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ABSTRACT

It is important to estimate vegetation fraction for regional weather forecasts, and in 

precision agriculture for assessing crop performance during emergence and early 

growth phases. In this study, two approaches, linear spectral unmixing and vegetation 

indices, were reviewed and evaluated for the estimation of crop fraction from 

hyperspectral data. Compact Airborne Spectrographic Imager (casi) hyperspectral 

data were acquired three times in the 2001 growing season over four agricultural 

fields to monitor crop growth conditions and develop procedures for delineating 

major sub-units for crop management. Crops planted in these fields included corn, 

soybean and wheat. Endmember spectra were extracted from casi data and used for 

linear spectral unmixing. Various vegetation indices, including Normalized 

Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), 

Optimized Soil-Adjusted Vegetation Index (OSAVI), Modified Soil Adjusted 

Vegetation Index (MSAVI) and Transformed Soil Adjusted Vegetation Index

(TSAVI), as well as the recently developed indices Modified Triangular Vegetation 

Index (MTVI2), and the VI700 and VIgreen indices, were evaluated with casi data and 

with simulated spectra using coupled PROSPECT and SAILH models. All these 

indices were highly correlated with measured crop fractions. A comparison study 

based on simulated spectra showed that MTVI2 maintained adequate sensitivity up to 

a higher crop coverage. A high coefficient of determination (R2 = 0.90) and a low root 

mean square error (RMSE = 0.10) were obtained between measured and estimated 

crop fraction using MTVI2. The crop fraction derived from linear spectral unmixing 

was also highly correlated with the measured crop fraction (R2 = 0.94 and RMSE = 

0.08). However, determining endmember spectra in the linear spectral unmixing 

method remains a challenge. Using vegetation indices is a convenient method for crop 

fraction estimation with satisfactory accuracy. 

Key Words:

Crop fraction, linear spectral unmixing, vegetation index, precision agriculture, casi, 

hyperspectral
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INTRODUCTION

Vegetation fraction (VF) is defined as the fractional ground area occupied by the 

vertical projection of the crown or shoot area of vegetation. VF is necessary for 

modeling of water and energy fluxes at the surface (Roujean et al., 1997), and is a key 

parameter for the boundary layer parameterization in many land surface schemes 

(Deardorff, 1978). The fraction of the available solar radiation intercepted by foliage 

is one of the most important variables in crop growth monitoring, which, when 

associated with the energy use efficiency, can be used to predict crop productivity 

(Gitelson et al., 2002a, b). Crop fraction can be used as a surrogate for light 

interception, since there is a strong correlation between crop fraction and fraction of 

the incident solar radiation intercepted by foliage (Steven et al., 1986). Therefore, 

estimation of crop fraction is very important for monitoring crop growth. 

The approaches for estimating VF from remote sensing data can be classified into 

four types. The first is the spectral mixture modeling (Ray and Murray, 1996; Roberts 

et al., 1993; Borel and Gerstl, 1994) which is based on the assumption that the 

measured pixel spectrum is either a linear or nonlinear combination of the component 

spectra within the sensor’s instantaneous field-of-view; thus, fractions of components 

can be derived through spectral unmixing. The second type of approach relates VF 

with vegetation indices (Baret et al., 1995; Carlson and Ripley, 1997; Eastwood et al., 

1997; Gitelson et al., 2002b). Generally speaking, most vegetation indices combine 

the reflectance of red and near-infrared bands, because the reflectance in these two 

regions provides a high contrast between vegetation and soil optical properties 

(Richardson and Wiegand, 1977). Two new indices, VIgreen and VI700, developed 

recently by Gitelson et al. (2002b), use the visible portions of the spectrum only. The 

reflectance of the red band is combined with the reflectance of the green band and the 

reflectance at 700 nm for VIgreen and VI700, respectively. The third approach is based 

on canopy reflectance models, or more specifically, a bi-directional reflectance model 

(Roujean et al., 1997; Peddle et al., 1999) to estimate VF from bi-directional 

reflectance simulations, in which the ground is considered to be composed of soil and 

dense vegetation. When both the sun and the sensor are at zenith, VF is equivalent to 

the fraction of solar radiation intercepted by the vegetation (Roujean et al., 1997). 

Since the solar zenith angle for data acquisition is rarely zero, bi-directional 
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reflectance models have to be inverted using a range of measurements with different 

view and solar angles in order to obtain VF. A fourth approach is based on the use of 

neural networks (NN) (Baret et al., 1995). This approach implicitly incorporates 

radiative transfer theory modeling for plant canopies in the interpretation of remote 

sensing data. Neural networks exploit the network training step to overcome the 

requirement to define many model and observational variables, and the difficulty 

associated with vegetation type dependencies.

It was acknowledged that nonlinear spectral unmixing (Borel et al., 1994; Johnson et 

al., 1992; Hapke, 1981) may be preferable to describe the resultant mixture spectrum 

of certain endmember distributions, and to make the vegetation cover more detectible 

(Guilfoyle et al., 2001; Ray and Murray, 1996). However, it makes the accurate 

quantitative assessment of vegetation fraction more difficult (Ray and Murray, 1996). 

Many studies demonstrate the ability of linear spectral unmixing to access relevant 

vegetation information (Lelong et al., 1998; Roberts et al., 1993). The deviation from 

the linear models can be attributed to the interaction of light with multiple 

components, which is useful for extracting other plant information (Ray and Murray, 

1996; Roberts et al., 1993). For approaches based on vegetation indices, considerable 

efforts have been made to reduce external effects, mainly those due to the atmosphere 

and soil (Huete, 1988; Kaufman and Tanre, 1992).

In this study, the approaches based on linear spectral unmixing and vegetation indices

are evaluated. The evaluated vegetation indices included NDVI, soil adjusted indices, 

as well as the newly developed MTVI2 (Haboudane et al., 2004), VIgreen and VI700

(Gitelson et al., 2002b). The methods and capability of the two approaches for crop 

fraction estimation were studied and compared using Compact Airborne 

Spectrographic Imager (casi) hyperspectral data. The vegetation indices were also 

evaluated based on simulated spectra. 

MATERIALS

The Study Site

The study site is located at the former Greenbelt Farm of Agriculture and Agri-Food 

Canada, Ottawa (45°18’N, 75°45’W). The four studied fields, named as F13, F16, 
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F23 and F25, are characterized by drained clay loam soil. In the 2001 growing season, 

F13, F16, F23 and F25 were planted with corn, soybean, corn and wheat, respectively. 

Specific Nitrogen (N) rates were applied within F25, as shown in Figure 1. No 

nitrogen was applied to the region marked with “0N”. Regions marked with “41N” 

and “68N” received 41–kg N ha-1 and a recommended rate of 68-kg N ha-1, 

respectively. Previous knowledge about the field management, soil and crop 

variability helped in selecting ground truth sites of contrasting biomass variability. 

Two, three, four and seven ground truth sites were deployed in these fields,

respectively. Three intensive field campaigns (IFC) took place during this year, which 

coincided with the early vegetative (IFC1), active growth (IFC2) and reproductive 

(IFC3) development stages of wheat. In-situ measurements of crop features included 

fresh and dry biomass, leaf area index (LAI), leaf chlorophyll content, crop height, 

and crop fraction. 

       (Insert Figure 1 around here)

Measurement of Crop Fraction

As part of the overall ground survey plan, digital photos were taken at each ground 

truth site to collect information on crop fraction. The photos were taken from above 

the canopy at nadir to cover a ground area of about one square meter. The photos 

were classified using an unsupervised K-Means classifier implemented in PCI 

Geomatica (PCI Geomatica, 2001) to derive crop fraction.

Each photo was classified into 6 classes that represented vegetation, shaded 

vegetation, stubble, shaded stubble, soil, and shaded soil. The cover fraction of each 

class was determined from the classified photo. The crop fraction was calculated as 

the sum of the vegetation and shaded vegetation fractions. Stubble and soil fractions 

were calculated in the same way. Average fractions of stubble were low in the four 

fields, with 0.3%, 0.5%, 1.7% and 1.1% in fields F13, F16, F23 and F25, respectively.

The casi Hyperspectral Data

Hyperspectral images were acquired with the casi by the Center for Research in Earth 

and Space Technology (CRESTech). At each of the three IFCs (on June 13, June 26 

and July 19, 2001), casi images were acquired in the multispectral and hyperspectral 

modes. For the hyperspectral mode, 72 contiguous spectral bands were acquired 
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which covered the visible and near-infrared portions of the solar                                                   

spectrum with 7.5-nm bandwidth and 2-m spatial resolution. 

The casi data were pre-processed to absolute ground reflectance by an operational 

procedure implemented in the Earth Observations Laboratory at York University. 

First, digital data collected by the casi sensor were converted to at-sensor radiance 

using the calibration coefficients determined in the laboratory. The CAM5S 

atmospheric correction model (O’Neill et al., 1997) was then used to transform the at 

sensor radiance to surface reflectance. Aerosol optical depth at 550 nm estimated 

from ground sunphotometer measurements, and the recorded illumination and view 

geometry were used in this step. In the third step, the aircraft motion effects were 

removed and the image was geo-referenced using the recorded navigation data. A flat 

field adjustment was then performed to compensate for residual errors in the water 

and oxygen absorption regions due to atmospheric correction. This was accomplished 

by inspecting the bands located in these absorption regions, and adjusting those bands 

with a detectible residual effect. Spectrally flat targets (road, roofs, etc.) found in the 

imagery were used to identify the bands that require adjustment, and to calculate the 

adjustment factors to remove the residual effects. In the last step, ground DGPS 

measurements were used for precise geometric correction and geo-referencing. The 

accuracy for the ground control points was within one pixel.

Data Simulation Using the PROSPECT and SAIL Models

Integration of leaf and canopy reflectance models has become a useful tool for remote 

sensing of vegetation studies (e.g., Jacquemoud et al., 1995; Zarco-Tejada et al., 

2001). At both leaf and canopy levels, reflectance models have been adapted to 

provide the best tool for comparison studies (Jacquemoud et al., 2000). The 

PROSPECT leaf model (Jacquemoud and Baret, 1990) and the SAIL canopy model 

(Verhoef, 1984) were used to simulate crop canopy reflectance spectra. Simulated 

spectra were used in this study to assist the evaluation of vegetation indices. Input 

parameters to the PROSPECT model include leaf equivalent water content (Cw, g cm-

2), dry biomass content (Cm, g cm-2), chlorophyll a+b content (Cab, µg cm-2) and 

internal structure parameter (NL). Cw was given a nominal value of 0.005. Cab was 

set to 45-µg cm-2, an average value of field measurements of leaf chlorophyll content. 

According to Jacquemoud et al. (2000), 1.55 and 0.0045 g cm-2 were assigned to 

Page 6 of 32

www.mc.manuscriptcentral.com/cjrs-jct

Canadian Journal of Remote Sensing/ Journal canadien de Télédétection

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CJRS Proof - JCT Épreuve

-7-

parameters NL and Cm, respectively. For the SAIL model, input parameters include: 

soil reflectance (Rs), leaf area index (LAI), leaf angle distribution (LAD), solar zenith 

angle (θs), view zenith angle (θv), and relative azimuth angle between view and sun 

direction (ϕ). LAI was given a range of values starting from 0 to a large value to 

represent crop fraction ranging from 0 to 1. The soil reflectance was extracted from a 

casi spectrum representing an average brightness soil in the fields. The complete set 

of model input parameters and variables are listed in Table 1.

Insert Table 1 around here.

METHODS

Defining the Endmembers

The classification of the digital photos from the sample sites of all four fields showed 

that the fractional cover of stubble was not significant in the 2001 growing season; 

therefore, stubble was not treated as an endmember. Shadow was introduced as an 

endmember to account for the shadowing effects (Smith et al. 1990; Sabol et al., 1992; 

Roberts et al., 1993; Lelong et al., 1998). Consequently, for each crop field, the 

following endmembers were determined: soil, shadow and crop.

Determination of Endmember Spectra

Determination of endmember spectra is crucial for spectral unmixing. Endmember 

spectra can be obtained from a spectral library (reference endmembers) or extracted 

from the image data (image endmembers) themselves. Because it is difficult to 

construct a spectral library that contains spectra accounting for all processes and 

factors influencing the image spectra, such as vegetation type, biological processes, 

background effects and radiation calibration (Bateson and Curtiss, 1996), extensive 

research efforts have focused on methods for extracting endmembers automatically, 

interactively or manually from images. A convex geometry method has been used for 

automatic extraction of the purest pixels from image data (Boardman 1993; Boardman 

and Kruse, 1994; Boardman et al., 1995; Lelong et al., 1998). It requires that pure 

pixels of each component exist in the image scene, and the fraction of each 

component has a wide distribution range. In case pure pixels do not exist, a two-step 

procedure was developed (Smith et al., 1990; Roberts et al., 1997). First, the image 
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endmembers are extracted automatically. Since these endmembers are usually 

mixtures of meaningful scene components, the second step is to search for the 

relevant reference endmembers within a spectral library. Bateson and Curtis (1996) 

developed a manual endmember selection scheme that operates on data clouds in 

parallel coordination presentation. It requires human interactions to derive the best 

individual endmembers. Tompkins et al. (1997) developed another approach for 

spectral mixture analysis, in which both the endmember spectra and the fractions of 

the endmembers were treated as unknowns. The practical application of this model 

uses any available a priori knowledge to reduce the number of equations. These 

various approaches demonstrate that there is no standard way for endmember 

extraction. Estimating endmember spectra from image data where pure pixels do not 

exist should rely on a priori knowledge about the scene. 

In this study, crop fraction increased steadily from IFC1 to IFC3. Corn and soybean 

were at their early development stages at IFC1, with very low fraction coverage, and 

reached full coverage at IFC3. In the productive areas of Field F25, the crop fraction 

was high at IFC1 and reached full coverage at IFC2, whereas in the less productive 

areas, full coverage was reached at IFC3. In order to analyze the image data to extract 

endmember spectra, a principal component transformation was applied to the image

data of each IFC. The first two principal components (PC) accounted for the majority 

of variability in the data (81.8% and 17.1% for IFC1, 74.9% and 22.7% for IFC2, 

59.1% and 40.0% for IFC3); accordingly, data distributed in the space constructed by 

these two principal components (PC space) were inspected to identify the 

endmembers. Figure 2 shows the data distribution in the PC space, with the first and 

the second PCs plotted as the horizontal and vertical axes, respectively. The arrows 

show where soil and the three crops were located. Pixels from the three crop fields 

were distributed closely at IFC1, with significant overlap between corn and soybean, 

whereas at IFC2 and IFC3, they tended to be distributed separately.

(Insert Figure 2 around here)

In F25W, a field directly to the west of F25 (Figure 1), there were patches of bare soil 

between crop trial plots. All the pixels in the soil clusters in Figure 2 were from this 

field. Pure pixels of soil resided to the outer boundary of the data clouds, forming a 

distribution line opposite to the clusters of crops. The spreading of pure soil pixels 
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along the distribution line was mainly due to the different brightness. A medium 

brightness soil identified at the middle portion of the distribution line was used as 

endmember of soil, and was marked as “SL” in Figures 2a, b and c for the three IFCs. 

The assumption was that, spectral variability of soil in these fields was mainly due to 

soil brightness, and the soil brightness in F25W was in a same range as those of the 

other crop fields. 

The endmembers of corn and soybean were identified from the PC space of IFC3, and 

were marked as “C” and “Soy” in Figure 2c. The respective image spectra were 

extracted from casi data of IFC3, and applied to the three IFCs. In Field F25, wheat 

reached full coverage at IFC2, so the endmember was identified directly in the PC 

space, and was marked as W2 in Figure 2b. However, since wheat was at the booting 

stage at IFC2, the canopy reflectance experienced a decrease in the near-infrared band. 

Accordingly, W2 was used for IFC2 only. There was no pure pixel of wheat at IFC1, 

but the high crop fraction in parts of the field showed a clear distribution trend that 

can be exploited to derive the location of endmember in the PC space (Figure 2a).

Two curves bounding the data clouds of the wheat can be drawn, and extended to an 

intersection W1, which was considered a purest endmember for the wheat. The 

spectrum of W1 was then derived by inverse principal component transformation. At 

IFC3, wheat reached full coverage in F25. The significant variability in spectral 

signature was mainly due to the difference in the fraction of heads, green and dry 

leaves influenced by the variability of soil conditions. To account for this significant 

variability, two image endmembers, W31 and W32, were identified directly from the 

data clouds in the PC space (Figure 2c).

Pure pixels of shadow cannot be found in the crop fields. Lelong et al. (1998) used a

constant value for shadow reflectance. In this study, the reflectance of shadow was 

assumed to be a constant of 0.02, which was close to the reflectance of tree shadow 

detected in the image. The principal component transformation was applied to this 

preset shadow spectrum, and its locations in the relative PC space were marked as 

“Sh” in Figures 2a, b and c. 

Deriving Crop Fraction Using Linear Spectral Unmixing

The general equation and constraint that govern the linear spectral unmixing 

procedure are as follows (Sabol et al., 1992):
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∑ +=
i

bibib rfR ε (1)

and

]1,0[,1 ∈=∑ ii ff (2)

where Rb is the pixel reflectance in band b, fi is the area fraction of endmember i, rib is 

the reflectance of component i in band b, εb is the residual error of the model in band 

b. The residual error can also be calculated for each pixel over all bands. 

The constrained linear spectral unmixing procedure was applied to the image data of 

the three IFCs, using the derived image endmember spectra. Shadow is not considered 

as a field descriptor, since its fraction (fshadow) varies with sun zenith and azimuth 

angles. Therefore it was apportioned to crop and soil after unmixing. This was 

accomplished with an approximation that normalized the fractions of soil and crop by 

dividing their fractions by (1-fshadow) (Adams et al., 1995; Lelong et al., 1998). 

Bateson and Curtiss (1996) pointed out that the fractions are relative abundances that 

need to be calibrated to ground measurements no matter how the endmembers are

selected. This is possibly because the derived endmembers are not pure, or the mixing 

model is not accurate. In this study, the normalized fractions were taken directly as 

crop fraction without further calibration to the ground measurements.

Vegetation Indices Used in This Study

The well-known vegetation index NDVI (Rouse et al., 1974) has been proven to be 

very robust and is correlated with various vegetation descriptors. Other indices have 

been developed to suppress soil background effects. The soil adjusted vegetation 

index (SAVI) is expressed as follows (Huete, 1988):

                         SAVI = (1+L)(RNIR-Rred)/(RNIR+Rred+L)             (3)

where RNIR and Rred are the near-infrared and red reflectance, respectively, and L is an 

adjusting factor that accounts for soil effects. The choice of a value for L is critical for 

soil effect minimization. A smaller adjusting factor is required for denser vegetation 
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than for sparser vegetation. Therefore, its selection requires the knowledge of 

vegetation density. A value of 0.5 was proposed to account for the first order soil 

variations for most conditions (Huete, 1988). Rondeaux et al. (1996) proposed the 

optimized SAVI (OSAVI) with an adjusting factor of 0.16 for agriculture studies. In 

order to account for different soil backgrounds, Qi et al. (1994) developed a modified 

SAVI (MSAVI). This index introduces a self-adjusting factor, rather than using a 

fixed value. In the estimation of LAI and APAR, Baret et al. (1989) proposed a 

transformed SAVI (TSAVI), which takes into account the soil brightness using soil 

line slope and intercept. Haboudane et al. (2004) proposed an index MTVI2 for the 

estimation of green LAI. With MTVI2, the variability of leaf chlorophyll content was 

suppresses while an adequate sensitivity was retained over a wide range of LAI. All 

these indices are based on the contrast between the red and near-infrared reflectance. 

However, Pickup et al. (1993) observed that in the data space constructed using the 

commonly used Landsat MSS bands 5 and 7, the separation between soil, rock and 

vegetated surface (both dry and green) is not as good as in the data space constructed 

using bands 4 and 5. Therefore they developed a cover index PD54 that uses MSS 

bands 4 and 5 for vegetation change detection (Pickup et al., 1993). Continuing this 

argument, Gitelson et al. (2002b) pointed out that in crops, the near infrared 

reflectance levels off or even decreases with the increase of vegetation cover due to 

the change in leaf angle or the loss of leaf chlorophyll content at the later

development stages. Thus, they developed two indices, VI700, which combines the 

reflectance at 700 nm and the red band, and VIgreen, which combines reflectance at the 

green and the red bands, in the same manner as NDVI combines reflectance at near-

infrared and red bands. These two indices were expected to be better estimators for 

green, as well as dry or senescent vegetation (Gitelson et al., 2002b).

Based on this review, vegetation indices NDVI, SAVI, OSAVI, MSAVI, TSAVI, 

MTVI2, VIgreen and VI700 were included in this study. The formulae for these indices

are listed in Table 2. Reflectance values of bands nearest to 800, 670, 550 and 700 nm 

were assigned to RNIR, Rred, Rgreen and R700, respectively. The wavelengths for these

channels were 801.5, 672.4, 552.3 and 702.6 nm.  

(Insert Table 2 around here)
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Estimation of Crop Fraction from Vegetation Indices

In relating vegetation indices with vegetation fraction, Eastwood et al. (1997) used a 

linear regression model, whereas Purevdorj et al. (1998) used a second order 

polynomial regression model. Both vegetation fraction VF (Nilson, 1971; Baret et al., 

1995) and vegetation indices VI (Clevers, 1989; Baret and Guyot, 1991; Richardson 

et al., 1992) can be expressed as an exponential function of LAI:

)exp(1 LAIKVF p−−= (4)

and

)exp()( LAIKVIVIVIVI VIs −−+= ∞∞ (5)

where Kp is the canopy extinction coefficient dependent on canopy structure, and KVI

depends mainly on canopy architecture, sun and view directions, and leaf optical 

properties. sVI  and ∞VI are the values of the vegetation index at LAI=0 and LAI=∞ , 

respectively. Based on Equations (4) and (5), a semi-empirical model was developed 

to relate vegetation fraction with vegetation indices (Baret et al., 1995): 

VIp KK
s VIVIVIVIVF

/)]/()[(1 ∞∞ −−−=           (6)

The semi-empirical model was used in this study for the indices based on near-

infrared and red bands. Compared to the empirical models, it has a uniform 

formulation that enables a comparison between different indices, and all the three 

parameters, sVI , ∞VI  and VIp KK /  have physical meanings, which could be retrieved 

from canopy models. sVI  was calculated using a soil spectrum with average 

brightness in the fields. ∞VI  was calculated from PROSPECT and SAILH simulated 

spectra, with a large input LAI value. Input parameters for these models are reported 

in Table 1. The ratio VIp KK / was estimated from the measured crop fraction by a 

regression procedure using the obtained parameters sVI and ∞VI . After the 

determination of sVI , ∞VI and VIp KK / , Equation (6) was used to calculate the crop 

fraction.
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As introduced later in the paper, the two visible indices do not follow the model 

described in Equation (5); in this case the crop fraction was related to VIgreen or VI700

with a linear model:

bVIaVF +×=                                                                  (7)

where VI refers to VIgreen or VI700, a is the slope and b the intercept of the regression 

line. 

RESULTS AND DISCUSSION

Spectra of the Selected Endmembers

Spectra of the selected endmembers are shown in Figure 3. Shadow, corn and soybean 

were represented by a single spectrum for IFC1, IFC2 and IFC3, while wheat and soil 

were represented by different spectra at the three IFCs. The near-infrared reflectance 

of the wheat endmember changed from 0.57 at IFC1 to about 0.50 at IFC2, and at 

IFC3, it decreased further to 0.39 for W31 and 0.26 for W32. The red reflectance of 

W32 increased remarkably as a result of senescence. 

(Insert Figure 3 around here)

Results from Linear Spectral Unmixing

The normalized crop fraction from the linear spectral unmixing procedure was highly

linearly correlated with the measured crop fraction (R2 = 0.94 and RMSE = 0.08). 

Figure 4a shows the comparison between measured and estimated crop fraction for 

corn, soybean and wheat at IFC1-2 and IFC3. Both endmembers of wheat at IFC3 

represented full crop coverage. The fractions of these two endmembers were summed 

to give wheat coverage fraction. These samples converged close to full crop fraction 

(i.e., 1.0) for estimation and measurements, demonstrating that most of the variability 

in F25 can be modelled with these two image endmembers. Comparison between 

green LAI and the fractions of these two endmembers is shown in Figure 4b. It is 

clear that W32 represented wheat at a more senescent stage than W31. Here, “green 

LAI” refers to LAI of living leaves regardless of their photosynthetic capacity 

(Haboudane et al., 2004).

(Insert Figure 4a, b around here)
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The field variability that cannot be modeled using the selected endmembers can be 

identified by the residual image (Gillespie et al., 1990). A higher value in the residual 

image indicates a larger deviation from the typical condition represented by the 

endmembers chosen. The residual images of F23, F25 and F16 were shown in Figure 

5. F13 was not shown because it is less variable due to homogeneous soil conditions 

and uniform management. F16 was homogeneous in soil properties and uniform in 

management practice, the variability in the residual image was limited. In F23, 

variability in the residual images was mainly due to the variability of soil properties, 

which were not accounted for using the soil endmembers generated from F25W. In 

F25, the variability was due to both the variability in soil properties and the rates of 

nitrogen application, which caused significant variations in growing conditions and 

the spectral signatures. Region of 0N was barely detectable during IFC1, but became 

much more pronounced at IFC2 and IFC3. Although it was not as clear as in region 

0N, the difference between 41N and 68N regions began to emerge at IFC2 and 

became more evident at IFC3. The residual images also outlined a region at the top 

part of Field F25. This region has a pronounced slope toward the creek between F23 

and F25.

(Insert Figure 5 around here)

Soil Effects on Linear Spectral Unmixing

Pixel-based spectral unmixing in remote sensing is a highly uncertain process (Petrou 

and Foschi, 1999). The origin of the uncertainty comes partly from noise that was 

introduced to remote sensing data, partly from the intrinsic variability of the 

component materials. This uncertainty introduces spectral variability in the 

endmembers. When a single spectrum is used to represent an endmember, the 

resulting component fractions will be uncertain. 

The soil distribution line in Figure 2 demonstrated the spectral variability of pure soil. 

Shadow (marked as “Sh”) resided approximately on the extension of this soil line. 

Along the distribution line toward shadow “Sh”, soil became darker. In this study, the 

spectrum of a medium brightness soil was used for unmixing. In the case of IFC1, this 

means although pixels of background soil can be anywhere between dark soil at “A” 

and bright soil at “B”, they were all assumed to be at “SL” (Figure 2a). This surely led 

to errors in crop fraction estimation. Since pixels of pure soil and shadow were 
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approximately on the same line, the major influence of using a single spectrum on 

different background soil would be a change in the relative fractions of soil and 

shadow, with minimal influence on crop fraction. 

If the selected endmember of soil is brighter than the background soil, then the 

fraction of shadow (fshadow) will be over-estimated by the linear spectral unmixing 

algorithm. Since crop fraction was normalized by dividing (1-fshadow) to absorb the 

portion of shaded crop, it will be over-estimated as a result. Following the same 

reasoning, if the selected endmember of soil is darker than the background soil, the 

crop fraction will be under-estimated.

 Figure 6 provides a simple evaluation of the impact of soil brightness on crop 

fraction estimation using linear spectral unmixing. The experiment was carried out in 

Field F25 at IFC1. Unmixing was applied twice using two different brightness soil as 

endmember, bright soil at “B” and dark soil at “A” (Figure 2a). The spectra of these 

two soils were shown in Figure 6a. Endmembers of wheat and shadow were the same 

as the spectra illustrated in Figure 3. Figure 6b shows the comparison of the 

estimations using these two soils as endmembers. It can be observed that crop 

fractions estimated using a brighter soil as endmember are higher than that estimated 

using a darker soil. The maximum difference was 5.3%. It can be concluded that, the 

crop fraction estimation error due to soil should be smaller than 5.3%.  

(Insert Figure 6 around here)

Results from Vegetation Indices

The calculated sVI , ∞VI  and VIp KK /  for the indices based on the reflectance of near-

infrared and red bands, and the slopes and intercepts of the linear regression lines for 

the two visible indices, are listed in Table 3. These parameters were used to calculate 

crop fractions from casi data using Equation (6) and (7). Correlation between 

measured and estimated crop fractions are summarised in Table 4. Figure 7 shows the 

comparison between measured and estimated crop fractions. The samples of closed 

wheat canopy at IFC3 were excluded from the statistics and the figure, since all the 

vegetation indices dropped drastically due to significant senescence. 

(Insert Table 3 and 4 around here)
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(Insert Figure 7 around here)

Satisfactory results were obtained from the two visible indices using linear regression 

model, and from the other indices using the semi-empirical model. Significant 

correlation was observed between the measured and the estimated crop fractions for 

all the evaluated vegetation indices. RMSE was 0.12 for VI700, 0.11 for MSAVI and 

VIgreen, and smaller than 0.11 for all the other indices. The R2 ranged from 0.87 for 

VI700 to 0.93 for NDVI. TSAVI and OSAVI provided very similar estimation of crop 

fraction. The relationships between the estimated and measured crop fractions for the 

two visible indices, VIgreen and VI700, were different from the other indices, showing 

less sensitivity at higher LAI (Figure 7).

To get a better view of the vegetation indices tested in this study, the sensitivity of the 

indices to LAI was evaluated based on the simulated spectra using the PROSPECT 

and SAIL models. LAI was used for the evaluation because it was a parameter of the 

SAIL model, and could be related with crop fraction through Equation (4). Evaluation 

of the sensitivity to LAI should provide insight on the performance of the indices in 

crop fraction estimation. The sensitivity was calculated as )](/[ sVIVILAIVI −∆∆ ∞ . 

The division by )( sVIVI −∞ was to scale all the indices to the same range [0; 1]. 

Figure 8a shows the dependencies of the scaled indices to LAI, and Figure 8b shows 

the sensitivity of the scaled indices to LAI. For the evaluated indices based on near-

infrared and red bands, the sensitivity to LAI can be approximated by an exponential 

equation. This is in conformity with Equation (5), from which the following equation 

can be derived: 

)exp(])/[( LAIKKdLAIVIVIdVI VIVIs −=−∞                                       (8)

The sensitivity at LAI = 0 was equivalent to KVI. Indices with higher KVI also had a 

higher decreasing rate of sensitivity with the increase of LAI. NDVI, OSAVI, TSAVI 

and SAVI had a higher sensitivity when LAI was low, and became relatively 

insensitive when LAI was high. MTVI2 and MSAVI had an adequate sensitivity at 

both high and low LAI. The sensitivity of the two visible indices, VIgreen and VI700, 

did not follow the relation given in Equation (8). Their sensitivity remained stable 

until LAI increased to about 1.5, and then decreased. This demonstrated that Equation 

(6) is not applicable to VIgreen and VI700. 
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(Insert Figure 8 around here)

Since MTVI2 maintained adequate sensitivity over a wide range of LAI (Figure 8b), 

and presented reduced sensitivity to soil effects and leaf chlorophyll variability 

(Haboudane et al., 2004), this index was chosen for estimating crop fraction. The 

equation is written as follows:   

[ ] 042.1)918.0001.0/()918.02(1 −−−= MTVIVF (9)

Spatial Variability of Crop Fraction

Maps of crop fractions were generated using an index-based approach, from MTVI2, 

and using linear spectral unmixing in order to study the spatial variability and 

seasonal/temporal variations in the fields. Figure 9 shows the results from MTVI2 

(upper) and linear spectral unmixing (lower) of fields F23 (Corn), F25 (Wheat) and 

F16 (Soybean) for the three IFCs. The maps corresponding to the relatively 

homogeneous Field F13 were not shown.

(Insert Figure 9 around here)

Soybean planted in F16 had a homogeneous development with very small spatial 

variability. The crop fraction for soybean increased from around 0.15 at IFC1, to 

about 0.65 at IFC2 and full coverage at IFC3. Corn in Field F23 showed significant 

spatial variability due to the differences in soil properties and topography. At IFC1, 

crop fraction of corn in most of the area was around 0.1, with small areas reaching 

0.3. A wide range of crop fractions (i.e., 0.3-0.8) were observed at IFC2 and full 

coverage was reached at IFC3. Crop variability in F25 at IFC1 and IFC2 were mainly 

induced by the amount of nitrogen applied and by the soil properties, while at IFC3, 

they merely reflected the differences in the stage of senescence. The highest crop 

fraction (about 0.9) observed at IFC1 in the north-east corner of F25 is an area with a 

soil classified as sandy clay loam to fine sandy loam, which is favourable for crop 

development; it also received the recommended nitrogen application enabling early 

and uniform emergence. The crop development in the region of 0N was delayed, with 

coverage of only 0.4 at IFC1. At IFC1, the area with the lowest crop fraction (<0.3) 

detected at the upper part of F25 was characterized by very low organic matter 

content as a result of erosion due to the slope heading toward the creek flowing 
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between Fields F23 and F25. The diagonal strips (NW to SE) detected at IFC3 are 

filled old water channels that provided extra water, which made the crop senesce 

slower in this region. 

Although there were discrepancies between the estimates from linear spectral 

unmixing and vegetation indices, both approaches revealed the spatial variability and 

temporal variation of crop fractions very well, except at IFC3. Through pixel-by-pixel 

comparison, correlation coefficients between crop fractions estimated from the two 

approaches for soybean, corn and wheat were 0.94, 0.92 and 0.97 at IFC1, 0.98, 0.99 

and 0.97 at IFC2, and 0.76, 0.75 and 0.50 at IFC3, respectively. A reason for the 

decreased correlation at IFC3 was the reduced dynamic range of crop fractions. 

CONCLUSIONS

Crop fractions of corn, soybean and wheat were estimated from multi-temporal casi

hyperspectral image data using two approaches, linear spectral unmixing and 

vegetation indices. Three endmembers, crop, soil and shadow were used in the 

unmixing procedure. The effect of soil to the result using linear spectral unmixing was 

evaluated. The performance of vegetation indices NDVI, SAVI, OSAVI, TSAVI, 

MSAVI, MTVI2, and the newly developed visible indices VIgreen and VI700 were 

evaluated using casi data and simulated spectra. The study showed that both 

approaches revealed the spatial variability and temporal variation of crop fraction well. 

The coefficients of determination between measured and estimated crop fraction using 

linear spectral unmixing and MTVI2 were higher than 0.9, with RMSE about 0.1 for 

MTVI2 and 0.08 for linear spectral unmixing. 

Spectral unmixing is a useful tool that allows the exploration of the full information 

obtained by hyperspectral sensors. Extraction of endmember spectra from image data 

is crucial. Although it is the most laborious step, the endmembers extracted could 

account for the variability from other factors than crop fraction, such as canopy 

structure and growth condition. The crop fraction is determined in multidimensional 

space constructed by the endmembers. The resulting residual images reveal 

information that cannot be modelled by the extracted endmember spectra, which can 

be interpreted according to the variability of the endmembers, such as different 

background soil and crop growth conditions, etc. This is an asset that could be 

exploited further. 
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Compared with the spectral unmixing method, vegetation indices simply convert the 

spectral information into a single variable by combining the reflectance of a few 

spectral bands. Although this may cause information loss, the advantage rests in its 

simplicity. This study showed that all the evaluated indices could be used for crop 

fraction estimation with a satisfactory accuracy. Based on the experimental data sets, 

the indices had comparable estimation results.

Comparison of the sensitivity to LAI based on simulated spectra indicated that the 

relations between vegetation indices and crop fraction for the two visible indices, 

VIgreen and VI700, were not the same as the other indices. MTVI2 and MSAVI retained 

an adequate sensitivity at both low and high LAI. 

Spectral uncertainty is a factor that affects the accuracy of both spectral unmixing and 

vegetation indices. Here the uncertainty refers to spectral variability that comes from 

factors other than crop fraction, such as the background soil and other crop growth 

conditions; therefore, interpretation of the obtained crop fraction should incorporate 

the information related to these aspects.  
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Table 1. Input parameters for the PROSPECT leaf model and SAILH canopy model.

Leaf model parameters
Cw (g cm-2) Cm (g cm-2) NL Cab (µg cm-2)

0.005 0.0045 1.55 45
Canopy model parameters

LAD LAI θs θv ϕ
Spherical [0, 12] 30° 0° 0°

Soil reflectance used in the SAIL model
Wavelength (nm) 550 670 700 800

Reflectance 0.15 0.20 0.21 0.26
Note: Cw, leaf equivalent water content; Cm, leaf dry biomass content; NL, leaf 
internal structure parameter; Cab, leaf chlorophyll content including chlorophyll a and 
b; LAD: leaf angle distribution; LAI, leaf area index; θs, solar zenith angle; θv, sensor 
view angle; ϕ, relative azimuth angle between view and sun direction.  

Table 2.  Vegetation indices evaluated in this study.

Formulae Reference

)/()( redNIRredNIR RRRRNDVI +−= Rouse et al., 1974

)5.0/()(5.1 ++−×= redNIRredNIR RRRRSAVI Huete, 1988

)16.0/()(16.1 ++−×= redNIRredNIR RRRROSAVI Rondeaux et al, 1996

2/))(8)12(12( 2
redNIRNIRNIR RRRRMSAVI −×−+×−+×= Qi et al., 1994

[ ]
5.0)56()12(

)(5.2)(2.15.1
2

670800
2

800

550670550800

−×−×−+×

−×−−××
=

RRR

RRRR
MTVI Haboudane et al., 2004

))1(08.0/()( 2ααβαβαα +×+−+−−×= redNIRredNIR RRRRTSAVI
Baret et al., 1989

)R)/(RR-(RV redgreenredgreengreen +=I Gitelson et al., 2002b

)R(R)/ R-(RV red700red700700 +=I Gitelson et al., 2002b

Note: R is the reflectance, and its subscript refers to the spectral position in nm. NIR, 
red and green refer to near infrared, red and green bands. Soil line parameters 
α=1.2439  (slope) and β=0.0057  (intercept), were obtained from the soil scatter-plot 
from casi data sets in the same fields. 

Table 3. Calculated parameters for estimating crop fraction from vegetation indices.
NDVI SAVI OSAVI TSAVI MSAVI MTVI2 VI700 VIgreen

VIs 0.121 0.087 0.104 0.001 0.077 0.001 a 2.046 1.624
VI∞ 0.935 0.765 0.856 0.730 0.867 0.918 b 0.056 0.289

Kp/KVI 0.710 1.023 0.857 0.818 1.174 1.042

Note: left part, parameters for the semi-empirical model (Equation (6)); right part, 
parameter for the linear model (Equation (7)); sVI , index value with LAI = 0; ∞VI , 
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index value with LAI = ∞; VIp KK / , a parameter dependent on canopy structure and 

sun and view angles; a and b, the slope and intercept of the regression line.

Table 4. Comparison between measured and estimated crop fraction using vegetation 
indices.

NDVI SAVI OSAVI TSAVI MSAVI MTVI2 VI700 VIgreen

R2 0.93 0.90 0.92 0.92 0.90 0.90 0.87 0.89
RMSE 0.09 0.10 0.09 0.09 0.11 0.10 0.12 0.11

F 472 331 399 406 327 345 240 290
Note: R2, the coefficient of determination; RMSE, root mean square error; F, the F-
distribution value. Critical value of F is F0.01,1,37<7.56; samples of wheat at IFC3 were 
not included in the statistics.

List of Figures

Figure 1. Location of the study site and the field boundaries. The sectors within the 
wheat field, F25, coincide to different nitrogen (N) application rates (68 N=68 kg N 
ha-1; 41 N=41 kg N ha-1; 0N=0 kg N ha-1).  F25W is the west section of field 25 in 
which bare soil presented throughout the season.

Figure 2. Data distribution in the principal component space for IFC1 (a), IFC2 (b) 
and IFC3 (c). The first and the second principal components are plotted as horizontal 
and vertical axes, respectively. Sh, Soy, C and SL in the figure denominate to the 
endmember of shadow, soybean, corn and soil; W1 and W2 denominate wheat 
endmembers at IFC1 and IFC2, W31 and W32 denominate the two endmembers of 
wheat, representing wheat at different senescent stages at IFC3; A and B represent 
dark and bright soil respectively, as detected in the data cloud of IFC1; The arrows 
point to where the cover types are mostly located in the data cloud. 

Figure 3. Endmember spectra used in the linear spectral unmixing. 

Figure 4.  Results from linear spectral unmixing: (a) comparison between measured 
and estimated crop fraction, and (b) relationship between green LAI and the derived 
fractions of the two wheat endmembers at IFC3.

Figure 5. Residual images from linear spectral unmixing of Fields F23 (upper), F25 
(middle) and F16 (lower) at IFC1 (a), IFC2 (b) and IFC3 (c). The values of the scale 
bars in the images were multiplied by 100. 

Figure 6. Soil effects on linear spectral unmixing as evaluated for wheat at IFC1. a: 
spectra of dark and bright soil (A and B in Figure 2a); b: comparison between wheat 
fraction estimation with bright and dark soil.  

Figure 7. Comparison between measured and estimated crop fraction using vegetation 
indices: samples from F25 (wheat) at IFC3 were not plotted.
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Figure 8. Evaluation of the vegetation indices using the PROSPECT and SAILH 
models simulated data: (a) scaled vegetation indices, and (b) sensitivity of the scaled 
vegetation indices as a function of LAI. Here the sensitivity is the ratio between the 
variation of the scaled index to the variation of LAI. 

Figure 9.   Maps of crop fraction estimated from MTVI2 (upper) and linear spectral 
unmixing (lower) for corn in Field F23, wheat in Field F25 and soybean in Field F16. 
From left to right, the maps represent IFC1, IFC2 and IFC3, respectively.
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Figure 1

Figure 2

a. IFC1                                     b. IFC2                                         c. IFC3 
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Figure 3

Figure 4
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Figure 5

Figure 6

a. IFC1                            b. IFC2                            c. IFC3
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Figure 7
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Figure 8
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Figure 9
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