). In fact, for LAI values

equal or greater than 1.5 and for the most observable

chlorophyll concentrations (15–60 mg/cm2), TCARI shows

less variability and more resistance to the canopy structure

change than MCARI does (Figs. 3 and 4). Moreover, the

average slope over the chlorophyll range 10–60 mg/cm2

shows that TCARI is more sensitive to chlorophyll than

MCARI. For instance, considering an LAI = 3, the average

slopes are 0.41% and 0.32% for TCARI and MCARI,

respectively. Consequently, given its lower responsivity to

LAI variations and its sensitivity to chlorophyll changes,

TCARI holds a consistent predictive ability for canopy

chlorophyll estimation.

Despite these improvements, the problems related to low

LAI values and LAI interaction with chlorophyll content

remain unsolved. They are a source of uncertainty when it

comes to make prediction in early vegetation growth stages.

The latter corresponds to the most time-critical information

needed by farmers and agricultural managers. During these

early stages, soil reflectance dominates remotely sensed

observations. Therefore, we combined TCARI with OSAVI

in an attempt to uncouple the effects of LAI and leaf

pigments. Fig. 5 shows the chlorophyll index TCARI

plotted against the vegetation index OSAVI for various

pigment contents and diverse foliage cover levels. Both

indices are positively correlated with LAI: low TCARI and

OSAVI values correspond to low LAI values and vice versa.

Therefore, points representing bare soils will be concen-

trated near the scatter-plot origin (TCARI = 0, OSAVI = 0),

while those corresponding to dense vegetation will be

scattered in the opposite side around the major bisector.

The most important information revealed in Fig. 5 is the

distribution of chlorophyll values in the OSAVI–TCARI

space. For all foliage cover levels, chlorophyll concentra-

tions are arranged along concentric arcs, with high values

lying near the x-axis (OSAVI) and the low ones near the

y-axis (TCARI). Moreover, points representing the same

chlorophyll concentration, for different LAI values, are set

along lines taking origins near the bare soil values. These

chlorophyll isolines intersect near the scatter-plot origin and

radiate outward as vegetation cover density increases. For

clarity purposes, only the two isolines for low (5 mg/cm2)

Fig. 3. Effects of LAI on MCARI sensitivity to chlorophyll content

variation. Application to reflectance spectra simulated using PROSPECT

and SAILH models.

Fig. 4. Effects of LAI on TCARI sensitivity to chlorophyll content

variation. Application to reflectance spectra simulated using PROSPECT

and SAILH models.

Fig. 5. Chlorophyll index TCARI plotted as a function of vegetation index

OSAVI, for various chlorophyll concentrations and different LAI values.
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and high (60 mg/cm2) chlorophyll concentrations have been

drawn. They show that slope of the isolines decreases with

the increase of leaf chlorophyll content. Similar results have

been reported by Daughtry et al. (2000) for three pigment

concentration levels.

These findings suggest that chlorophyll content is corre-

lated with the slope of TCARI versus OSAVI. Conse-

quently, we determined the ratio TCARI/OSAVI and

assessed its ability to take into account the effects of soil

background reflectance and the crop structural development

(LAI), aiming to derive a unique relationship between

chlorophyll content and the combination TCARI/OSAVI.

Indeed, and as expected, the ratio clearly combines the abil-

ities of indices responding to chlorophyll variations and

those minimizing background and LAI effects (Fig. 6). In

comparison to MCARI and TCARI behavior (Figs. 3 and 4),

the ratio drastically reduced the sensitivity to LAI effects

while preserving a high sensitivity to chlorophyll variability.

It exhibits a unique relationship with the chlorophyll content

even over a wide range of LAI values (0.3–8). This is

particularly consistent for the normal range of measured leaf

chlorophyll content (15–60 mg/cm2). With respect to exten-

sion of the predictions to low pigment contents (down to

5 mg/cm2), a unique and consistent relationship could be

determined for LAI values equal or greater than 0.5. These

outcomes open the possibility to uncouple the linked con-

tributions of chlorophyll and LAI to the canopy reflectance

variation, and therefore, to accurately assess the chlorophyll

status of crop canopies.

3.3. Chlorophyll predictions through TCARI/OSAVI

Through the analyses presented above, it is clear that the

combined use of TCARI and OSAVI offers a great potential

for estimating crop photosynthetic pigments. As shown in

Fig. 7, predictive scaling-up relationships were established

to make chlorophyll estimations as a function of the ratio

TCARI/OSAVI derived from above-canopy reflectance

data. These relationships were determined for LAI values

ranging from 0.5 to 6 and for chlorophyll concentrations

varying from 10 to 60 mg/cm2 (Fig. 7). For clarity purposes,

LAI values exceeding six were not plotted because, as

illustrated by Fig. 6, the ratio remains unchanged for LAI

values greater than 3.

The best fits were obtained for logarithmic and poly-

nomial functions, with determination coefficients (r 2)

exceeding .98. Although polynomial functions fit the

observed points better, the third order limits the prediction

validity to the observed range. Consequently, logarithmic

scaling-up relationships have been chosen as consistent

estimates of chlorophyll concentrations. It is important to

note that a slight dispersion of TCARI/OSAVI values occurs

at low pigment concentrations, owing to the divergence

induced by the low LAI value (0.5). However, this is not

expected to affect the predictive ability since the predictive

function coefficients (gain and offset) remain approximately

the same (Fig. 7). Similar relationships have been found for

different LAI ranges as well as for LAI different ranges. For

brevity purposes and in order to prevent redundancy, they

are not presented here.

It is of major importance to recall that these predictive

functions were derived for soil reflectance and sun zenith

angle typical of the observation condition (image of August

5, 2000) and for a spherical LADF. Considering that TCARI

(MCARI) and OSAVI were developed to reduce optical

effects of nonphotosynthetic materials and underlying soil,

it is expected that the influence of the background reflec-

tance has been taken into account; however, additional

simulations would be required to confirm this assumption.

Concerning solar zenith angle effects, as shown in Table 1,

simulations have been conducted for three angles (27�, 33�,
and 45�) corresponding to three dates of data collection.

Fig. 6. Ratio TCARI/OSAVI plotted as a function of chlorophyll concentra-

tions for various LAI values.

Fig. 7. Relationship between chlorophyll content and the ratio TCARI/

OSAVI. Chlorophyll predictive function for LAI varying from 0.5 to 6 and

chlorophyll concentrations ranging from 15 to 60 mg/cm2.
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Predictive equations were determined for these angles and

found to be virtually identical. Indeed, their application for

chlorophyll prediction leads to differences of less than 2.5%.

Based on this, sun zenith angle seems to have negligible

effect on estimation of chlorophyll status using TCARI/

OSAVI. Regarding the LADF, further simulations are

required to assess its influence on prediction functions.

3.4. Evaluation of chlorophyll predictions using

airborne data

The ratio TCARI/OSAVI thus represents a spectral

predictor of pigment concentrations at the canopy scale.

Minimizing the perturbing effects of LAI variability, it

shows a high correlation and a unique relationship with

chlorophyll content. Using a logarithmic fit to the canopy

simulation results described above, the ratio TCARI/OSAVI

scaling-up tuned algorithm has been applied to CASI

airborne hyperspectral images to map chlorophyll status

over large areas of corn crops (L’Acadie experimental site).

Results for the image of August 5, 2000, for which ground

truth measurements are available, are reported here. The

CASI bands chosen were 550.3, 671.0, 701.4, and 800.6 nm

that were very close to recommended wavelengths for

TCARI and OSAVI in Eqs. (2) and (3). Additional calcu-

lations (not shown here) using nearby wavelengths differing

from the nominal by up to 5 nm revealed quick degradation

of the LAI-insensitivity performance of the index.

Fig. 8 compares chlorophyll content estimations from

CASI reflectance data and leaf chlorophyll content measure-

ments in the laboratory from plot field sampling. It reveals a

very good agreement between the predictions and the

ground truth, with a coefficient of determination r2=.804;

the corresponding root mean square error (RMSE) is

4.35 mg/cm2. In comparison with other recent studies that

used the inversion of radiative transfer models for pigment

content and LAI together over corn and soybean canopies,

Jacquemoud et al. (2000) obtained determination coeffi-

cients (r2) less than .58 (r< .77), although it should be noted

that chlorophyll content was estimated with the SPAD

meter, rather than directly measured from leaf samples.

Therefore, the predictive capability of TCARI/OSAVI

seems consistent and satisfactory.

The spatial distribution of chlorophyll status is illustrated

by Fig. 9, where different plots have been discriminated

according to their chlorophyll level. They correspond to

various nitrogen treatments designed to study the link

between nitrogen fertilization and spatial variability of crop

biophysical variables. Besides bare soil plots represented in

red, three major groups of plots can be seen in the image

corresponding to low (blue), intermediate (mainly yellow),

and high (green) chlorophyll levels, the mean values of

which were determined as 28, 41, and 48 mg/cm2, respec-

tively. The corresponding standard deviation values are

estimated to 4.58, 2.71, and 1.77, respectively. The mean

value of 41 mg/cm2 for the intermediate group is due to the

presence of high chlorophyll areas within some plots. These

are in agreement with the expected spatial variability to

result from nitrogen fertilization differences: high nitrogen

levels, generating high chlorophyll concentrations, should

induce a spatial homogeneity of crop biophysical properties.

This is corroborated by the decrease of variability when

chlorophyll content increases from 28 to 48 mg/cm2. The

spatial heterogeneity of CASI-estimated chlorophyll and its

comparison with ground truth data are thoroughly analyzed

and discussed by Haboudane et al. (2001) and Tremblay

et al. (2001).

4. Conclusion

In this study, leaf and canopy models (PROSPECT and

SAILH) were employed to simulate chlorophyll and LAI

effects on crop canopy reflectance. Then, a methodology for

predicting chlorophyll status from hyperspectral data, based

on combining vegetation and chlorophyll indices through

scaling up, has been developed and successfully tested with
Fig. 8. Comparison between measured chlorophyll content and chlorophyll

values estimated using the ratio TCARI/OSAVI. The RMSE is 4.35 mg/cm2.

Fig. 9. Map of chlorophyll status determined from CASI hyperspectral

image of August 5, 2000, for corn fields at the L’Acadie experimental site.

Chlorophyll estimations have been performed through the relationship

between chlorophyll concentration and ratio TCARI/OSAVI. Numbers 40,

41, 48, and 49 identify the fields described in the section Study Area.

Chlorophyll content units are mg/cm2.
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airborne CASI hyperspectral images over a corn crop exper-

imental site.

The methodology was used to investigate and take into

account the effects of nonphotosynthetic materials and LAI

on the retrieval of leaf chlorophyll at the canopy level. To

address these issues, we developed a transformed variant of

the chlorophyll index MCARI, called TCARI, which is

more sensitive to low chlorophyll values and more resistant

to vegetation nonphotosynthetic materials. Then, a vegeta-

tion index that minimizes soil effects on the canopy

reflectance (OSAVI) has been integrated with TCARI to

remove LAI influence on chlorophyll predictions from

remotely sensed data. The study has shown that the chloro-

phyll content is correlated with the slope of TCARI versus

OSAVI, and has demonstrated that the ratio TCARI/OSAVI

is insensitive to LAI variations, for LAI values ranging

from 0.5 to 8. Consequently, a predictive function, inde-

pendent of LAI, can be developed through modeling to map

crop chlorophyll status using airborne remote sensing

images. Resulting chlorophyll content estimations showed

a very good agreement with laboratory chlorophyll meas-

urements, with a high correlation coefficient (r=.9) and

RMSE of 4.35 mg/cm2.

The method proposed in this paper holds a strong

potential for ‘‘operational’’ use in the context of precision

agriculture. It allows an accurate estimation of crop pho-

tosynthetic pigments without a priori knowledge of the

canopy architecture. However, the actual robustness of this

methodology and its use needs to be verified in early growth

conditions when LAI is low, as this is when such potential

information is most critical for operational use. This method

should be valuable for other crops as well, and further work

should focus on developing a single and simple index that

will have the same predictive capabilities as the ratio

TCARI/OSAVI. Particularly, it should analyze the right set

of spectral bands, the combination of which will enhance

sensitivity to chlorophyll content variations and reduce

responsivity to background and canopy structure effects.

Moreover, a careful analysis should be carried out to

investigate the effects of band characteristics: centre loca-

tion and bandwidth.
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