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Abstract. The delineation of management zones is an important step to implementing site-specific crop management
practices. Remote sensing is a cost-effective way to acquire information needed for delineating management zones, since it
has been successfully used for mapping soil properties and monitoring crop growth conditions. Remotely sensed
hyperspectral data are particularly effective in deriving crop biophysical parameters in agricultural fields; therefore, the
potential of hyperspectral data to contribute to management zone delineation needs to be assessed. In this study, the spatial
variability of soil and crops in two agricultural fields was studied using seasonal compact airborne spectrographic imager
(CASI) hyperspectral images. Different spectral features including soil brightness and colouration indices, principal
components of soil reflectance data, and crop descriptors (leaf area index (LAI) and leaf chlorophyll content) were derived
from CASI data and used to partition the fields into homogeneous zones using the fuzzy k means unsupervised classification
method. The reduction of variances of soil electrical conductivity, LAI, leaf chlorophyll content, and yield was inspected to
determine the appropriate number of zones for each field. The zones obtained were interpreted according to the soil survey
map and field practices. Analysis of variance (ANOVA) was conducted to examine the effectiveness of the delineation. The
study shows that the spatial patterns of the resulting soil zones faithfully represent the soil classes described by the soil
survey maps, and the spatial patterns of the resulting crop classes discriminated the different crop growth conditions well.
These results show that hyperspectral data provide important information on field variability for management zone
delineation in precision agriculture.

Résumé. La délimitation des zones de gestion homogènes est une étape importante dans la mise en place des procédures de
gestion localisée des ressources agricoles. La télédétection peut s’avérer éonomiquement viable pour l’acquisition des
données requises à la délimitation de ces zones. En effet, elle a déjà permis de cartographier des propriétés de sols et de
suivre la croissance des cultures. Les données hyperspectrales sont très utiles pour dériver des descripteurs biophysiques des
champs en cultures; il faut donc évaluer le potentiel de la télédétection hyperspectrale à définir adéquatement la délimitation
des zones de gestion homogènes. À l’aide d’une série temporelle d’mages hyperspectrales du capteur aéroporté CASI
(« compact airborne spectrographic imager »), la variabilité spatiale des propriétés du sol et des cultures dans deux champs
agricoles ont été étudiés. Divers indicateurs spectraux, dont les indices de brillance et de coloration du sol, des composantes
principales de réflectance du sol et des descripteurs du couvert végétal agricole (l’indice de surface foliaire (LAI) et la
teneur en chlorophylle) ont été extraits des données CASI et utilisés pour segmenter les champs en zones homogènes à
l’aide d’une classification non dirigée utilisant la méthode de groupement flou à k moyens. L’observation de la réduction de
la variance de la conductivité électrique du sol, du LAI, de la teneur en chlorophylle des feuilles, et du rendement agricole a
permis de déterminer le nombre approprié de zones homogènes dans chaque champ. Les résultats ainsi obtenus ont été
évalués et interprétès grâce à l’utilisation de la carte pédologique et des informations sur les pratiques agricoles. Une
analyse de variance (ANOVA) a été réalisée pour évaluer la précision de la segmentation retenue. Les vérifications ont
confirmé que les zones homogènes déterminées à partir des propriétés spectrales du sol représentaient bien les classes
décrites sur la carte pédologique, et que les zones homogènes établies à partir des descripteurs biophysiques du couvert
agricole décrivaient bien les diverses conditions de croissance des cultures étudiées. Cela montre bien que la télédétection
hyperspectrale est une source d’information importante pour la détection de la variabilité spatiale des champs agricoles ainsi
que pour la délimitation des zones de gestion homogènes en agriculture de précision.
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Introduction
One of the important inputs to site-specific management

practices in agriculture is the delineation of management zones.
A management zone is defined as a portion of a field that
expresses a homogeneous combination of yield-limiting factors
for which a single rate of a specific crop input is appropriate
(Doerge, 1998). The delineation of management zones relies on
the exploitation of spatial variability of the agriculture field.
Zhang et al. (2002) classified the variability into six groups:
yield variability, field variability, soil variability, crop
variability, variability in anomalous factors, and management
variability. Information on the variability can be ascribed as
follows: (i) seasonally stable conditions, such as yield-based or
soil-based management units, which need to be determined
only once every season; and (ii) seasonally variable conditions,
such as soil moisture, weeds, and crop disease, which need to
be monitored continuously during the season (Moran et al.,
1997).

Remote sensing offers a quick and cost-effective way to
obtain information on the variability of agricultural fields, such
as soil properties, crop vigour, crop stress, and relative crop
yield (Moran et al., 1997). Remotely sensed hyperspectral data
have been successfully used in crop studies for estimation of
biophysical descriptors (Haboudane et al., 2002; 2004;
Thenkabail et al., 2000), prediction of crop vigour and yield
(Tomer et al., 1995; Shibayama and Akiyama, 1991), and
monitoring of environmental impact (Strachan et al., 2002;
Pattey et al., 2001; Leone and Escadafal, 2001; Lelong et al.,
1998). These studies demonstrated that hyperspectral remote
sensing provides a powerful tool for precision agriculture
applications.

The objective of this study was to explore the potential and
ability of hyperspectral remote sensing data for management
zone delineation in precision agriculture. Crop fields were
delineated into homogeneous zones using soil and crop
properties extracted from multitemporal compact airborne
spectrographic imager (CASI) hyperspectral data, and the
acquired zones were interpreted according to the soil survey
maps and the treatments applied in the fields.

Study site and hyperspectral data
The study site is located in the former greenbelt farm of

Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
(45°18′N, 75°45′W). The two neighbouring fields investigated
in the present study are referred to as fields 25 and 23. Field 25
is primarily composed of two soil associations (D3, Brandon
series; M3–NG2, Montain, Allendale, and North Gower series)
that share similar drainage conditions (poorly drained) and
taxonomic classification (orthic humic gleysol). They are
differentiated by the subsurface texture, which is finer in D3
(silty clay loam to clay loam) than in M3–NG2 (sandy clay
loam to fine sandy loam). Field 23 is composed of seven soil
landscape units with variable drainage classes, profile textures,
and genetic evolution (Perron et al., 2002). Figure 1 shows the
detailed soil survey map of the two fields, and Table 1 gives the
soil classification legend.

A survey was made in the two fields in November 2002
(Perron et al., 2003) to obtain soil electrical conductivity at two
depths, namely 0–30 cm (EC30) and 0–100 cm (EC100). In the
year 2001, uniform nitrogen (N) was applied in field 23, and a
specific N application pattern was imposed on field 25 (see
Figure 5d later in the paper).Yield data were acquired during
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Figure 1. Detailed soil survey map (Marshall et al., 1979) of field 23 (upper half of map) and
field 25 (lower half of map). The description of soil landscape unit (SLU) is presented in
Table 1.



harvest using a combine equipped with a yield monitor for both
fields. CASI hyperspectral data were collected four times in
2000 and three times in 2001, spanning crop growing
conditions, by intensive field campaigns (IFCs). CASI was
operated in the hyperspectral mode with 2 m spatial resolution
and 7.5 nm bandwidth. The 72 spectral channels acquired by
the sensor covered the visible and near-infrared portions of the
solar spectrum, ranging from 408 to 947 nm. The data acquired
on 20 June 2000 were chosen for soil partitioning, as the two
fields were almost bare of vegetation at that time. In 2001, corn
and spring wheat were planted in fields 23 and 25, respectively.
Acquisition dates in 2001 were planned to coincide with
different phenological development stages, providing image
data covering the early, active growth and reproductive crop
growth stages. The data from the three IFCs in 2001, acquired
on 14 June (IFC1), 26 June (IFC2), and 19 July (IFC3), were
used for crop field partitioning to study the spatial and temporal
variability of the two crop fields. CASI data were processed to
absolute ground reflectance by an operational processing
procedure, which includes radiance calibration, atmospheric
correction using the CAM5S model, and flat field correction, as
described by Haboudane et al. (2004).

Methods
Feature extraction

Feature extraction and selection is a necessary step in
hyperspectral data processing due to the large number of
spectral channels available. Effective methods for feature
extraction are objective oriented. This can be demonstrated by
recently developed vegetation indices. The modified triangular
vegetation index (MTVI2) is presented as an excellent
estimator of leaf area index (LAI) that minimizes leaf
chlorophyll content variation (Haboudane et al., 2004),
whereas the combined use of the transformed chlorophyll
absorption in reflectance index (TCARI) and the optimized
soil-adjusted vegetation index (OSAVI) provides a good

estimation of leaf chlorophyll content while minimizing LAI
variation (Haboudane et al., 2002). Nevertheless, feature
selection and extraction inevitably results in information loss;
therefore, special care should be taken when implementing any
procedure of feature extraction.

Soil reflectance has direct relationships with soil optical
properties (colour and brightness) and other soil properties
such as texture, soil moisture, and organic matter content
(Mattikalli, 1997). Soil brightness and colour are important in
differentiating between soil types (Leone and Escadafal, 2001).
They are believed to be determined by the amount and state of
iron and the content of soil organic matter, carbonate, moisture,
etc. Indeed, Huete and Escadafal (1991) concluded that
reflectance intensity (or brightness) represents the dominant or
principal source of spectral variance among soils, whereas the
difference of spectral curve shape (chromatic) is secondary. A
common practice to obtain brightness and chromatic
information is to convert from a red, green, and blue (RGB)
colour composite constructed with multispectral bands to a hue,
saturation, and intensity (HSI) colour representation system. In
the HSI system, the intensity (I) component represents
brightness information, and the hue (H) and saturation (S)
components represent chromatic information. In this study, the
I and S components are extracted from CASI soil reflectance
data of 2000 and are referred to as brightness index (BI) and
colouration index (CI). The formulae, presented by Liu and
Moore (1990) and modified by Escadafal et al. (1994), are as
follows:

BI 800 670 550= + +( )/R R R 3 (1)

CI 800 550 800= −( )/R R R (2)

where R is the reflectance of the channel, with the central
wavelength (in nm) indicated by the subscript. BI is equivalent
to the average reflectance of the three channels and is a measure
of the brightness of the soil. CI is equivalent to a measure of the

402 © 2005 Government of Canada

Vol. 31, No. 5, October/octobre 2005

Parent material SLUa Slope (%) Soil series Soil taxonomy Drainage

Fine-textured marine material (40%–60% clay) D3 2–5 Brandon Orthic humic gleysol Poorly drained

Strongly acid, sandy veneer (25–100 cm) over
clayey material

M3 1–3 Mountain Gleyed sombric brunisol Imperfectly drained
Allendale Orthic humic gleysol Poorly drained

M5 0.5–2.0 Allendale Orthic humic gleysol Poorly drained
Montain Gleyed sombric brunisol Imperfectly drained

M6 0–2 Allendale Orthic humic gleysol Poorly drained

Moderately fine textured marine material
(25%–40% clay)

NG2 0–2 North Gower Orthic humic gleysol Poorly drained

Medium- to fine-grained deep sandy material
(>100 cm)

U1 2–7 Carlsbad Orthic sombric brunisol Well drained
U2 2–5 Carlsbad Orthic sombric brunisol Well drained

Ramsayville Gleyed sombric brunisol Imperfectly drained
U7 1–2 Ramsayville Gleyed sombric brunisol Imperfectly drained

St. Samuel Orthic humic gleysol Poorly drained
aSoil landscape unit.

Table 1. Soil classification legend for the two studied fields (see Figure 1).



slope of the soil spectrum and therefore soil colour (Escadafal
et al., 1994). Thus, BI and CI calculated using these two
formulae are the first features to be used for soil-based
partitioning.

Principal component (PC) analysis is an effective way of
feature extraction. It compresses information into a few
components and is a powerful tool for feature reduction in
hyperspectral data processing. Principal component
transformation based on the covariance matrix of soil
reflectance data of 2000 was applied to images of fields 23 and
25. The first three components (PC1, PC2, PC3) made up
99.5% of the spectral information in field 23 (82.5%, 16.2%,
and 0.9% for the first, second, and third principal components,
respectively) and 99.7% in field 25 (91.7%, 7.8%, and 0.2% for
the first, second, and third principal components, respectively).
They accounted for almost the total variability of soil
reflectance data, and thus they were used as another feature set
for soil-based partitioning for comparison with the soil BI and
CI measures.

LAI and leaf chlorophyll content are two important crop
descriptors. They are critical to understanding biophysical
processes and for predicting growth and productivity (Tucker et
al., 1980; Moran et al., 1997). Therefore, CASI multitemporal
products of LAI and leaf chlorophyll content were used for
crop-based partitioning. The formulae for LAI estimation are as
follows (Haboudane et al., 2004):

MTVI2
1.5 1.2 2.5800 550 670 550

800

= − − −
+

[ ( ) ( )]

( )

R R R R

R2 1 2 − − −( )6 5R R800 670 0.5
(3)

LAI 0.2227 3.6566 MTVI2= ×exp( ) (4)

The formulae for leaf chlorophyll content estimation are as
follows (Haboudane et al., 2002):

OSAVI = 1.16(R800 – R670)/(R800 + R670 + 0.16) (5)

TCARI = 3[R700 – R670 – 0.2(R700 – R550)R700/R670] (6)

Chl = –33.3 ln(TCARI/OSAVI) – 19.7 (7)

where Chl represents leaf chlorophyll content (µg·cm–2). The
data from the three IFCs were clustered in an attempt to reveal
the crop spatial patterns and their temporal variation.

Overall, five sets of features were derived from CASI
reflectance data and used for field partitioning: soil features BI
and CI, soil features PCs (PC1, PC2, and PC3) from soil
reflectance data of 2000, and crop features LAI and leaf
chlorophyll content derived from CASI crop reflectance data
for the three IFCs in 2001. The soil features represent the
relatively stable properties of the field, whereas crop features of
the three IFCs reveal the seasonally variable conditions in the
fields.

Feature preprocessing

More than one feature is used in this study for field
partitioning to integrate different aspects of information.
Although all the features were extracted from the same source
of data, their typical dynamic ranges are quite different. The
values of the features within the range relative to 1%–99% of
the cumulative histogram were scaled to [0, 1] through a linear
stretch. One of the reasons for this processing is that the relative
importance of the features to the delineation is unknown, and
therefore they were given the same weight via data stretching.
This processing also eliminates the outliers from the typical
distribution range.

Clustering method

Because the number of management zones and their spatial
distribution are unknown, unsupervised methods were used to
cluster the field into homogeneous regions by dividing the
feature space. The features from the sites are then extracted and
related to the measured variables at the same sites to define the
class map of the variable of interest. Since the proposition by
Bezdek (1981), fuzzy k means has become one of the most
widely used unsupervised classification methods. It is the most
accurate among the unsupervised methods to reproduce the
ground data in a complex landscape (Duda and Canty, 2002)
and has been used by many researchers to classify remotely
sensed image data. The FUZCLUS module provided in the PCI
software (PCI Geomatics Enterprises Inc. 2001) was used in
our study to partition the selected features.

Determination of the number of zones

The number of management zones is determined by the size
of the field, the natural variability within the field, and certain
management factors (Zhang et al., 2002). The choice of an
appropriate number of classes is a prerequisite before
performing unsupervised classification. We determine the
optimum number of zones using the method used by Fridgen et
al. (2000), which is based on the inspection of the relative total
within-class variance (RTWCV) reduction of selected field
variables:

RTWCV
class field

= − −
∈= ∈
∑∑ ∑[ ] / [ ]x xij

j Ci

C

i j
j1

2 2µ µ (8)

where C is the number of zones, xij is an observation of the
variable from zone i, xj is an observation of the variable in the
whole field, µ i is the average of the variable in zone i, and µ is
the average in the whole field. As the number of zones
increases, RTWCV will decrease and then level off. The value
at which RTWCV levels off, or stops decreasing significantly,
is a reasonable estimate of the number of zones that can be used
to partition the field.

In this study, to determine the appropriate number of zones,
fields 25 and 23 were partitioned into 2–7 zones using the
derived soil and crop feature sets. For each of the partitioned
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results, RTWCV was calculated for the selected variables. The
selected variables included (i) yield, which is often considered
as the ultimate dependent variable; (ii) LAI and leaf
chlorophyll content, which are the most important crop
descriptors; and (iii) soil electrical conductivity. Electrical
conductivity was measured at depths of 0–0.3 and 0–1.0 m
(Perron et al., 2003). The RTWCV values of these selected
variables are plotted against the number of zones, and the
appropriate number of zones was determined from the plots.

Another factor that should be taken into consideration is the
spatial distribution of the samples in a given zone. Pixel-based
image classification usually divides the feature space. Thus,
pixels in a zone are continuous in feature space but are not
necessarily so in the spatial domain. From the point of view of
the agricultural producer, management zones should
encompass significant areas with continuous spatial
distribution. Postclassification spatial filtering improves the
delineation by removing the isolated small clusters. In this
study, the isolated clusters with fewer than the given number of
pixels (i.e., 16 in this study) were detected and marked. For
each pixel in the marked clusters, its class attribute was
determined by inspecting its neighbour pixels: it was assigned
to the class that appeared most in this neighbourhood.

Analysis of variance

Analysis of variance (ANOVA) was conducted to test the
difference among the delineated zones for the selected soil and
crop properties. The technique is a single-factor ANOVA, with
the zone identification as the independent variable and the field
descriptors, such as yield, electrical conductivity, LAI, and leaf
chlorophyll content, as dependent variables. Rafter et al. (2002)
concluded that Tukey’s test is the most useful for all pairwise
comparisons, and the actual family-wise error rate (FWER)
exactly equals the specified value. Therefore, Tukey’s multiple
comparison method (MCM) was applied to test the difference
between the means for the dependent variables in the delineated
zones.

Results and discussion
Determination of appropriate number of zones

Figures 2 and 3 show the variance reduction of the selected
variables in fields 25 and 23, respectively. Results from five
delineations are given: two soil delineations using BI, CI, and
principal components (PCs) and three crop delineations using
LAI and leaf chlorophyll content at IFC1, IFC2, and IFC3.
Variance reduction of all the variables is given for the soil
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Figure 2. Variance reduction by partitioning field 25 into 2–7 classes using (a) soil brightness and colouration indices
(BI and CI, respectively), (b) the first three principal components (PCs) of soil reflectance, and (c–e) leaf area index
(LAI) and chlorophyll (Chl) content from IFC1, IFC2, and IFC3, respectively. RTWCV, relative total within-class
variance.



delineations, and variance reduction of yield, electrical
conductivity, and LAI and leaf chlorophyll content at the
specific IFC is given for the crop delineations. In Figures 2 and
3, EC30 and EC100 refer to electrical conductivity between 0
and 0.3 m and 0 and 1.0 m depth; LAI1, LAI2, and LAI3 and
Chl1, Chl2, and Chl3 represent LAI and leaf chlorophyll
content at IFC1, IFC2, and IFC3, respectively.

Three to four zones were recommended for field 25 from an
inspection of Figure 2. Based on BI and CI, classification of
field 25 into four soil zones reduces the variances of EC30,
EC100, LAI1, LAI2, and Chl1 to 58%, 65%, 54%, 78%, and
78%, respectively. The results using principal components were
almost the same for the first three descriptors, with the
variances of the variables specified previously reduced to 59%,
66%, and 71%, and with a limited reduced variance of LAI2
and Chl1 to 93% and 91%, respectively. The soil features as
identified by hyperspectral reflectance seem to appropriately
reveal the soil properties, as indicated by variance reduction of
soil electrical conductivity. Inherent soil fertility indicators like
soil texture components (sand, silt, and clay content) and
exchangeable cations (Ca and Mg) are closely related to soil
electrical conductivity (Nolin et al., 2002; Perron et al., 2002).
Soil properties highly influenced by soil fertility management
like soil pH and soil tests (available P and K), however, are less
closely related to soil electrical conductivity (Perron et al.,

2002; 2003). BI–CI and principal components classifications
significantly reduced the variances of yield and Chl3 to about
85%, which tends to indicate that the detected soil properties
had a restricted impact on growth conditions toward the end of
the growing season in this field. In this field, soil properties
seemed to explain mainly the variability related to the
emergence of the spring wheat. With the progression of the
growing season, soil properties captured by soil features did not
significantly impact the variability of LAI and leaf chlorophyll
content, indicating that there was no detection of N limitation.

Based on LAI and leaf chlorophyll content, classification of
field 25 into four crop zones reduces the variances of LAI to
about 23%, 16%, and 34% and those of leaf chlorophyll content
to 37%, 54%, and 24% at IFC1, IFC2, and IFC3 stages,
respectively. The crop zones delineated at IFC1 reduced the
variances of EC30 and EC100 to 77% and 82%, respectively.
This also indicates that the crop growth condition revealed by
LAI and leaf chlorophyll content at IFC1 stage is more affected
by the soil properties than those at IFC2 and IFC3. Another
observation is that the crop zones delineated at IFC1 and IFC2
reduced the variance of yield to about 82% and 85%,
respectively. Thus crop descriptors LAI and leaf chlorophyll
content at the earlier development stages have more impact on
wheat yield in field 25 than later on.
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Figure 3. Variance reduction by partitioning field 23 into 2–7 classes using (a) soil brightness and colouration indices
(BI and CI, respectively), (b) the first three principal components (PCs) of soil reflectance, and (c–e) LAI and
chlorophyll.



Figure 3 suggests that two to three zones are recommended
for field 23. When the field was partitioned into three soil
zones, the variances of EC30 and EC100 were reduced to about
64% and 73% when BI and CI were used and to about 76% and
81% when PCs were used. Again, the soil features extracted
from hyperspectral data seemed to capture the variability of
some soil properties in the field. The variances of LAI and leaf
chlorophyll content had a limited reduction, however, and the
variance of yield was only reduced to 91%. When the field was
partitioned using LAI and leaf chlorophyll content, the
variances of LAI and leaf chlorophyll at a specific IFC had
significant reductions, whereas the variances of yield and
electrical conductivity had very limited reductions. The
variance reduction of LAI and leaf chlorophyll is not very
stable at IFC1. This is because the fraction of crop cover (corn)
was very low at that time and therefore the estimated LAI has a
very small dynamic range and the estimated leaf chlorophyll
content is somewhat uncertain (Haboudane et al., 2002; 2004).
For the crop-based delineation, the variances of LAI and leaf
chlorophyll content were reduced to about 22% and 67% at
IFC2 and 26% and 89% at IFC3, respectively. Compared with
field 25, the variance of corn yield in field 23 is less accounted
for by soil features and crop descriptors.

Spatial patterns in field 25

Figure 4 shows the results of soil zone delineations in field
25 using the two soil feature sets, e.g., BI and CI and PCs. The
results of crop zone delineation using LAI and leaf chlorophyll
content for IFC1, IFC2, and IFC3 are given in Figure 5. For
convenience, the partitioned zones from the two soil feature
sets are referred to as soil-based zones, and those from LAI and
leaf chlorophyll content as crop-based zones. Soil-based zones
and crop-based zones are indicated by the subscripts s and v,
which refer to soil and vegetation, respectively.

The soil zones delineated from BI and CI and PCs show
some similarities. The spatial patterns of the soil-based zones
generally match the soil type distribution as revealed by the soil
survey map (Figure 1). C1s and C2s mostly represent D3 soil
series, and C4s mostly represents M3–NG2 soil series. C3s
distributed in between these two regions may be the transition

of these two soil associations. The patterns of C1s and C2s
delineated using BI and CI are not consistent with the
delineation using soil PCs. The soil properties may not be very
different between these two delineated zones. C1s delineated
using BI and CI at the upper boundary of the field represents
the slope area with low organic matter, low sand content, and
high clay content, which indicates soil erosion due to the slope
heading toward the creek flowing between the wheat (field 25)
and corn (field 23) fields. This pattern is also well defined in
the crop zones at IFC1 and IFC2 stages and is typical of low
LAI and yield. Soil leveling and stabilization might be required
in this area.

Different levels of N were applied with a specific pattern in
the wheat field (Figure 5d). The applied N was 0, 41, or 68 kg
N ha–1 (referred to as 0N, 41N, and 68N, respectively). The
crop-based zones derived from the partitioning of LAI and leaf
chlorophyll content show the combined effects of soil
properties and N application. The 0N application area at the
southwestern corner is clearly delineated as C1v throughout the
season. Statistics show that this region has lower final yield,
lower LAI, and lower leaf chlorophyll content at all the three
IFCs compared with the other zones. N deficiency is the major
critical concern. Although recommended amounts of nitrogen
(68N) were applied to the slope area, LAI in this region was
significantly lower at IFC1 and IFC2 stages. This region, being
clearly delineated as C1v at IFC1 and IFC2 stages, is not
favourable for crop growth and led to a lower yield, which was
presumably caused by the lack of organic matter as a result of
soil erosion toward the creek. Class C4v defined in IFC1 (upper
right corner) overlaps with regions of the M3–NG2 soil series.
In this zone, LAI and leaf chlorophyll content of the first two
IFCs and final yield have higher values, indicating that the soil
type in this area is favourable for crop growth. The crop
developed faster in this area than in the other areas, which
makes wheat reaching its senescence stage earlier. The
decrease of leaf chlorophyll content and green LAI in this
region accounted for it being classified as C1v and C2v at the
IFC3 stage.

Spatial patterns in field 23

Figure 6 shows the results of soil-based zone delineation in
field 23 using the two soil feature sets. Results of crop-based
zone delineations for IFC1, IFC2, and IFC3 are given in
Figure 7.

The similarity is weaker between the soil-based zones
resulting from BI and CI and PCs in field 23. C1s mostly
represents the poorly drained, fine-textured Brandon series
(D3), C2s is mostly associated with poorly drained and
imperfectly drained soils of Allendale and Montain series
associations (M6 and M3), and C3s represents a well-drained to
imperfectly drained sandy soil association (U2–M5)
regrouping deep (>100 cm) sandy soils (Carlsbad and
Ramsayville series) and shallow (25–100 cm) sandy soils over
clay material (Allendale and Montain series).
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Figure 4. Soil delineation of field 25 into four classes using (a)
soil brightness and colouration indices, and (b) principal
components. C1s–C4s, soil-based zones 1–4, respectively.



Corn planted in field 23 received a uniform recommended N
application. The spatial patterns of the crop classes are
therefore mostly caused by the interaction between soil and
weather conditions. Crop-based delineation is difficult at IFC1
because corn was at the early emergence stage in the field.
Differentiation of C1v, C2v, and C3v at the IFC1 stage is mainly
due to the amount of vegetation cover and the soil properties.
At IFC1, LAI in C3v generally ranges from 0.3 to 0.6, whereas
in C1v and C2v it is less than 0.3. C3v delineated at the IFC1
stage also has higher LAI values at IFC2 (from 2.5 to 4.0) and

IFC3 (>4.0) than the other delineated zones. The crop-based
zones are best delineated at the IFC2 stage, in that the variances
of both LAI and leaf chlorophyll content are significantly
reduced (Figure 3).

Statistical analysis

Relationship between the two soil feature sets
Soil brightness dominates the spectral variance among soils.

The first principal component of soil data accounts for the
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Figure 5. (a–c) Crop delineation of field 25 into four classes using LAI and leaf chlorophyll content at IFC1, IFC2,
and IFC3, respectively. C1v–C4v, vegetation (crop) based zones 1–4, respectively. (d) Nitrogen application pattern
(0N, 41N, and 68N denote applications of 0, 41, and 68 kg N ha–1, respectively).

Figure 6. Soil delineation of field 23 into three classes using (a) soil brightness and
colouration indices and (b) principal components.

Figure 7. Crop delineation of field 23 into three classes using LAI and leaf chlorophyll content at (a) IFC1, (b) IFC2,
and (c) IFC3.



majority of the variability and represents approximately the
average value of the spectrum, and therefore it is a measure of
soil brightness. The first principal component and soil
brightness calculated using Equation (1) are highly linearly
correlated, with determination coefficients (R2) of 0.998 and
0.970 in fields 25 and 23, respectively. This explains the
similar results of delineations using PCs and BI and CI
(Figures 2, 3, 4, and 6). The different information content
between the higher order principal components (the second and
third) and the chromatic component CI mainly accounts for the
difference of the delineations.

Correlation between crop descriptors and yield
The correlation between crop descriptors and yield was

analyzed, and the results are given in Table 2. In field 25, the
correlations between LAI and wheat yield and between leaf
chlorophyll content and wheat yield are significant at IFC1 and
IFC2 but not significant at IFC3. In field 23, yield is not
significantly correlated with LAI or leaf chlorophyll content.
This is consistent with the results shown in Figures 2 and 3: the
variance of yield in field 25 was reduced to 82% and 85% for
the crop-based delineation at IFC1 and IFC2, respectively, but
there was no significant reduction for the crop-based
delineation at IFC3, and there was very limited variance
reduction of corn yield in field 23 for the crop-based
delineation at any of the three IFCs. The possible reason for the
poor correlation in field 23 is that LAI and leaf chlorophyll
content did not capture a high productivity spatial feature
across the field, which decreased the overall correlation. If this
high productivity feature is masked out, then a significant
correlation is observed between corn yield and leaf chlorophyll
content at IFC2 and IFC3 (Table 2, field 23A). The highest
correlations were obtained with leaf chlorophyll content.

Zone means and analysis of variance
Figures 8 and 9 show the zone means and standard

deviations of the variables in the delineated zones of fields 25
and 23, respectively. For variables EC30, EC100, and yield, the
figures show zone means and deviations of the five
delineations: crop-based delineations at the three IFCs, and
soil-based delineations using BI and CI and PCs. For LAI and
leaf chlorophyll content, zone means and deviations of crop
delineations at the three IFCs were illustrated. Tukey’s test was
applied to test the difference of zone means of the variables to
evaluate the uniqueness of the delineated zones. The results are
also shown in Figures 8 and 9. Zones in which the mean values

do not differ significantly at the 95% confidence interval are
marked with a box above the data bars. For instance, in field 25,
the means of soil zones C1 and C2 delineated by BI and CI do
not differ significantly at the 95% confidence interval. In this
case, a box is shown above the data bar spanning C1 and C2
(see Figure 8a).

In field 25, EC30, EC100, and yield differ significantly
between soil-based zones except between C1 and C2. This
means that soil features extracted from hyperspectral data
revealed some of the soil properties, and the detected soil
properties had an important impact on the final yield. It can be
observed that yield in this field is negatively related to electrical
conductivity. Yield is highest in the soil-based zone C4 and
lowest in zones C1 and C2, and EC30 and EC100 are lowest in
zone C4 and highest in zones C1 and C2. The high electrical
conductivity corresponds to heavier soil texture, and these soils
tend to stay saturated for longer periods of time, which is
negative for yield. For the crop-based zones, LAI and leaf
chlorophyll content differ significantly among the zones,
whereas EC30 and EC100 do not differ significantly between
some of the crop-based zone pairs. The crop-based zones at
IFC3 do not effectively differentiate wheat yield, whereas they
are indicative of yield at IFC1 and IFC2. This means that the
effective time for delineation of the wheat crop should be
earlier than that at IFC3.

In field 23, soil electrical conductivity differs significantly
between all pairs of soil-based zones, whereas there is no
significant difference in electrical conductivity between the
crop-based zones (Figure 9). Yield does not differ significantly
among the soil-based zones as well as it does among the crop-
based zones in this field. Except for LAI at IFC1 and leaf
chlorophyll content at IFC3, crop descriptors differ
significantly between all pairs of crop-based zones. Zone C1
delineated at IFC1 has a high yield compared with that in the
other zones because it is completely within a high-production
region in the field. From IFC1 to IFC3, LAI in field 23
increased steadily. For corn in field 23, the effective time for
delineation of crop-based zones should be later than that for
IFC1.

Conclusions
In this study, multitemporal CASI hyperspectral data were

used for zone delineation of two agricultural fields. Different
features extracted from hyperspectral data related well to some
of the field variables and revealed the variability of seasonally
stable and variable information useful for management zone
delineation for precision agriculture.

The variability in soil electrical conductivity can be
accounted for to a significant extent by the features extracted
from hyperspectral soil reflectance data. Several inherent soil
fertility indicators like soil texture components (sand, silt, and
clay content) and exchangeable cations (Ca and Mg) and soil
drainage and related soil moisture conditions could be related
to soil electrical conductivity. This is rarely the case, however,
for the organic matter content of the surface layer, which is
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Field LAI1 LAI2 LAI3 Chl1 Chl2 Chl3

25 0.57** 0.51** 0.23 0.54** 0.43* 0.15
23 –0.09 –0.10 –0.08 –0.19 –0.13 0.22
23A 0.04 0.15 0.22 –0.13 0.54** 0.68**

Note: The suffixes 1–3 to LAI and Chl represent IFC1–IFC3,
respectively. *, significant at p < 0.01; **, significant at p < 0.001. For
field 23A, the high productivity feature was masked out.

Table 2. Correlation coefficients between yield and crop
descriptors in the two fields.
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Figure 9. Zone statistics and multiple comparisons for field 23.
Variables include electrical conductivity at 0–30 cm (EC30) and 0–
100 cm (EC100), yield, LAI, and chlorophyll content; delineations
include crop-based delineation at IFC1, IFC2, and IFC3 and soil-
based delineations using BI and CI and PCs. The boxes above the
data bars indicate the classes that do not differ significantly at the
95% confidence interval. The vertical bars denote standard
deviation.

Figure 8. Zone statistics and multiple comparisons for field 25.
Variables include electrical conductivity at 0–30 cm (EC30) and 0–
100 cm (EC100), yield, LAI, and leaf chlorophyll content;
delineations include crop-based delineation at IFC1, IFC2, and
IFC3 and soil-based delineations using BI and CI and PCs. The
boxes above the data bars indicate the classes that do not differ
significantly at the 95% confidence interval. The vertical bars
denote standard deviation.



most directly associated with soil reflectance. Therefore,
remote sensing data have been shown to play a strong role in
soil delineation and could be viewed, under given conditions,
as an efficient alternative to soil conductivity mapping for
defining within-field homogeneous management zones.

The crop descriptors derived from hyperspectral data are
very useful for monitoring crop growth conditions. They
revealed the effects of soil properties under natural growth
conditions and the effects of special nitrogen application under
controlled conditions. The appropriate time to delineate wheat
in field 25 was at IFC1 and IFC2 (prior to senescence), and the
appropriate time to delineate corn in field 23 was after IFC1
(after complete emergence). Crops can be monitored frequently
using LAI and leaf chlorophyll content to monitor seasonally
variable information to guide the real-time field practices.

Zone delineation was evaluated by the variance reduction of
yield. From this perspective, field 25 is better delineated
because the variance of yield was reduced significantly for soil
and crop delineations. The soil properties in this field have an
important impact on final yield, and crop descriptors LAI and
leaf chlorophyll content at the earlier stages (IFC1 and IFC2)
are indicative of final yield. Field 23 is not well delineated in
terms of variance reduction of yield.

In this study, delineation of management zones of the fields
is based solely on the classification of the features extracted
from hyperspectral data. Soils and crops were delineated
independently using multitemporal hyperspectral data. The
combination of soil features and crop descriptors before
delineation, or the combination of the delineated results, could
give better results for delineation of management zones. The
integration of other sources of information, such as soil
properties, environmental conditions, and field management
factors, may also greatly improve the quality and usefulness
(i.e., interpretability) of management zone delineation. In
addition to the acquisition of the information on field
variability, a more complete understanding of the causes of
crop production variability is of great importance, since it will
improve the efficiency of the information integration for
management zone delineation and its usefulness for
development of management strategy. This can be achieved by
performing field delineation over several growing seasons to
capture the effects of several weather pattern incidences on
crop growth.
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