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Abstract

Ordination and cluster analysis are two common methods used by plant ecologists to organize species abundance data into discrete

‘‘associations’’. When applied together, they offer useful information about the relationships among species and the ecological processes

occurring within a community. Remote sensing provides surrogate data for characterizing the spatial distribution of ecological classes based

on the assumption of characteristic reflectance of species and species associations. Currently, there exists a need to establish and clarify the

link between theories and practices of classification by ecologists and remote sensing scientists. In this study, high spatial resolution Compact

Airborne Spectrographic Imager (CASI) reflectance data were examined and compared to plant community data for a peatland complex in

northern Manitoba, Canada. The goal of this research was to explore the relationship between classification of species cover and community

data and reflectance values. Ordination and cluster analysis techniques were used in conjunction with spectral separability measures to

organize clusters of community-based data that were suitable for classification of CASI reflectance data, while still maintaining their

ecological significance. Results demonstrated that two-way indicator species analysis (TWINSPAN) clusters did not correspond well to

spectral reflectance and gave the lowest classification results of the methods investigated. The highest classification accuracies were achieved

with ecological classes defined by combining the information obtained from a suite of analysis techniques (i.e., TWINSPAN, correspondence

analysis (CA), and signature separability analysis), albeit not statistically superior to the classification obtained from the signature separability

analysis alone.

D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Boreal forest peatland is a major circumpolar ecosystem

(Elliot-Fisk, 2000) comprising about 15–20% of Canada’s

boreal forest landscape (NWWG, 1988). The importance of

boreal forest peatland ecosystems has been recognized by

scientists from many disciplines (e.g., Calmé & Desrochers,

2000; Lavoie & Saint-Louis, 1999; Mazerolle, Drolet, &

Desrochers, 2001; Waddington & Warner, 2001). For

instance, peatlands provide a historical record essential to

research on the climate, biology, and culture of the areas in

which they exist (Gorham, 1991; Lafleur, McCaughey,

Joiner, Bartlett, & Jelinski, 1997; Lavoie, Zimmermann, &

Pellerin, 2001; Petrone, Waddington, & Price, 2001).

The two major types of vegetation present in peatlands

are ombrotrophic bog and minerotrophic fen plant commun-

ities. The separation of bogs and fens is based on (1)

underlying landform; (2) water chemistry; (3) hydrology;

and (4) indicator species. Bogs are often raised in elevation,

low in pH, poor in species diversity, and low in calcium

(Ca). In contrast, fens tend to have concave landforms, are

less acidic, have richer floral species assemblages, and are

higher in Ca (Glaser, 1992; Mitch & Gosselink, 1993;

Wright, Coffin, & Aaesang, 1992). These differences are

linked to the hydrological properties of fens and bogs. Fens

are further subdivided into poor fen, intermediate rich fen,
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and extremely rich fen, whereby pH, Ca concentration, and

species diversity increase along a gradient. It is not unusual

within large fens to find all three fen subtypes owing to

variations of within-fen hydrological and nutrient regimes.

Fens and bogs sequester carbon via peat accumulation.

This is accomplished through primary productivity from the

uptake of atmospheric carbon dioxide (CO2). In some cases,

these ecosystems are also important as emitters of CO2, as

well as methane (CH4), which makes them an important

concern for climate change (Roulet, 2000; Schlesinger,

1997). Studies of carbon cycling and trace gas biogeochem-

istry have shown that plant community composition and

wetland microtopography (hummocks and hollows) are

important controls on the exchange of these trace gases

(Bubier, Crill, Moore, Savage, & Varner, 1998; Bubier,

Moore, & Roulet, 1993; Moore, Heyes, & Roulet, 1994;

Waddington & Roulet, 1996; Whiting, 1994). Thus, hetero-

geneity and patchiness of vegetation within peatlands has

important consequences for CO2 and CH4 fluxes and creates

a large range in trace gas fluxes that can ultimately be linked

to thermal conditions and local scale hydrology (Potter,

Bubier, Crill, & Lafleur, 2001). For example, CH4 fluxes

vary from hummock to carpet and pool, corresponding with

a decrease in height above the mean water table position

(Bubier, Moore, & Juggins, 1995); similar results are found

for CO2 fluxes (Waddington & Roulet, 1996). The close

correspondence between peatland topographic position and

species assemblage may be used as a surrogate for the

degree of anaerobism/aerobism in a peatland, and hence for

use in estimating CO2 and CH4 fluxes. Further, previous

studies suggest that it may be possible to identify these

community differences from remote sensing signatures

(Bubier, Rock, & Crill, 1997; Whiting, 1994), providing a

remote sensing tool for estimating peatland gas exchange.

The Boreal Ecosystem–Atmosphere Study (BOREAS)

(Sellers et al., 1995) was an intensive remote sensing and

field study of the northern boreal forests of Canada. BOR-

EAS investigated exchanges of energy, water, heat, CO2,

and trace gases between the boreal forest and the atmos-

phere. Remote sensing science was used to develop linkages

between spectral response and boreal zone biophysical

processes that govern these exchanges at a range of spatial

scales. Here, we report on the application of Compact

Airborne Spectrographic Imager (CASI) data to generate

reflectance images of fen and bog vegetation for comparison

to field surveys of species composition.

Plant community ecologists often analyze vegetation data

by a methodological duet consisting of ordination and

classification (as well as direct gradient analysis) (Gauch,

1982). Both ordination and classification techniques organ-

ize community data on species abundances independent of

the habitat template. The choice of ordination versus clas-

sification for any particular plant data set is not straightfor-

ward. In general, if community variation is discontinuous,

and species organize themselves into discrete clusters, then

classification (clustering) is a natural framework for con-

ceptualizing communities (Jongman, Ter Braak, & van

Tongeren, 1995). However, data structures that are naturally

strongly clustered are rare in community ecology (Gauch,

1982). Moreover, even when a data set and ecological

environment appear to be good candidates for classification,

it remains that classification is partly an art, whereby the

investigator’s experience and understanding are of para-

mount importance (Gauch, 1982). On the other hand, if

community variation was continuous, ordination would

appear to be a more logical method for analysis of com-

munity structure. However, special problems arise with

ordination in that it is descriptive in nature and subject to

a number of assumptions about joint relationships of vari-

ables. Ordination and classification may be viewed as

complementary, and when applied together, offer useful

information about the relationships among species and their

distribution across sites.

Of particular interest in this study is the application of

two-way indicator species analysis (TWINSPAN) (Gauch &

Whittacker, 1981; Hill, 1979) to divide samples of species

into a hierarchy of statistically similar clusters and then to

examine their spectral separability. TWINSPAN is widely

employed by field ecologists, yet the relationship between

species abundance/distribution across sites and spectral

reflectance is not clearly understood. Good correspondence

between clusters of ground sampled vegetation and spectral

signatures at fine spatial scales would imply that high

resolution spectral data could be used in the generation of

region-wide model estimates of trace gas flux, especially

when up-scaled to coarser resolution spectral data.

Ordination analysis is also employed in this study, such

that species and samples are arranged in a low-dimensional

space whereby similar species are nearby and dissimilar

entities far apart. Here, the degree to which separability is

improved by use of correspondence analysis (CA) is ana-

lyzed (Ludwig & Reynolds, 1988). Correspondence analysis

ascertains the degree of ecological ‘‘correspondence’’

between sampling units and species using an eigen-analysis

approach.

Another method of determining the natural arrangement

of the plant communities within a peatland is through the

examination of their spectral similarities and differences

using spectral separability analyses (Anderson & Clements,

2000). Separability measures (e.g., divergence, transformed

divergence, Jeffries–Matusita (J–M) distance) are common

in the analysis of multispectral remote sensing data (Jensen,

1996; Mausel, Kamber, & Lee, 1990; Swain & Davis, 1978;

Treitz & Howarth, 2000). Here, Jeffries–Matusita (J–M)

distance is applied to remote sensing spectral data to assess

plant communities within the peatland complex.

The overarching objective is to determine which of these

methods used separately, or in combination with one

another, can provide the most accurate characterization of

community-level structure in peatlands based on their spec-

tral properties. This study integrates species abundance data

into the classification of high spatial resolution CASI data.
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This combination of techniques is important for analyzing

imagery with very high spatial resolutions, where the

potential exists for meaningful information to be derived

from detailed ground information (Anderson & Clements,

2000; Jacobsen, Nielson, Ejrnaes, & Groom, 1999; Treitz,

Howarth, & Suffling, 1992). Therefore, the overall goal of

this research is to explore the link between the theories and

practices of classification of vegetation data by ecologists

and image classification for mapping the spatial extent of

vegetation by remote sensing scientists.

2. Study area

The peatland site is one of several locations of interest in

the BOREAS northern study area near Thompson, Mani-

toba, Canada (55.9jN, 98.4jW). Details of the site’s micro-

meteorology, general vegetation, and hydrology are

described by Lafleur et al. (1997). Briefly, the peatland

has an area of approximately 500 ha and is kidney-shaped. It

is underlain by 1–6 m of peat, with peat depths greater than

5 m in the central portion (Jelinski, unpublished data). In

general, the peatland platform is heterogeneous in vegeta-

tion character with an undercover of bryophytes (mosses), a

subcanopy of bog birch (Betula glandulosa), a range of

sedges species (Carex spp.), and sparsely scattered tamarack

(Larix laricina). At a finer scale, the vegetation is charac-

terized by large patches of visually distinct vegetation,

interlaced with less discrete transitional ecotones (Fig. 1).

These patches can be broadly categorized into four com-

munity types. The wettest community is treeless and domi-

nated by sedges and buck bean (Menyanthes trifoliata).

Drepanocladus exannalatus, a brown bryophyte, is the

dominant understory species. The sedge-fen community

type is somewhat drier and is dominated by Carex spp.

and M. trifoliata. The moss–shrub community is drier,

hummocky, and dominated by bog birch and bog rosemary

(Andromeda porifolia). Small stunted tamaracks are scat-

tered in the understory. The driest site is characterized by a

relatively dense overstory of tamarack and a thick under-

story carpet of bryophytes such as Sphagnum warnstorfii, S.

angustifolium, and Tomenthypnum nitens. Standing dead or

decadent tamarack are common in parts of the peatland.

3. Methods

3.1. Multivariate analysis techniques

3.1.1. Two-way indicator species analysis (TWINSPAN)

TWINSPAN has been implemented as a computer pro-

gram that divides the original data set into smaller subsets

Fig. 1. Gray-scale of the peatland complex, with community subsets. The peatland is one of several sites at the BOREAS northern study site. This site is located

at 55.9jN 98.4jW.
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according to individual species and their attributes (Hill,

1979). The method is divisive since it involves the pro-

gressive refinement, by dichotomy, of a single axis through

reciprocal averaging. In the TWINSPAN algorithm, the

dichotomy is originally located at the center of gravity

(i.e., centroid) of the first ordination axis. The division is

then refined using discriminant function analysis and

weighting algorithms to place species/sites on one side of

the dichotomy or the other. Each side of the dichotomy is

then subdivided into smaller dichotomies using the same

process. This division continues until some predefined

criteria set by the user is reached (Jongman et al., 1995).

Although the division is based on the species that contrib-

utes the most variation, the approach is polythetic because

it uses information about several species simultaneously to

perform this task. Finally, the method is hierarchical,

producing a dichotomizing ‘‘tree’’ (dendrogram) of classes

that can be considered at various levels of disaggregation.

One of the common criticisms of TWINSPAN is that

dichotomies do not usually occur in nature, and sites are

arbitrarily divided that could easily be grouped together.

Final aggregations will often have inaccurate groupings of

species/sites (Cumming, 2000; Hill, 1979; Jongman et al.,

1995).

3.1.2. Correspondence analysis (CA)

Correspondence analysis maximizes dispersion of sites

and species according to a latent environmental variable.

One of the assumptions when performing CA on species

data is that the species respond in a unimodal way to an

unknown underlying latent variable(s). In this way, species

occur within a limited range of each environmental varia-

ble. Jongman et al. (1995) describe CA as a form of

weighted averaging, which constructs a theoretical envi-

ronmental variable that best explains the species data. This

is done by maximizing the dispersion of the species scores

along the first ordination axis and the correlation between

species and sites. Multiple axes can be constructed, with

the constraint that they are uncorrelated with the previous

axes. With this method, it is not necessary to know the

environmental cause of species distribution (i.e., the anal-

ysis can be performed on presence–absence data or abun-

dance data). Correspondence analysis results can be

represented on scatterplots, where a two-dimensional scat-

terplot will display the results of the first two axes, or the

two most important latent environmental variables (Fig. 2).

Here, the eigenvalue (k) is a measure of how well the

species scores correspond with the sample scores (Fig. 2).

In particular, the eigenvalue of an axis will equal the

correlation coefficient between species scores and sample

scores.

Depending on the nature of the species data under

study, CA can display two well-known mathematical

faults, which are unrelated to any inherent structure in

the data. First, site scores on the primary axis can be more

compressed at the ends of the axis than in the middle,

even if the change in species composition between sites is

constant (Jongman et al., 1995). If care is not taken, this

could cause an observer to attribute a stronger relationship

between certain compressed sites than actually exists.

Although the distance between site scores may be

affected, this artifact does not impact the order of site

arrangement along the axis. The second problem occurs

when the second environmental gradient accounts for less

variance than exists if the first axis is artificially folded

onto itself. This will result in what is commonly termed

the ‘‘arch effect’’, which allows a second axis to be falsely

created to maximize the dispersion along this folded axis

(Jongman et al., 1995). This introduces false structure in

the data by implying that the second axis contains new

information about a latent variable. Hence, care must be

taken when interpreting the structures depicted on the

second axis. These structures may simply be artifacts that

cannot be explained by real environmental conditions

(Cumming, 2000).

3.1.3. Canonical correspondence analysis (CCA)

While CA maximizes dispersion of sites and species

according to a latent environmental variable, canonical

correspondence analysis (CCA) selects a linear combination

of measured environmental variables to maximize the dis-

persion of sites and species (Jongman et al., 1995). In this

manner, CCA is said to be a constrained form of CA, where

there can be as many axes as there are environmental

variables. CCA displays the main pattern in weighted

averages for each species with respect to all selected envi-

ronmental variables. The purpose is to detect patterns of

variation in the data that can be best explained by the

measured environmental variables, as well as to provide

Fig. 2. Hypothetical correspondence analysis bi-plot. The eigenvalue (k) is
a measure of how well the species scores correspond with the sample

scores. Specifically, the eigenvalue of an axis will equal the correlation

coefficient between species scores and sample scores.
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an easily interpreted graphical representation of the species

and environmental variables in low-dimensional space

(Anderson & Clements, 2000; Cumming, 2000; Jongman

et al., 1995).

3.1.4. Signature separability analysis

Another method of determining the natural arrange-

ment of the plant communities within the peatland is

through the examination of their spectral similarities and

differences using spectral separability analysis (Anderson

& Clements, 2000). This method is based purely on the

spectral response of plant communities and makes the

assumption that communities having a similar spectral

response also have ecological similarities. The advantage

of this technique is that the creation of spectrally sepa-

rable groups should provide higher classification accura-

cies since most image classification algorithms apply hard

decision rules to create discrete classes. However, the

spectral response of vegetation communities is variable

and complex, and groups that are ecologically significant

and distinct may well have a similar spectral response.

This fact accounts for many of the difficulties encoun-

tered by ecologists and remote sensing scientists when

attempting to classify an ecosystem at a very high spatial

resolution.

Swain and Davis (1978) describe three measures of

separability: divergence, Jeffries–Matusita (J–M) distance,

and transformed divergence. It has been shown that J–M

distance analysis offers advantages when the data are

normally distributed. The J–M distance algorithm calculates

the separability of two class signatures, and outputs a value

between 0 and 2 according to the following algorithm

(Richards, 1993):

JMði;jÞ ¼ 2½1� eð�aði;jÞÞ�

where JM(i,j) = Jeffries–Matusita distance between class i and

j and a(i,j) = 0.125T[M(i)�M( j)]*Inv[A(i,j)]*[M(i)�M( j)]

+ 0.5ln{det(A(i,j)))/(det(S(i)*det(S( j))}
1/2, M =mean vector;

S = covariance matrix.

Values approaching 2 indicate a high degree of separa-

bility, while those close to 0 indicate a low degree of

separability. If sites have a low degree of separability, it is

likely that there will be errors of omission/commission

between them when using a parametric classifier (e.g.,

maximum likelihood). Hence, these distance measures can

be used to determine how sites should be grouped according

to their spectral separability. For instance, it is logical that

sites demonstrating a high degree of separability (i.e., values

approaching 2) represent different classes, while sites that

have poor separability (i.e., values approaching 0) represent

the same class, or at least classes that are spectrally similar.

However, it should be noted that the relationship between

separability and accuracy is nonlinear. Hence, care must be

taken when interpreting separability based on these distance

measures.

3.2. Data collection

The field component of the study involved quadrat

sampling (each 3 m� 3 m) of 72 vegetation plots in 1995

(Fig. 3). Four of these sites fell outside of the CASI

coverage and hence 68 sites were used for this analysis

relating field measures to spectral reflectance. The majority

of sample sites are located in the northern parts of the

peatland due to an error in GPS sampling for sites in the

southern portion. Vegetation plots were located within areas

that were deemed ecologically similar and homogeneous.

The sites sampled account for the ecological variability of

the peatland and the spectral variability of the CASI data.

This was evident in the field data and tested in the CASI

data (i.e., the reflectance data for the 68 sites accounted for

the spectral variability of the CASI image data, indicating

that the spectral variations were sampled within the 68

sites).

The relevé method was employed, whereby the inves-

tigator is familiar with the vegetation and the existence of

certain ‘‘community types’’ that appear to repeat themselves

in similar habitats. This results in relatively discrete patches

of similar vegetation. Within each plot, the species’ cover in

nine subquadrants (1 m2) was recorded following the

classification system of Daubenmire (1968). These values

were then aggregated for a plot level cover estimate for each

species. Using the Daubenmire method, the percent-cover

categories were defined as follows: (1) 0–1%; (2) 1–5%;

(3) 5–25%; (4) 25–50%; (5) 50–75%; (6) 75–95%; and (7)

95–100%. As in most relevé methods for estimating cover/

abundance, the class intervals are unequal to allow for an

easier estimation of a species-cover-to-area relationship than

Fig. 3. Location of sample sites within the peatland complex. The field

component of the study involved quadrat sampling (each 3� 3 m) of 72

vegetation plots in 1995. Four of these sites fell outside of the CASI

coverage and hence, 68 sites were used for the analysis relating field

measures to spectral reflectance.
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what is possible with equal intervals of cover. The rationale

for having such a classification is that plant cover is very

heterogeneous from point to point, thus making exact

estimates rather problematic. The category intervals are

most detailed at the low end, where differences in species

cover matter most for classification. Also, the less abundant

species with small cover may sometimes have an important

diagnostic significance, hence requiring a more detailed

breakdown of the lower scale values as compared to the

larger scale values (Mueller-Dombois & Ellenberg, 1974).

Field sampling catalogued over 114 different plant species

in the peatland complex.

In 1995, GPS data were collected for the center of each

vegetation plot using a Trimble Basic Plus receiver. Since a

base station was not available, GPS data were post-pro-

cessed using GPS PACE (GPS Positioning from ACS

Clocks and Ephemerides), a program developed by the

Canadian Geodetic Survey Division of Natural Resources

Canada. GPS data were collected over a 30-min period at

each site with positions recorded every 10 s. The overall

root mean square error (RMSE) for the 68 vegetation plots

was 2.52 and 2.08 m in the x (Easting) and y (Northing)

directions, respectively.

To aid in the geo-referencing of the CASI data, 52 white

reflectance targets (0.8� 0.8 m) were placed across the

peatland in July 1996 and their locations recorded with a

Trimble Pro XL receiver. GPS data were again collected

over a 30-min period, but with a measurement interval of 5

s. Data were again post-processed using GPS PACE. The

RMSE for the 52 targets was 0.28 and 0.47 m in the x

(Easting) and y (Northing) directions, respectively.

In an attempt to assess the absolute accuracy of the two

different types of receivers, GPS data were collected at two

survey monuments established by the Manitoba Department

of Highways and Transportation, which had been surveyed

in the spring of 1996. The control point coordinates were

provided as UTM coordinates referenced to NAD83. The

on-line version of the Canadian Geodetic Survey’s ‘‘Geo-

detic Survey Routine: UTM/TM and Geographic’’

(GSRUG) was used to convert corrected positions from

geographic to UTM coordinates. Based on measurements at

the two survey monuments, the average total error of the

Trimble Basic Plus and the Trimble Pro XL receivers was

estimated to be 2.1 and 1.5 m, respectively. Average

positions were determined using GPS PACE post-process-

ing and then compared to the surveyed coordinates. These

accuracy estimates and the manner in which vegetation plots

were selected (i.e., within homogeneous patches) ensure

appropriate geo-referencing for relating field-based meas-

ures to CASI reflectance data.

The CASI is a visible/near-infrared pushbroom imaging

spectrograph with a reflection grating and a two-dimen-

sional CCD solid-state array measuring 512� 288 pixels

(Gray et al., 1997). CASI data were acquired from a Piper

Navajo Chieftan aircraft in July 1996 as part of the third

BOREAS intensive field campaign-3 (IFC-3). Six spectral

channels were collected, sampling the visible and NIR

portions of the electromagnetic spectrum (Table 1). These

data were converted to radiance using software developed at

the Center for Research in Earth and Space Technologies

(CRESTech), using algorithms by Babey and Soffer (1992).

The data were then converted to reflectance to eliminate

atmospheric effects and compensate for changes in solar

illumination during image acquisition (Gray et al., 1997).

The flight lines were orthorectified and compiled into a

mosaic to cover the entire peatland at a spatial resolution of

0.5� 0.5 m.

3.3. Classification, error assessment, and cluster modifica-

tion

Although there are a variety of algorithms developed for

supervised classification, the maximum likelihood classifi-

cation (MLC) technique was applied in this study. The MLC

has become a standard classifier in remote sensing data

analysis and has proven to be a robust algorithm in cases

where the image data meet the assumptions required for

parametric statistical analysis (Treitz, Howarth, Rotunno, &

Soulis, 2000). To assess accuracy, the ground data were

divided into calibration and validation sites for each class.

The calibration sites were used to obtain statistics for the

classification decision rules. The validation sites were used

in the post classification error analysis, as an independent

assessment of classification accuracy. Four measures of

accuracy (i.e., overall accuracy, the confusion matrix, errors

of commission/omission, and the Kappa coefficient (K̂))

were examined in the error analysis. Overall accuracy is a

measure of the number of validation pixels that were

classified correctly divided by the total number of validation

pixels for all classes. Overall classification accuracy was the

preferred measure to assess this (rather than average accu-

racy) since it weights the accuracy of each class by the

proportion of validation samples for that class in the

validation set. The confusion matrix (also referred to as

the error matrix or a contingency table) was used to illustrate

class agreement and error in greater detail by illustrating the

relationship between the independent validation sites (of a

known class) and the percentage of these pixels actually

classified into the various classes by the maximum like-

lihood classifier (Jensen, 1996; Lillesand & Kiefer, 2000).

The percentages of pixels classified correctly are shown on

Table 1

CASI channel wavelengths

Channel Waveband (nm) (FWHM) Range

1 464–474 blue

2 525–536 green

3 549–600 green

4 631–650 red

5 743–753 NIR

6 853–864 NIR

FWHM= full-width half maximum.
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the diagonal of the confusion matrix, while errors of

commission (wrongful inclusion into class-row entries)

and omission (wrongful exclusion from class-column

entries) can be seen off the diagonal (Lillesand & Kiefer,

2000). Finally, Kappa coefficients were generated to

describe the proportion of agreement between the classifi-

cation result and the validation sites after random agree-

ments by chance are removed from consideration (Richards,

1993; Rosenfield & Fitzpartick-Lins, 1986). Confidence

intervals were calculated based on an assumed normal

distribution of the K̂ statistic at a 95% level against a Type

I error (Barber, 1989).

4. Results and discussion

4.1. Assessment of natural site arrangements

To determine how the species and sites were organized,

CA was performed on the species abundance data. It was

observed that species abundance varied between sites along

the axis and the sites on opposite ends of the ordination axis

had no common species (i.e., species turnover). This sug-

gested a unimodal response to latent environmental varia-

bles, which indicated that correspondence analysis (CA)

was the most appropriate indirect ordination technique for

these data (Cumming, 2000; Jongman et al., 1995; Thio-

ulouse, Chessel, Doledec, & Olivier, 1997). In this case, CA

was used to determine the natural arrangement of sites based

on species presence and abundance, rather than to assess the

impacts of latent variables. For this reason, it was only

necessary to examine the primary ordination axis and group

the sites based on their separations along this axis.

To explore the relationship between the natural species

distribution shown in the CA output and image spectral

response, canonical correspondence analysis (CCA) was

performed to see how well spectral response described the

natural species clusters. The CCA used here incorporated 18

channels as environmental variables, which included the 6

original image channels as well as their standardized (cor-

relation matrix) and nonstandardized (covariance matrix)

principal components. This required the extraction of reflec-

tance data for each site, in the form of the mean, standard

deviation, and variance per band. A separate CCA analysis

Fig. 4. Process chart outlining procedures used to create ecological classes using spectral criteria.
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was performed for each of these measures. These values

were then analyzed with the species abundance data using

ADE-4 ordination software (Thioulouse et al., 1997).

Results of the CCA illustrated that the image channels

and principal components did not relate well to the distri-

bution of species abundance data with an explained variance

of 44% and an r2 value of 0.47. The eigenvalue for the first

CCA axis was 0.21, less than half the first CA axis. The

highest weightings for the canonical coefficients were for

the first standardized and nonstandardized principal compo-

nents. This indicates that these channels were the most

significantly related to species distribution across sites. This

approach varies from recent work completed by Andréfouët

and Claereboudt (2000), who used similarity matrices to

relate environmental variables to image spectra. Here, the

goal was not to relate environmental variables to the image,

but rather to determine how natural species clusters were

described by spectral reflectance.

The CCA results could be considered the first opportu-

nity to examine the raw ecological and reflectance data

together. The results illustrated that the image channels and

principal components did not relate to the distribution of

species abundance data very well, suggesting that classifi-

cation at the species level would be difficult. This finding

supported the establishment of community groups, which

may reduce some of the confusion introduced at the species

level. Ideally, established community groups would incor-

porate species giving a similar or overlapping spectral

response while maintaining a meaningful ecological rela-

tion. The canonical coefficients indicate that the first prin-

cipal component was most closely related to species

distribution across sites and supported the application of

the first principal component as an input for the image

classification.

4.2. Aggregation of sites using multivariate techniques

The procedures used to create the ecological classes,

using spectral criteria, are described below and illustrated in

Fig. 4.

(1) Initially, the sample plots were grouped into ecolog-

ically significant classes by using TWINSPAN analyses of

the species abundance data. The first division separated the

sites into stands that were generally wet on the left side of

the dendrogram and generally dry on the right. Subsequent

divisions separated the peatland sites into eight classes

(Table 2). The TWINSPAN dendrogram and final groups

used for classification are presented in Fig. 5.

(2) The CA ordination bi-plot was examined and sites

were grouped based on separations along the primary axis

(Fig. 6). This was done by creating group boundaries where

there was a gap in the site scores of the first eigenvector,

which can be shown numerically with the site scores, or

graphically in horizontal space on the CA bi-plot. This

created seven groups based on species abundance and

composition (Table 3). Note that the seventh group is not

shown in Fig. 6, but is composed of sites grouped at a larger

ecological scale (poor fen collapse and Sphagnum fuscum

bogs), which are evident in the larger-scaled bi-plot shown

in Fig. 7.

(3) The J–M distance output was used to group the sites

based on similarity of spectral response. Although some-

what arbitrary due to the nonlinear relationship between

accuracy and separability, J–M distances were used as

guidelines for determining the spectral separability of field

sites (PCI, 1998; Schott, 1997). By using the separability

measure for each site against all others, clusters were

defined as follows:

� Sites found to have good separability (i.e., J–M

distance>1.9) from each other were not grouped together.
� If a site was shown to be poorly separable (i.e., J–M

distance < 1.0) with another site, they were grouped

together. The class was then checked for conflicts by

ensuring that no combination of sites within the class had

good separability.

Use of the above guidelines enabled the grouping of 27

of the original 68 sites into five initial classes based on

spectral separability. The remaining 41 sites were shown in

the separability analysis to be low to moderately separable

(i.e., J–M distance >1.0 and < 1.9). These sites were then

added to the class from which they were most poorly

separable. Group assignment was based on the following

additional criteria:

� If a site had poor separability (i.e., J–M distance < 1.0)

from any of the original clusters, it was added to that

Table 2

TWINSPAN classes with ecological descriptions

Code Class Description

1 Warnstorfia exannulatus/

Carex rostrata

Extremely wet sites found in

the northern and western

regions of the peatland.

2 sedge fen Nonwooded, open stands

composed predominantly of

sedges. In some areas, this

class is a transition zone between

Warnstorfia exannulatus

lawns and shrub fens.

3 shrub fen Characteristically dense shrub

layer with no wooded canopy.

4 wooded fen Open canopy of stunted

Larix laricina present over

a dense shrub layer.

5 Scorpidium scorpioides

carpets

Scorpidium scorpioides and

Eriophorum alpinum are indicator

species.

6 forested fen Occurs on drier sites with higher

hummocks than wooded fens.

7 poor fen collapse Associated with permafrost

collapse scar.

8 Sphagnum fuscum

bogs

Moss layer typically exceeds

75% cover.
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group, provided there were no conflicts with any member

of that group. At this stage, there were still five classes,

which were expanded one site at a time.

� If multiple sites had good separability (i.e., J–M distance

>1.9) from all of the original clusters, a new class was

created. This resulted in four new classes.

Fig. 6. Class divisions superimposed onto a correspondence analysis (CA) bi-plot. The CA ordination bi-plot was examined and sites were grouped based on

separations along the primary axis. This was done by creating group boundaries where there was a gap in the site scores of the first eigenvector, which can be

shown numerically with the site scores, or graphically in horizontal space on the CA bi-plot. This created six groups based on species abundance and

composition. See Table 3 for class descriptions.

Fig. 5. Original TWINSPAN dendrogram. The first division separates the sites into stands that were generally wet on the left side of the dendrogram and

generally dry on the right. Subsequent divisions separated the peatland sites into eight classes (highlighted in bold). See Table 2 for class descriptions.
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� Sites that had good separability (i.e., J–M distance >1.9)

with all or most classes were not grouped (one site).
� Sites that could not be placed into any group without

conflict were not grouped (four sites).

It can be seen that the above process resulted in nine J–M

distance classes, with a 10th ‘‘unclassified’’ group contain-

ing five sites (Table 4).

Classes created based on CA ecological clusters and J–

M distance spectral clusters were used to assess the suit-

ability of TWINSPAN image classification of the peatland

complex. Each level of the TWINSPAN dendrogram was

examined, starting at the initial dichotomy. This was first

done by examining the CA bi-plot to determine where on

the first CA axis the first TWINSPAN division occurred.

One of the criticisms of TWINSPAN is that sites close to but

on opposite sides of each dichotomy will never be grouped

together despite their ecological similarities (Cumming,

2000; Hill, 1979; Jongman et al., 1995; van Groenewoud,

1992). This leads to potential conflicts with spectral clusters

as well. Therefore, J–M distance analysis was performed

for sites on the primary CA axis that were also located near

the first TWINSPAN dichotomy. In terms of image classi-

fication, there would only be a significant conflict if sites

were divided into different clusters when they were not

spectrally separable. Conflicts that occurred at the first

dichotomy were carried on throughout all of the subsequent

divisions. To determine the extent of the potential conflicts

between spectral differences and TWINSPAN clusters, each

level of the hierarchy was examined.

4.3. Classification, error assessment, and cluster modifica-

tion

Once initial clusters were created with the CA and J–M

distance analysis, several maximum likelihood classifica-

tions were performed. As discussed, the main objective of

this analysis was to incorporate the TWINSPAN and/or

CA clusters in the image classification, in hopes of

achieving a higher classification accuracy than that which

was achieved by any of these means alone, while main-

taining ecologically meaningful classes. Once the classi-

fication accuracies for the individual methods were

determined, the results were examined in detail to create

more suitable classes. This involved the examination of the

commission and omission errors in the confusion matrices

to determine the extent that validation pixels were incor-

rectly classified.

Ecological classes derived from the ordination analysis

with high classification accuracy were left unchanged.

Within these clusters, individual sites that were identified

through J–M distance analysis to be potential conflicts were

removed from the cluster and analyzed separately. The

remaining sites were those that were grouped together

ecologically, but had significant spectral conflicts. These

included sites that were close in proximity on the CA axis,

but were separated in the TWINSPAN divisions. Here, the

CA bi-plots were very helpful to regroup these sites without

enforcing hard decision rules. Sites that were not spectrally

separable from an ecological cluster and that were located

close to the cluster on the CA axis were merged. Separa-

bility analyses were performed each time class sites were

adjusted in order to determine the spectral impact of these

minor adjustments on the ecological clusters. This logic was

applied in an iterative fashion to group all sites (including

the ecologically large-scaled sites) in an ecologically mean-

ingful way that reduced spectral conflicts as much as

possible. The optimal set of classes, along with a description

of contributing techniques for the derivation of each class, is

provided in Table 5.

The locations of the TWINSPAN classes (‘poor fen

collapse’ and ‘S. fuscum bogs’) are superimposed on the

CA bi-plot in Fig. 7. These two classes are very distinctly

separated from the remainder of the sites on the CA bi-

plot. This is a result of a very unique species composition

for these sites. Although TWINSPAN does succeed in

separating these sites from the remainder of the peatland,

the dendrogram in Fig. 5 does not portray any indication

of the uniqueness of these classes. However, the CA bi-

plot illustrates that there are two scales of natural ecolog-

ical clustering occurring in the peatland complex. Three

groups can be seen at a coarse scale (‘poor fen collapse’,

Table 3

Correspondence analysis classes with ecological descriptions and relations

to TWINSPAN classes

Code Ecological descriptions

1 This group contains sites from TWINSPAN group 6—

forested areas. Forested peatlands are characterized by

high hummocks of Sphagnum warnstorfii, S. angustifolium,

and Tomenthypnum nitens, which support a canopy of

Larix laricina with scattered Picea mariana.

2 This group is composed mainly of TWINSPAN group 4,

but also contains a site from each of TWINSPAN groups 3

and 6. Indicator species include an open canopy of stunted

Larix laricina, with Tomenthypnum nitens in the shrub layer,

and Aulocomnium palustris on the hummocks.

3 Sites in this group are mainly from TWINSPAN groups 3

and 4, but there is also one site from TWINSPAN group 5.

The area contains shrubs and stunted woody canopy.

4 This group is mainly composed of TWINSPAN group 2,

but also contains sites from TWINSPAN group 1 and

group 5. Calliergnon giganteum and Menyanthes trifoliate

are the dominant species in this group.

5 This group has sites found in TWINSPAN groups 1 and 2.

These sites include Warnstorfia exannulatus and Carex

rostrata lawns as well as nonwooded, open sedge areas.

6 Similar to TWINSPAN group 1. Warnstorfia exannulatus and

Carex rostrata are the most common species. These sites are

extremely wet, associated with collapsed permafrost that is in

contact with minerotrophic fen waters.

7 This group was comprised of the ecologically large-scaled sites,

corresponding to groups 7 and 8 in the TWINSPAN analysis,

which are the poor fen collapses and Sphagnum fuscum bogs,

respectively. Poor fen collapses are associated with permafrost

collapse scars that are isolated from minerotrophic fen waters.
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‘S. fuscum bogs’, and ‘all other sites’), each containing a

distinct collection of species/abundance. However, to

obtain a more detailed classification of the peatland, it is

necessary to further subdivide the ‘all other sites’ cluster

into ecologically meaningful groups. Fig. 7 reveals that it

is within these subgroups that ecological conflicts can be

seen between the TWINSPAN dichotomies and the CA bi-

plot.

Conflicts resulting from the first TWINSPAN dichotomy

can be seen by comparing Figs. 5 and 8. The CA results

identified a problem with the TWINSPAN placement of site

71, which grouped more closely with the left side of the

TWINSPAN division than the right. Note that sites 71 and

62 are located in very close proximity to one another (in

terms of eigenvector space), but that site 62 fell under the

left side of the TWINSPAN division, while 71 was grouped

with the right side. Despite their obvious similarities, these

sites will never be grouped together with the TWINSPAN

clustering. Examination of the superimposed TWINSPAN

groups in Fig. 7 also illustrates similar conflicts with the

2nd, 3rd, and 4th TWINSPAN dichotomies, between Stands

1–6 and the natural site arrangement shown on the CA bi-

plot.

4.4. Image classification—TWINSPAN classes

Maximum likelihood classification showed very poor

agreement for classes derived from TWINSPAN clustering,

with an overall accuracy of 41% and a Kappa coefficient of

0.32. Examination of the confusion matrix (Table 6)

revealed considerable variation in class accuracy (ranging

from 0% to 78%), with considerable commission and

omission errors. The previously discussed ecological con-

flicts evident at the first TWINSPAN division were also

apparent in the confusion matrix. There were problems with

the TWINSPAN clusters even at the first division, which

were illustrated by errors of commission and omission

between classes 1–5 (left side of TWINSPAN division)

and 6–8 (right side of TWINSPAN division). This was

particularly notable for the forest (Class 6) (right side of

TWINSPAN division), wooded (Class 4) (left side of

TWINSPAN division), and shrub areas (Class 3) (left side

of TWINSPAN division) (Table 2). For example, the con-

fusion matrix showed that 32.4% of the forest validation

pixels were classified as wooded area and 17.6% as shrubs,

suggesting similarity in spectral response for these sites.

This agreed with the results found in the CA bi-plot, which

illustrated that forested, wooded, and shrub areas (identified

by TWINSPAN) were very similar in terms of species

abundance and distribution. The implication of this example

is that TWINSPAN is not a suitable method of clustering

species abundance data to optimize image classification for

this environment.

4.5. Image classification—correspondence analysis (CA)

classes

Maximum likelihood results for classes derived from

correspondence analysis were also very low, with an overall

accuracy of 42% and a Kappa coefficient of 0.40 (Table 7).

Fig. 7. Original correspondence analysis (CA) bi-plot with TWINSPAN groups superimposed. However, the CA bi-plot illustrates that there are two scales of

natural ecological clustering occurring in the peatland complex. Three groups can be seen at a coarse scale (‘poor fen collapse’, ‘S. fuscum bogs’, and ‘all other

sites’), each containing a distinct collection of species/abundance. However, to obtain a more detailed classification of the peatland, it is necessary to further

subdivide the ‘all other sites’ cluster into ecologically meaningful groups.
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Errors of commission/omission were high for all classes,

with individual class accuracies less than 45% for all

classes. Results show that vegetation classes derived solely

from species and abundance data are not suitable for spectral

classifiers. This is due to the similarity in spectral response

for many species, and the within-species variations that

result in a lack of a unique spectral response. For example,

seasonal variations, health/stress, age, and nutrient regime

will affect the spectral response (and potentially even

localized evolution) within a given species (Okin & Roberts,

2000). Also, as with any ordination technique, it is difficult

to define discriminant class boundaries along a gradient as

derived from this type of analysis of ecological data.

4.6. Image classification—J–M classes

Results obtained with classes derived solely from signa-

ture separability analysis showed a marked improvement

from results obtained with TWINSPAN and CA classes,

with an overall accuracy of 60% and a Kappa coefficient of

0.52 (Table 8). Errors of commission and omission were

greatly reduced with this technique, and were highest in off-

diagonal classes closest to the diagonal. In other words,

confusion occurred along class divisions where sites were

moderately separable (i.e., similar spectrally and ecologi-

cally). Classes that were very spectrally distinct from each

other were not confused in the maximum likelihood classi-

fier, resulting in commission/omission errors of 0% for these

cases. For example, Classes 5 and 3 (Table 4) were

spectrally very different and no confusion occurred between

these two classes. Examination of the species abundance

data for the sites that made up these classes revealed that the

classes were very different in terms of dominant species

(Table 4). For example, the species Menyanthes trifoliate

was highly abundant in Class 5 (between 50% and 95%

coverage for most sites), but not present at all in Class 3. In

contrast, there is significant confusion in class assignment

between Classes 3 and 4. The species abundance data

indicate that sphagnum species in Class 3 are also present

at most of the Class 4 sites, although not in at the same

abundance. Both Classes 3 and 4 are described as being very

wet, with characteristics associated with permafrost scars.

The similarity in species and in the moisture regime causes

considerable spectral overlap between the sites, making it

difficult to separate classes based solely on spectral

response. A by-product of grouping classes in this manner

is that they tend to be ‘‘ecologically complex’’ as evidenced

by their ecological descriptions (Table 4).

4.7. Image classification—‘‘optimized’’ classes

The ‘‘optimized’’ classification represents an attempt to

incorporate the species abundance data that was organized

by CA analysis into the signature separability analysis. The

best final overall classification accuracy for the optimally

derived clusters was 62% (K̂ = 0.55) (Tables 9 and 10),

Table 4

Jeffries–Matusita spectral classes with ecological descriptions

Code Ecological descriptions

1 This group has some similarities with group 4. The most

dominant species include Hamatocaulis vernicosus and

Calliergnon giganteum, with Menyanthes trifoliate,

Carex limosa, and Carex diandra also common.

2 Scorpidium scorpioides and Eriophorum alpinum are

indicator species for this vegetation association where both

species reach their highest cover values. Menyanthes

trifoliate is also present, though not in as high abundance

as in group 3.

3 Sphagnum fuscum is the indicator species of this group,

dominating the moss layer with cover values typically greater

than 75%. Sphagnum angustifolium, which occurs as scattered

patches in wet depressions, occurs with regularity. A scattered

shrub layer of Kalmia polifolia and Chamaedaphne calyculata

is characteristic, with Larix groenlandicum being present on

sites supporting Picea mariana. Other common species with

low abundance include Vaccinium oxycoccos, Carex aquatilis,

and Rubus chamaemorus.

4 These sites are extremely wet, associated with collapsed

permafrost that is in contact with minerotrophic fen waters.

Indicator species for this group are Carex rostrata and

Warnstorfia exannulatus, which both occur with high

frequency and abundance. Carex limosa, C. chordorrhiza,

Utricularia intermedia, and Menyanthes trifoliata are also

major components of this vegetation type. The mosses

Hamatocaulis vernicosus and Calliergon giganteum, and

the vascular plants, Salix pedicelaris, Comarum palustre

and Carex diandra are frequently present in regions

transitional to drier sedge fens. Scorpidium scorpioides

occurs locally with high abundance.

5 This group is composed mainly of nonwooded open areas

with sedges predominant in the herbaceous layer. On wetter

stands, submerged to emergent Calliergnon giganteum

predominates in the moss layer, while drier stands support

firm carpets of Calliergnon giganteum and Hamatocaulis

vernicosus. Menyanthes trifoliate is most dominant in this

group. Comarum palustris and the sedges Carex limosa,

Carex chordorrhiza, Carex lasiocarpa, and Carex diandra

are common to abundant.

6 This is a shrub group. Indicator species include Betula

nana, Campylium stellatum, Bryum pseudotriquetrum,

Brachythecium mildeanum, Aulocomnium palustre,

Hypnum lindbergii, and Tomethypnum nitens. A dense

shrub layer of Betula nana, Salix pedicellaris, and

Andromeda polifolia, with no wooded canopy, is

characteristic of this vegetation type.

7 Betula pumida, Carex limosa, and Hamatocaulis vernicosus

are common species in this group.

8 This group includes an open canopy of stunted Larix laricina

over a dense shrub layer of Betula nana and Chamaedaphne

calyculata. Sphagnum warnstorfii and Vaccinium oxycoccos

occur with high frequency on flat hummocks. Equisetum

fluviatile is one of the common vascular plants occurring

in the hollows.

9 This is the largest of the J–M groups, with 16 sites. The

indicator species that separate this group from others include

Larix laricina, Tomenthypnum nitens, and Aulocomnium

palustris. Microtopographic relief is greater than in other areas,

with Tomenthypnum nitens, Sphagnum warnstorfii, and

Aulocominum palustre forming flat hummocks interspersed

with wet hollows. Hypnum pratense is common on the sides

of hummocks and as low mounds in hollows.
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which represents a 21% improvement over the TWINSPAN

classification, and a slight but not statistically significant

improvement over the signature separability classes. Note

that the relatively low K̂ coefficient was consistent with the

findings of the CCA analysis, which indicated that the

image channels and principal components of these channels

did not relate to the species distribution across sites very

well. Again, there is a wide range of class accuracies

(ranging from 33% to 94%), with the highest accuracy

occurring for a group composed of a combination of sedges

and shrubs. These sites were located in clusters separated by

the TWINSPAN dichotomies, again showing that TWIN-

SPAN is not a suitable tool to derive classes for supervised

image classification. However, the CA bi-plot was found to

Fig. 8. Illustration of potential conflicts arising in TWINSPAN analysis as depicted on the CA bi-plot. Conflicts result from the first TWINSPAN dichotomy,

which separates ecologically similar sites 62 and 71. Note that sites 71 and 62 are located in very close proximity to one another, but that site 62 fell under the

left side of the TWINSPAN division, while 71 was grouped with the right side. Despite their obvious similarities, these sites will never be grouped together

with the TWINSPAN clustering. Examination of the superimposed TWINSPAN groups in Fig. 7 also illustrates similar conflicts with the 2nd, 3rd, and 4th

TWINSPAN dichotomies between Stands 1–6 and the natural site arrangement shown on the CA bi-plot.

Table 5

Grouping criteria and ‘Optimized’ classes with ecological descriptions

Optimal

classes

Sites Dominant

technique(s)

Comments Ecological description

1 21, 38, 40,

60, 63, 2

TWINSPAN TWINSPAN Stand 6 and ecologically

large-scaled site 2

dominantly forested

2 10, 23, 34,

44, 54, 71, 3,

12, 22, 25,

48, 52, 62,

29, 47, 57

CA Parts of TWINSPAN Left 2 and Right 1.

Could not be derived from TWINSPAN,

but sites are located closely together on

the first CA axis.

combination of forested and wooded communities

3 17, 19, 66,

67, 36, 31

TWINSPAN

J–M distance

From TWINSPAN Left 3. combination of sedges and shrubs

4 1, 13, 14,

55, 65

TWINSPAN

J–M distance

most from TWINSPAN Left 1

(55 from Left 6)

dominantly Warnstorfia exannulatus/Carex rostrata lawns

5 43, 61, 69,

16, 9

J–M distance Not derived with TWINSPAN or CA.

Sites from both sides of the first

TWINSPAN division.

combination of poor fen collapse, Sphagnum fuscum bogs,

and Scorpidium scorpioides carpets

6 18, 42, 50, 51,

53, 68, 49

TWINSPAN

J–M Distance

From TWINSPAN

Left 2

combination of sedges, wooded communities, and

Scorpidium scorpioides carpets

7 26, 39, 56, 64 TWINSPAN

J–M distance CA

From TWINSPAN

Left 1 and Left 5.

combination of Warnstorfia exannulatus/Carex rostrata

lawns and sedges

8 4, 11, 28, 32,

46, 72

TWINSPAN

J–M distance CA

From TWINSPAN

Left 1 and Left 2

combination of Warnstorfia exannulatus/Carex rostrata

lawns, sedges, shrubs, and wooded communities
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be helpful in deriving this class because it highlighted

similarities in species composition that allowed signature

separability groups to be appropriately modified and gave

the final class ecological meaning.

It was interesting to note that the lowest class accuracy

was for a group of sites composed of sedges, wooded

communities, and Scorpidium scorpioides carpets. Although

the species composition of these three clusters was quite

different, the spectral separability analysis indicated that

these sites were spectrally similar. This case also empha-

sized the importance of the selection of calibration versus

validation sites for the classification accuracy assessment.

One would expect a source of error if the various ecological

clusters were not represented evenly in both the calibration

and validation data sets.

Ecologically large-scaled sites (i.e., those with very

different species composition) were very problematic for

grouping purposes. Both TWINSPAN and CA results indi-

cated that they could be classified together, but J–M

distance analysis illustrated that these sites should not be

in the same spectral group, but that it was possible (but not

optimal) to fit the ecologically large-scaled sites into other

clusters.

4.8. Suitability of the techniques and possible alternatives

for improved accuracy

Overall, results showed poor classification accuracy

using groups defined with purely ecological techniques

(TWINSPAN and CA). Improved accuracies for some

classes were achieved when consideration was given to

the spectral signatures of the sites. However, confusion

was evident for all techniques when attempting to character-

ize classes with indeterminate boundaries (i.e., related

closely to environmental/species gradients which are not

distinct). This ‘‘blending’’ of class boundaries is evident on

the CA bi-plots (Figs. 7 and 8), and suggests that, at the

scale of this study, species composition and abundance data

will not sufficiently characterize a peatland environment to

allow it to be spectrally classified by species associations.

Fuzzy classification techniques may prove helpful to char-

acterize these indeterminate boundaries. Here, fuzzy cali-

bration class weights would be assigned based on known

species mixtures within a site. During the classification,

each pixel is assigned a membership grade with respect to

the fraction of the pixel belonging to each class (Lillesand &

Kiefer, 2000). The output would then contain some homo-

geneous pixels (for example, a membership grade of 1.0 for

‘‘shrubs’’ and 0.0 for all other classes) as well as mixed

pixels in the areas where boundaries are not distinct (for

example, a pixel could be assigned a membership grade of

0.4 for shrubs, 0.3 for forest, 0.2 for wooded areas, 0.1 for

sphagnums, and 0.0 for all other classes).

Larger-scale plant communities are well suited for a

fuzzy classification scheme, but the small-scale processes

Table 6

Confusion matrix for TWINSPAN classification

Reference Number Percent classified into class

class of pixels
1 2 3 4 5 6 7 8

1 180 40.0 22.6 11.1 7.9 36.1 1.9 2.8

2 252 16.7 26.2 9.4 4.6 5.6

3 180 10.0 39.3 48.9 18.5 2.8 17.6

4 216 13.3 10.3 25.6 51.4 30.6 32.4

5 72 13.3 1.2 2.3 30.6

6 216 5.0 14.8 47.2 97.2

7 36 1.1 77.8

8 36 5.6 0.4 0.5 0.9 16.7 0.0

Overall accuracy: 41.2%; Kappa coefficient: 0.317; 95% confidence

interval = 0.291–0.343.

Table 7

Confusion matrix for correspondence analysis (CA) classification

Reference Number Percent classified into class

class of pixels
1 2 3 4 5 6

Unclassified 16.7 16.7

1 216 39.8 10.7 5.0

2 216 39.4 30.6 13.5 0.5 1.1

3 288 1.9 12.5 34.4 21.8 19.4

4 216 1.9 14.4 36.1 37.0 26.1

5 180 7.4 9.4 40.7 43.3

6 108 0.5 7.9 1.7 10.0 100.0

Overall accuracy = 42.2%; Kappa = 0.402; 95% confidence interval =

0.365–0.439.

Table 8

Confusion matrix for Jeffries–Matusita (J–M) classification

Reference Number Percent classified into class

class of pixels
1 2 3 4 5 6 7 8 9

1 72 30.6 11.1 6.5 0.9

2 108 39.8 27.8 33.3 0.7 2.8 8.3

3 72 12.5 19.4 47.2 7.4 0.9

4 108 2.8 25.0 59.3 1.2

5 108 22.2 63.9 23.6 3.1

6 144 27.8 36.1 42.4 9.3 0.9

7 108 6.9 21.3 9.0 81.5 9.0

8 144 2.8 89.6 14.5

9 324 13.9 13.2 2.8 7.6 61.1

Overall accuracy = 59.6%; Kappa = 0.519; 95% confidence interval =

0.496–0.542.

Table 9

Confusion matrix for ‘‘optimized’’ classification

Reference Number Percent classified into class

class of pixels
1 2 3 4 5 6 7 8

1 108 61.1 17.0 3.7

2 288 33.3 64.6 1.4 27.8 1.4 2.8

3 108 6.9 93.5 4.6 36.1 4.6

4 72 0.9 55.6 29.2 7.4

5 72 0.7 19.4 54.2

6 108 4.6 4.9 1.9 16.7 16.7 33.3 10.2

7 72 4.6 2.8 0.9 51.4 9.3

8 108 5.9 4.2 22.2 11.1 73.2

Overall accuracy = 62.4%; Kappa coefficient = 0.553; 95% confidence

interval = 0.527–0.579.
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and species groups evident in a fen community may reduce

the practicality of applying such a scheme to a fen environ-

ment. To date, fuzzy techniques have had most success

when applied to coarser resolution imagery (i.e., AVHRR,

Landsat TM, and SPOT), where subpixel components are

clearly identifiable (e.g., Atkinson, Cutler, & Lewis, 1997;

Cross, Settle, Drake, & Paivinen, 1991; Huguenin, Karaska,

Van-Blaricom, & Jensen, 1997). Further, although fuzzy

techniques would potentially provide a detailed classifica-

tion, an accuracy assessment of the output would be very

challenging on a per-pixel level. It might prove helpful to

consider the underlying environmental gradients that are

known to be present in bi-plot environments, such as

moisture, pH, and water chemistry. These gradients could

be incorporated as a layer in the classification and also used

to better group the species abundance data (i.e., incorporated

into ecological clustering/ordination techniques such as

canonical correspondence analysis). Further, environmental

gradients could be used to assign a class weight that varies

spatially (for example, as moisture increases, the probability

that the pixels would belong to a wet class, such as sites

dominated by Warnstorfia exannulatus and Carex rostrata,

would also increase).

5. Conclusions

Based on the results discussed above, a number of

generalizations can be made regarding the relationship

between species abundance, distribution, and spectral char-

acteristics for high spatial resolution CASI imagery. Exami-

nation of the techniques commonly used by ecologists to

define species associations based on presence and abun-

dance illustrated that these methods alone were not optimal

for classification of the peatland at very high spatial reso-

lutions. First, known problems with TWINSPAN clustering

were evident at all levels of the TWINSPAN divisions,

which were compounded when classes were subjected to

spectral classification. At all stages of the analysis, there

were vegetation sites that were separated by a TWINSPAN

division that were not spectrally separable. As a result,

classification results from the original TWINSPAN clusters

had the lowest classification accuracy of all methods tested.

This confirms that this technique for ecological grouping is

not readily amenable to remote sensing data analysis. It was

observed, however, that the most spectrally separable

TWINSPAN classes occurred at multiple levels within the

TWINSPAN divisions/dendrogram. These results seem log-

ical, in that it would be expected that spectral groupings

would not correspond on a one-to-one basis with TWIN-

SPAN classes at a single level within the hierarchy.

Correspondence analysis by itself also proved to be

ineffective in defining groups suitable for image classifica-

tion. However, CA did prove to be useful when examined in

conjunction with remote sensing techniques such as signa-

ture separability analysis. It was demonstrated that an

integrated application of CA bi-plots, TWINSPAN cluster-

ing, and J–M analysis provided slightly higher classifica-

tion accuracy than could be achieved by any one method

alone. This suggests that incorporation of species abundance

data for ecological clustering/ordination can assist in spec-

tral classification of these types of environments when using

high spatial resolution data.

The difficulties encountered in delineating classes along

indeterminate boundaries suggest that increased classifica-

tion accuracies will be difficult to achieve without incorpo-

ration of driving environmental variables. These environ-

mental variables and their gradients across space should

provide insight into the function and processes of the peat-

land communities, which would help to define ecologically

meaningful associations that can be spectrally delineated. It

is recommended that future work with high spatial resolu-

tion data in peatland communities incorporate these data to

further combine ecological and remote sensing techniques.
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Table 10

Comparison of classification results

Original grouping

method

Classification specifications Overall accuracy

(%)

K̂ lower

(95%)

Kappa coefficient

(K̂)

K̂ upper

(95%)

TWINSPAN maximum likelihood, 6 image channels,

no null class

41.2 0.291 0.317 0.343

CA maximum likelihood, 6 image channels + standardized

PC-1, no null class

42.2 0.365 0.402 0.439

J–M distance maximum likelihood, 6 image channels, no null class 59.6 0.496 0.519 0.542

Optimal clusters maximum likelihood, 6 image channels, no null class 62.4 0.527 0.553 0.579
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