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Abstract

In this study, we evaluated the capability of different datasets for soil drainage mapping within agricultural fields. The evaluated datasets include
apparent soil electrical conductivity (ECa), remotely sensed high-resolution airborne hyperspectral reflectance (HR) and C-band synthetic aperture
radar (SAR) backscattering coefficients, and a high precision digital elevation model (DEM) generated from GPS measurements. The study site was
located in an experimental farm in Ottawa, Ontario, Canada. Three drainage classes representing moderately well drained, imperfectly drained, and
poorly drained soils were identified during field surveys according to soil surveyor expert knowledge. Variables that significantly contributed to soil
drainage classification were selected from the evaluated datasets with a stepwise discriminant analysis procedure. The selected variables were then
used to classify soil drainage with a maximum likelihood classifier. A substantial agreement between the observed and classified drainage classes was
achieved using the HR dataset, with a kappa coefficient (κ) of 0.68. Moderate agreement was achieved using the SAR and the ECa datasets, with
κ=0.52 and 0.55, respectively. The result obtained using the DEM-derived topographic variables showed only a fair agreement (κ=0.31). Canonical
analysis was also conducted to investigate the association between these datasets and field-observed soil water regime descriptors. This potentially
provides an alternative way of drainage mapping using canonical variate. The canonical correlation between the water regime descriptors and the
evaluated datasets was 0.81, 0.75 and 0.83 for the HR, SAR and soil ECa datasets, respectively. In this study, the topographic variables were not as
efficient, but when combined with the SAR and soil ECa datasets, they improved soil drainage mapping.
Crown Copyright © 2007 Published by Elsevier B.V. All rights reserved.
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1. Introduction

Precision agriculture is envisioned as a key approach to in-
creasing the sustainability of crop production; however,
traditional soil maps are often not accurate and reliable enough
to fulfill the requirements of site-specific crop management.
Therefore these soil maps need to be upgraded to finer scales
using accurate and objective soil information. Among the var-
ious soil properties, soil drainage is important as it directly
⁎ Corresponding author. Tel.: +1 613 7591523; fax: +1 613 7591724.
E-mail addresses: liu_jiangui@yahoo.com (J. Liu), patteye@agr.gc.ca

(E. Pattey).

0016-7061/$ - see front matter. Crown Copyright © 2007 Published by Elsevier B
doi:10.1016/j.geoderma.2007.11.011
affects plant growth, water flow and solute transport in soils
(Kravchenko et al., 2002). Here, drainage refers to the natural
ability of soil to allow water to infiltrate and percolate. Drainage
mapping is of interest because soil map users usually need
information about soil properties or soil behaviour rather than
taxonomic classes for land use and management decision
(Bartelli, 1979). Conventionally, soil mapping is made by a
trained soil taxonomist to delineate predetermined classes using
soil survey along controlled land transects. It is challenging and
often problematic to classify a soil concept (e.g., soil drainage
class) consistently this way, since the soil classes are frequently
overlapping and usually defined by multiple soil properties, and
the identification of a soil drainage class relies on the expertise of
an individual soil surveyor (Webster and Burrough, 1974). It is
.V. All rights reserved.
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Fig. 1. Elevation map of the study fields showing the locations of the soil
sampling sites. Drainage classes are labelled with different symbols; +:
moderately well drained (MD); ▲: imperfectly drained (ID); ●: poorly drained
(PD). The elevation map was generated using DGPS installed on board of an
electrical cart (see text for more details).
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also laborious and expensive to map soil drainage at within-
field scale through soil survey, because this requires intensive
sampling of several representative soil profiles. Thus, methods
need to be developed to map soil drainage consistently and
inexpensively.

Soil–landscape models have been developed to discriminate
soil drainage classes based on topographic variables derived
from a digital elevation model (DEM) (Bell et al., 1992, 1994),
since there is strong correlation between the shape of the ground
surface and the soil drainage characteristics (Troeh, 1964;
Acton, 1965). Spatially high resolution and accurate DEM can
nowadays be routinely derived from several approaches in-
cluding stereoscopic techniques using satellite image pairs,
synthetic aperture radar (SAR) interferometry, and light de-
tection and ranging (LIDAR) (Abdelfattah and Nicolas, 2002;
Toutin, 2004; Liu et al., 2005b). Soil delineation using to-
pographic analysis should benefit from these developments.

Operational measurement of the apparent soil electrical
conductivity (ECa) has become the tool of choice in precision
agriculture for characterizing the spatial variability of soil
properties (Corwin and Lesch, 2005). Since ECa is related with
several soil properties, including soil salinity, texture (i.e., clay
content), temperature and water content (Corwin and Lesch,
2003; Corwin et al., 2003), it could also be used for soil
drainage mapping.

Soil drainage is often related to other soil properties, such as
the profile of soil water content and soil texture (Kravchenko
et al., 2002), which could be mapped using remote sensing data.
In optical remote sensing, the characteristics of the reflectance
spectrum from a soil surface are related with soil colour and
brightness, as well as other properties, such as soil texture
composition, moisture and organic matter content (Huete and
Escadafal, 1991; Mattikali, 1997). For instance, soil reflectance
was found to change exponentially as a function of volumetric
soil moisture (Lobell and Asner, 2002). For microwave remote
sensing, the magnitude of radar backscattering from a soil
surface is governed by the dielectric constant and soil surface
roughness. The dielectric constant in turn, is dependent strongly
on soil moisture content and, to a lesser extent, on soil texture
composition (Ulaby et al., 1996). Therefore, both optical and
radar remote sensing have the potential to map soil properties,
such as soil drainage. The advantage of remote sensing tech-
niques over field survey approaches resides in its consistency.
Since data may be acquired non-invasively over a large area
within a short period of time, with the same sensor configuration
and similar environmental conditions.

Remote sensing data have been used for soil drainage clas-
sification by several researchers (Lee et al., 1988a,b; Levine
et al., 1994; Cialella et al., 1997; Campling et al., 2002). In areas
under natural vegetation, the association of vegetation type with
soil, or the impact of a soil property on biomass accumulation
can be exploited for soil mapping using remote sensing data
(Lozano-Garcfa et al., 1991; Korolyuk and Shcherbenko, 1994;
Levine et al., 1994). However, in agricultural fields, a number of
other disturbing factors, such as management practices, may
impact the direct soil-vegetation relationship. Thus, Moran et al.
(1997) proposed to use remote sensing data acquired under bare
conditions to map agricultural soils. With the development of
different remote sensing systems, the opportunity to acquire
remote sensing data at an optimal condition will increase.

The objective of this study was to evaluate the relative ca-
pability of soil ECa, DEM-derived topographic variables, and
high-resolution remote sensing data for mapping within-field
soil drainage variability. A maximum likelihood classifier and a
discriminant analysis procedure were used for soil drainage
classification. In addition, canonical analysis was conducted to
investigate the association between the data mentioned above,
and the soil information collected from field survey. The fea-
sibility of mapping soil drainage in a continuous manner using
canonical variate was discussed. This potentially provides an
alternative to soil drainage classification.

2. Materials and methods

2.1. The study site

The study was conducted in two adjacent fields in an
experimental farm south of Ottawa, Ontario, Canada (45°18′N,
75°45′W, Fig. 1). The two fields were characterized by seven
soil landscape units, with a range of loamy sand to silty clay
loam soil texture, a moderately well drained to poorly drained
conditions, and a level (0–0.5%) to gently sloping (2 –5%)
topography (Marshall et al., 1979). Detailed soil information
was introduced in Liu et al. (2005a).
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2.2. Soil survey and sampling

Intensive soil surveys were conducted in fall 2002 and spring
2005. A total of 144 sites were georeferenced, described and
sampled in the two selected fields. Soil drainage classes were
determined based on surveyor's knowledge. Of the 144 samples,
9 samples were identified as moderately well drained (MD), 35
as imperfectly drained (ID), and 100 as poorly drained (PD).
According to the Canadian Soil Information System (CanSIS;
Day, 1982), a soil belongs to MD class if excess surface water is
removed somewhat slowly from soil in relation to supply, ID
class if water is removed sufficiently slowly to keep the soil wet
for a significant part of the growing season, and PD class if water
is removed so slowly that the soil remains wet for a com-
paratively large part of the time when the soil is not frozen. In
addition, physical and chemical soil properties were also
collected and analyzed for the first 30 cm depth (Perron et al.,
2003). The following soil profile information was also recorded
in situ: depth to a gleyed horizon (DGley), depth to a contrasting
clayed layer (DIIC), and depth to the first C horizon (DC). Other
soil water regime descriptors, such as the wetness index (IW), the
available water capacity within 0 to 50 cm (AWC50) and 0 to
100 cm (AWC100) from surface were also estimated in the
laboratory afterwards using pedo-transfer functions mainly
based on the morphological datasets (Lavoie et al., 1999).
These variables were organized as a database obtained from soil
field survey.

2.3. DEM and topographic variables

A DEM was generated with the elevation data collected
using a real-time kinematic global positioning system (RTK
GPS), with 1 cm vertical accuracy. The GPS sampling density
was about 150 points per ha across the fields, with about 13 m
Fig. 2. Maps showing the datasets used in the study: a) the apparent soil electrical co
hyperspectral reflectance (see text, showing the first component); and c) the synthet
interval between transects and 5 m within transects. The point
elevation data were interpolated into raster format with an
8×8 m grid size using a block kriging technique implemented in
ESRI ArcGIS Geostatistical Analyst (ESRI, 2001). The global
trend was modeled and removed from the measured points first,
and added back after kriging. Fig. 1 shows the interpolated
elevation data, overlaid with soil samples marked with their
observed drainage classes. Terrain analysis and simple hydro-
logical functions were used to generate maps of various topo-
graphic variables, which include elevation (Z), slope (S), aspect
angle (φ), plane (CXY) and profile (CZ) curvature, convergence
index (IC), compound topographic index (CTI), stream power
index (SPI), stream transport index (STI), and specific catch-
ment area (SCA). Detailed formulae used to derive the topo-
graphic variables can be found in Hengl et al. (2003).

2.4. Apparent soil electrical conductivity

Soil ECa was measured in November 2002 using a VERIS-
3100 instrument within 0–30 cm (ECa30) and 0–100 cm (ECa100)
depths. The sampling rate is approximately 150 points per ha,
with about 13 m between transects and 5 m within transects. The
measured ECa data were also interpolated into 8×8 m grid using
the same approach as the DEM. As an example, ECa100 is shown
in Fig. 2a.

2.5. Remote sensing data

Airborne hyperspectral reflectance (HR) data were acquired
with the compact airborne spectrographic imager (CASI) in June
2000 when the fields were bare. Reflectance spectra were
measured in 72 bands between 408 and 947 nmwith a bandwidth
of 7.5 nm and a spatial resolution of 2 m. Initial geometric
correction was done using the navigation data recorded onboard
nductivity (showing the deeper measurement); b) the principal component of the
ic aperture radar backscattering coefficient (showing the HH polarization).



Fig. 3. Schematic of the procedure for analyzing and mapping within-field soil drainage using either the categorical approach by discriminant analysis, or the
continuous approach by canonical analysis.
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the aircraft. To improve accuracy, a further correction was made
using GPS measurements obtained at several ground locations
identifiable on the image. The error for geometric correction was
below 1 pixel. A principal component (PC) transformation was
applied to reduce data dimensionality from 72 to 5. These five
PCs, containing over 99.9% of the total variance of the data, were
used for subsequent analysis. Image of the first PC is shown in
Fig. 2b.

Airborne C-Band SAR polarimetric data were acquired with
the CV-580 system in November 2002, at a nominal incidence
angle of about 35° at the field centre. The pre-processing of the
SAR data, including radiometric calibration and geometric
correction, was done by the Canada Centre for Remote Sensing
(CCRS). The radiometric accuracy was better than 1 dB. The
geocoded image with a pixel size of 4×4 m was also generated
in this process (Hawkins et al., 1999). To reduce speckle noise, a
Gamma filter with a 5×5 pixel window was applied. SAR
backscattering coefficients of the linear HH (horizontally emit
and receive) and VV (vertically emit and receive) polarizations
were synthesized from the geocoded product using the
Polarimetric WorkStation software (Touzi and Charbonneau,
2004). The SAR data was then geometrically registered to the
HR image. The accuracy was better than 1 pixel. Image of the
backscattering coefficient of the HH polarization is shown in
Fig. 2c.

2.6. Discriminant and canonical analyses

As reviewed by McBratney et al. (2003), various geostatis-
tical methods have been developed in digital soil mapping.
When denser secondary variables are available to be correlated
with the primary soil variable, co-kriging and regression co-
kriging are exact estimators for mapping the primary variable.
However, they become time consuming and cumbersome if the
number of secondary variables is large (Kravchenko et al.,
2002). In this study, we used a maximum likelihood classifier
based on discriminant analysis to evaluate the capability of dif-
ferent datasets for soil drainage classification. The evaluated
datasets include: 1) the hyperspectral reflectance principal
components (HR PCs dataset); 2) the C-band SAR back-
scattering coefficients of the HH and VV polarizations (SAR
dataset); 3) soil ECa30 and ECa100 (ECa dataset); and 4) DEM-
derived topographic variables (DEM dataset). In addition,
combinations of the HR PCs, SAR and ECa datasets with the
DEM dataset were also evaluated to find if DEM could improve
drainage classification of these datasets. The soil water regime
descriptors obtained from the soil sampling were evaluated for
comparison purpose. This approach provides a conventional
categorical mapping of soil drainage.

Soil drainage could be more naturally represented with a
continuous one-dimensional variable, which can be determined
by a few soil water regime descriptors obtained from field sur-
veys. Thus, we used a canonical analysis procedure to explore
the association between these water regimes, treated as
dependent set, and the HR PCs, SAR, ECa, and DEM datasets,
treated as independent sets. A strong canonical correlation
would indicate that, the canonical variate derived from the in-
dependent dataset reveals soil drainage information, and could
be used as a drainage indicator. The canonical variate provides
continuous soil drainage mapping, alternative to the conven-
tional categorical mapping. Fig. 3 shows the procedure of the
two approaches used in this study.

Topographic variables, soil ECa and remote sensing data
were first extracted for each sample site, and joined with the soil
survey data to form a soil sample database. A complete list of
variables in this database is given in Table 1. The averages,
standard deviations, maximum and minimum values of these
variables are also given in the table.

Using the sample database, a stepwise discriminant analysis
procedure implemented in the SPSS statistics software (SPSS
Inc., 1999) was used to select from each dataset a group of
variables that significantly contributed to drainage classification.
The soil samples were then classified into different drainage
classes using the selected variables with a maximum likelihood
classifier. Because there is ambiguity in soil class determination,
either partial class membership or class probability needs to be
considered (Chang and Burrough, 1987). Class probability is
represented by the a posteriori probability given by:

p kjxð Þ ¼ p kð Þp xjkð Þ=
Xc

i¼1

p ið Þp xjið Þ½ � ð1Þ

where x represents a given sample; p(k) and p(i) are a priori
probability of class k and i, respectively; c is the total number of



Table 2
Soil drainage classification results using stepwise discriminant analysis

Datasets Variables selected Classification
accuracy

κ

1. Soil water regime
descriptors

DGley, AWC100 0.90 0.78‡

2. DEM S, Z, CXY, CTI 0.70 0.31
3. HR PCs PC1, PC2, PC3, PC4 0.85 0.68‡
4. HR PCs+DEM PC1, PC3, PC4, S, CXY, CTI 0.84 0.64‡
5. SAR HH, VV 0.79 0.52†
6. SAR+DEM VV, S, CXY 0.84 0.66‡
7. ECa ECa100 0.79 0.55†
8. ECa+DEM ECa100, S, CXY 0.84 0.66‡

Note: κ, kappa coefficient; ‡ and † represent respectively a substantial and
moderate agreement between the observed and the classified drainage classes;
DEM, dataset of the topographic variables; HR PCs, dataset of the hyperspectral
reflectance principal components, including the first five components; SAR,
dataset of synthetic aperture radar backscattering coefficients, including the HH
and VV polarizations; ECa, dataset of the apparent soil electrical conductivity,
including measurements at 0–30 cm (ECa30) and 0–100 cm (ECa100). The
meanings of the selected variables are given in Table 1.

Table 1
Descriptive statistics of the variables used in the study

Variable Mean Standard deviation Minimum Maximum

Soil water regime descriptors (through field survey)
DGley(cm) 38.7 14.7 0 90
DIIC(cm) 31.8 34.0 0 130
DC(cm) 65.8 10.9 40 100
AWC50(cm) 9.9 3.3 4.2 14.3
AWC100(cm) 19.9 5.2 6.9 26.7
IW(−) 17.4 6.4 2.7 26.7

Topographic variables derived from DEM
Z(m) 92.6 1.19 90.8 95.4
S(°) 0.33 0.25 0.025 1.34
φ(°) 167 98 1.9 359
CXY(m

−1) 0.00 0.0003 −0.0009 0.0014
CZ(m

−1) 0.00 0.0003 −0.0008 0.0014
IC(−) −0.67 15.5 −54.4 84.6
SPI (−) 0.736 2.363 0.0009 22.3
STI (−) 0.059 0.065 0.0005 0.38
SCA (m) 3.85 1.15 1.73 7.94
CTI (−) 8.97 1.57 6.01 14.55

Apparent soil electrical conductivity
ECa30(S m−1) 10.5 7.4 0.8 23.4
ECa100(S m−1) 17.7 9.5 0.8 36.3

Principal components of hyperspectral reflectance data
PC1 (−) 0.056 0.165 −0.278 0.341
PC2 (−) 0.042 0.099 −0.120 0.241
PC3 (−) −0.015 0.026 −0.088 0.028
PC4 (−) −0.006 0.017 −0.052 0.032
PC5 (−) 0.0003 0.014 −0.025 0.028

Polarizations of synthetic aperture radar data
HH (dB) −11.3 2.1 −17.6 −7.0
VV (dB) −11.5 1.8 −16.8 −7.3

Note: DGley, Gley depth; DIIC, depth to a contrasting clayed layer; DC, depth
to the first C horizon; AWC50 and AWC100, soil available water capacity within
0–50 cm and 0–100 cm, respectively; IW, wetness index; Z, elevation; S, slope;
φ, aspect angle; CXY, plane curvature; CZ, profile curvature; IC, convergence
index; SPI: stream power index; STI: stream transport index; SCA: specific
catchment area, applied with logarithmic transformation; CTI: compound
topographic index; ECa30 and ECa100, apparent soil electrical conductivity
within 0–30 and 0–100 cm, respectively; PC1–PC5, the first five principal
components of the hyperspectral reflectance data; HH (or VV), horizontal (or
vertical) transmission and receiving radar backscattering coefficient.
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classes; and p(x|k) is the probability density function of class k.
The probability density function is expressed as follows:

p xjkð Þ ¼ exp �0:5D2
M

� �
= 2pn=2jRk j1=2
h i

ð2Þ

D2
M ¼ x� Akð ÞR�1

k x� Akð ÞT ð3Þ
where DM is the Mahalanobis distance; n is the dimensionality
of the feature space; μk and Σk are the mean vector and the
covariance matrix of class k, respectively; Σk

−1 is the inverse of
the covariance matrix. The average vectors and the covariance
matrices can be estimated from a training sample set. Eq. (1) is
used to estimate the a posteriori probabilities of a given sample
belonging to a class, and the class with the maximum a
posteriori probability is assigned to the sample.
A group of soil water regime descriptors that significantly
contribute to drainage classification were identified from this
discriminant analysis procedure. These descriptors, obtained
directly from field surveys, were used as drainage indicators.
The association between these drainage indicators and the other
datasets (e.g., HR PCs, SAR, etc.) was then investigated using
the canonical analysis procedure implemented in SPSS. The
procedures expressed above are based on the soil sample da-
tabase. When the classification parameters and the canonical
weights are estimated from the sample database, soil drainage
can be mapped using the gridded datasets across the whole field.

3. Results

3.1. Discriminant analysis and variable selection

A forward stepwise discriminant analysis procedure was
applied. The F value to enter and to remove was set to 1.2 and
1.0, respectively. For each dataset, the selected variables are
given in Table 2. The overall classification accuracy and the
kappa coefficient (κ) are also given in the table. The accuracy is
expressed as the percentage of samples that are correctly
identified, and the kappa coefficient is used to account for the
chance agreement (Foody, 1992). κ is calculated as:

j ¼ P0 � Pcð Þ= 1� Pcð Þ ð4Þ

Pc ¼
X
i

P1iP2i ð5Þ

where P0 is the overall accuracy; Pc is the chance agreement
between the observed and classified categories; P1i and P2i are
proportions of samples that are observed and classified as category
i, respectively. Following Landis and Koch (1977), the agreement
between the classified and observed categories can be divided into
five levels according to the value of κ: 0–0.2, slight agreement;
0.2–0.4 fair agreement; 0.4–0.6: moderate agreement; 0.6–0.8:
substantial agreement; and 0.8–1.0: almost perfect agreement.
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Two soil water regime descriptors, DGley and AWC100, were
the best in discriminating different drainage classes, followed
by the HR PCs, SAR, and ECa datasets. These two water regime
descriptors thus could be used as field-observed drainage in-
dicators. Fig. 4 is the categorized scatter-plot of these two
descriptors. It shows that soil drainage ability is positively
related to DGley, and negatively related to AWC100. When the
overall accuracy was considered, the HR PCs dataset only
slightly outperformed the SAR and the ECa datasets. However,
when κ was considered, the agreement between the observed
and classified drainage classes using HR PCs dataset was
substantial (0.68), whereas the agreement obtained using the
SAR (0.52) and the ECa (0.55) datasets can only be rated as
moderate. The DEM dataset only achieved a fair agreement
(κ=0.31) when used alone, but when it was combined with the
SAR and the ECa datasets, the overall classification accuracy
increased by 5%, and the kappa coefficient increased by more
than 0.1. For the HR PCs dataset, there was no increase in the
overall classification accuracy and the kappa coefficient when
DEM dataset was combined. Slope and plane curvature were
selected when the DEM dataset was combined with the three
datasets, except that the compound topographic index was also
selected for the HR PCs dataset.

3.2. Cross validation

It should be noted here that the classification accuracy and
the kappa coefficient reported in Table 2 could be biased, since
all the samples were used for both training and validation. Cross
validation was thus conducted by dividing the whole sample set
randomly into two groups. One group was used for validation
and consisted of 25 samples, and the other group was used for
training and consisted of the remaining samples (n=119). Using
the majority of the samples for training ensured robust esti-
mation of the classification parameters, e.g., the mean class
vector and the covariance matrix; however, fewer samples were
left for validation, especially the MD samples (n=9). To
Fig. 4. Scatter-plot between gley depth (DGley; cm) and available water capacity
within the first 100 cm of soil (AWC100), categorized by drainage classes
(MD=moderately well drained, ID=imperfectly drained, and PD=poorly
drained).
maintain enough samples for both validation and training, the
cross validation was iteratively run 15 times, and the 375
validation samples from all the iterations were used to calculate
the classification accuracy and the kappa coefficient. Confusion
matrices for each dataset as well as the classification accuracy
and the kappa coefficient are given in Table 3. The datasets,
consisted of the selected variables, are marked with the same
number as that in Table 2.

Compared with Table 2, the cross validation, using only part
of the samples for training, shows a decreased overall
classification accuracy and kappa coefficient. The decrease
was the most for the HR PCs dataset (with or without the DEM
dataset). A possible reason was because the limited number of
training samples relative to the number of selected variables
induced inaccurate parameter estimation, hence resulted in
lower classification accuracy. This was especially true for MD
soils, for which only 9 samples were observed in the field.

The two soil water regime descriptors remain to be the best
grouping variables, with an overall classification accuracy of
87% and κ=0.70, although more MD samples were incorrectly
classified. For the DEM dataset, most of ID samples were
classified as PD, and the classification accuracy (0.69) and κ
(029) were the lowest. When the DEM dataset was com-
bined with the ECa dataset, the classification accuracy increased
from 0.72 to 0.84, and κ increased from 0.42 to 0.65. This is a
bigger increase compared with the HR PCs and the SAR
datasets.

3.3. Within-field drainage classification

From the HR PCs, SAR and ECa datasets, within-field soil
drainage classification maps were generated using the max-
imum likelihood classifier and the variables selected by the
stepwise discriminant analysis. The maps are shown in Fig. 5.
Classification parameters, including mean vectors, covariance
matrices, and a priori probabilities of MD, ID and PD soils,
were estimated from the whole sample set.

The drainage classification map generated from the SAR
dataset appears noisy due to radar speckle. A comparison of the
three maps showed that, the proportion of MD soils was the
largest for the ECa dataset, and the smallest for the SAR dataset.
This could be explained using the classification matrix in Table 3.
Classification of the SAR dataset generated a much larger
omission error (25 out of 34) than commission error (7 out of 13)
for MD class, so the area of this drainage class was under-
estimated. Whereas the ECa dataset had a much less omission
error (9 out of 31) than commission error (46 out of 68) for MD
class, thus the area of the MD soils was overestimated. The
omission (14 out of 33) and commission (18 out of 37) errorswere
close for the HR PCs dataset, thus the estimated area of MD soils
may be close to the real condition.

3.4. Canonical analysis

Since DGley and AWC100 were observed to be the best soil
water regime descriptors for drainage classification, they were
used as the dependent dataset in the canonical analysis. The



Table 3
Results from the cross validation of classification

Note: datasets are marked with the same number as in Table 2, and only comprise the selected variables listed in Table 2; MD, ID, and PD represent moderately well
drained, imperfectly drained, and poorly drained soil classes, respectively; the shaded portions are classification matrix; class labels to the left of a matrix represent the
observed classes, and that to the top represent the classified classes; κ, the kappa coefficient; ‡ and † represent respectively a substantial and moderate agreement
between the observed and the classified drainage classes.
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remote sensing (HR PCs and SAR) and the ECa datasets were
used as independent datasets. The DEM dataset was not con-
sidered independently here, since it was less efficient in
drainage classification. However, the combinations of the
selected topographic variables with the other three datasets
were considered.

Of the two canonical roots calculated, the first root had a
significantly higher eigenvalue than the second one for all pairs
of datasets; thus, it represented the most significant association
between the dependent and independent sets. Results of the
canonical analysis are summarized in Table 4. The canonical
correlation (Rc), i.e., the correlation coefficient between the
Fig. 5. Within-field soil drainage classification using a) hyperspectral reflectance
c) apparent soil electrical conductivity measured at 0–30 cm (ECa30) and 0–100 cm (
drained and poorly drained soils, respectively.
canonical variates of the dependent and the independent sets,
was high for all the cases, ranging from 0.75 to 0.84. Combining
topographic variables with the HR PCs and the SAR datasets
slightly increased the canonical Rc, but did not increase that of
the ECa dataset. Due to relatively lower loading factors of the
topographic variables in the canonical variates, the extracted
variance decreased when the topographic variables were in-
cluded. The percentage redundancy of the independent datasets
ranged between 31% and 64%. Given the strong canonical
correlation, it is logical to expect that the canonical variates
derived from the independent datasets also contain soil drainage
information.
principal components, b) C-Band SAR linear HH and VV polarizations, and
ECa100) depths. MD, ID and PD represent moderately well drained, imperfectly



Table 4
Canonical analyses results

Independent
dataset

HR
PCs

HR PCs+
DEM

SAR SAR+
DEM

ECa ECa+
DEM

Rc 0.81 0.84 0.75 0.77 0.83 0.83
Variance (%) 58 39 90 50 92 52
Redundancy (%) 38 31 50 31 64 38

Note: the dependent set consists of gley depth (DGley) and available water capacity
within 0 to 100 cm depth (AWC100); HR PCs, dataset of the hyperspectral
reflectance principal components, including the first five components; SAR,
dataset of synthetic aperture radar backscattering coefficients, including the HH
and VV polarizations; ECa, dataset of the apparent soil electrical conductivity,
including measurements at 0–30 cm (ECa30) and 0–100 cm (ECa100); DEM,
dataset of the selected topographic variables from the previous step (Table 2); RC,
canonical correlation.
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3.5. Mapping drainage using canonical variates

The canonical weights and the loading factors for the first
root are given in Table 5. The loading factor of a variable
represents the overall correlation between this variable and the
canonical variate. The canonical score (value of a canonical
variate) is calculated as Σ(Xiwi), i.e., the weight sum of the
variables in the dataset (SPSS Inc., 1999). Here Xi and wi

represent a variable and its canonical weight, respectively.
It can be observed from Table 5 that, for all the cases the

loading factors are positive for AWC100 and negative for DGley.
Since drainage ability is negatively correlated with AWC100 and
positively correlated with DGley (Fig. 4), this means that a lower
canonical score of the dependent dataset represents a better
drainage condition. It is the same with the canonical score of the
independent datasets, since the independent and the dependent
datasets are positively associated (RcN0). Thus the canonical
variate derived from the independent dataset serves as an index
showing the relative drainage ability. It should be noted that the
canonical variates were not calibrated against a single
Table 5
Canonical weights and loading factors

Independent set

HR PCs PC1 PC2 PC3 PC4 PC
Weight 0.20 0.42 0.96 0.59 −0
Factor −0.63 −0.72 0.87 0.90 0.6

HR PCs+DEM PC1 PC2 PC3 PC4 PC
Weight 0.34 0.53 1.0 0.45 −0
Factor −0.59 0.66 0.86 0.86 0.6

SAR HH VV
Weight 0.52 053
Factor 0.95 0.95

SAR+DEM HH VV
Weight 0.42 0.53
Factor 0.92 0.92

ECa ECa30 ECa100

Weight 0.15 0.86
Factor 0.92 0.99

ECa+DEM ECa30 ECa100

Weight 0.18 0.84
Factor 0.91 0.99

Note: The meanings of the independent datasets are given in Table 4; the meanings
measurable or observed soil variable. Although drainage classes
can be defined according to canonical score, this will reduce the
information content, since a continuous variable is converted
into a variable with only a few nominal values, i.e., drainage
classes. To retain detailed information, we thus simply
segmented the canonical score into 10 levels, with approxi-
mately equal number of pixels in each level. Different levels
represent different drainage ability. This is equivalent to
histogram equalization to enhance image contrast (Gonzalez
and Woods, 2002). Fig. 6a to c are the drainage index maps
derived from the segmentation of the canonical variates of the
HR PCs, SAR and ECa datasets. A higher value of drainage
index in Fig. 6 represents a smaller canonical score and a better
drainage condition. This can be confirmed by comparing the
drainage index maps in Fig. 6 with the relative classification
maps in Fig. 5.

4. Discussions

In the study area, moderately well drained soils are mainly
represented by deep (N100 cm) sandy soils with podzolic
development and 2–5% slopes terrain. Excess water from
spring snowmelt and precipitation is removed somewhat readily
in these soils due to the medium to high hydraulic conductivity
(15–50 cm h−1). Imperfectly drained soils are developed on
shallow (50–100 cm) sandy to coarse–loamy soils over a clayey
substratum. The internal soil drainage is restricted by low
hydraulic conductivity (b0.5 cm h−1). The poorly drained soils
are gleysolic soils with a gentle slope (0–2%) or in depressions.
These soils are developed in fine-textured (silty clay loam to
silty clay) modified marine materials, with slow internal
permeability and surface runoff. Soil drainage strongly
determines the available water capacity in the first 100 cm
layer (AWC100). In this study, the moderately drained soils have
low to moderately low level of available water capacity
Dependent set

5 DGley AWC100

.80 −0.27 0.78
6 −0.86 0.98
5 S CXY CTI DGley AWC100

.77 0.07 −0.07 0.08 −0.39 0.67
2 −0.43 −0.31 0.39 −0.89 0.97

DGley AWC100

−0.11 0.94
−0.79 0.99

S CXY DGley AWC100

−0.16 −0.15 −0.23 0.82
−0.46 −0.31 −0.84 0.99

DGley AWC100

−0.12 0.90
−0.80 0.99

S CXY DGley AWC100

0.06 −0.13 −0.17 0.87
−0.43 −0.27 −0.81 0.99

of the variables are given in Table 1.



Fig. 6. Within-field soil drainage mapping using canonical variates derived from a) hyperspectral reflectance principal components (HR PCs), b) C-Band SAR linear
HH and VV polarizations, and c) apparent soil electrical conductivity within 0–30 cm (ECa30) and 0–100 cm (ECa100) depths. A higher drainage index represents a
better drainage condition.
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(AWC100=5–10 cm), the imperfectly drained soils have
moderate to high available water capacity (AWC100=10–
20 cm), and the poorly drained soils have high available
water capacity (AWC100N20 cm). Thus AWC100 is an
important soil drainage indicator. This is consistent with the
discriminant analysis results, where both AWC100 and DGley

were selected as significant contributors to soil drainage
classification. Results from the canonical analysis showed
that, the canonical variate derived from the dependent set had a
stronger correlation with AWC100 than with DGley, since the
absolute loading factor of AWC100 was higher than that of DGley

(Table 5).
An investigation of the loading factors of the independent

datasets provides some insights to the relationship between the
canonical score and the drainage conditions. For the C-band
SAR dataset, the loading factors of HH and VV backscattering
coefficients were positive (both 0.95). Areas with a better
Fig. 7. Eigen-spectra of the first five principal components (PC1–PC5) of the
hyperspectral reflectance dataset. The curves show the contribution of each
original spectral band to the principal components.
drainage (higher drainage index and smaller canonical score)
had lower backscattering values in these two polarizations. This
is because radar backscattering coefficient is positively related
with soil moisture content (Ulaby et al., 1996), and a better-
drained soil is likely to have relative lower level of soil moisture.
The loading factors of soil ECa were also positive. Lower
moisture content is most likely to induce a lower soil ECa, hence
a lower canonical score. It was also noted that ECa100 had a
higher loading factor, i.e., stronger correlation with soil
drainage, than ECa30. The eigen-spectra of the HR PCs dataset
are shown in Fig. 7. The curves represent the contribution of
each original reflectance channel to the principal components.
For instance, PC1 is roughly the average of reflectance in all the
bands. A better-drained soil is most likely to have a lower soil
moisture content and a higher reflectance, hence a higher PC1
value and a lower canonical score, since PC1 has a negative
loading factor of −0.63 (Table 5). PC3 and PC4 have the highest
correlation with the canonical variate among the five PCs. It was
interesting to note that PC3 received relative small contribution
from the near infrared channels, thus represented spectral contrast
between the green and red channels.

We have simply used the canonical variates as soil drainage
index, with the assumption that the canonical analysis has
Table 6
Relationship between soil drainage and the canonical variates

Classification accuracy (%) κ MD ID PD

HR PCs 80 0.55 b−1.82 −1.82~−0.47 N−0.47
SAR 78 0.52 b−2.15 −2.15~−0.59 N−0.59
ECa 80 0.57 b−2.29 −2.29~−0.52 N−0.52

Note: canonical variates were derived from the HR PCs (hyperspectral
reflectance principal components), SAR (HH and VV polarizations), and ECa
(soil apparent electrical conductivity at 0–30 cm and 0–100 cm) datasets; MD,
ID and PD represent moderately drained, imperfectly drained and poorly drained
soils; κ, kappa coefficient.



Table 7
Correlation between AWC100 (available water capacity within 0 to 100 cm
depth), DGley (gley depth) and the canonical variates

AWC100 DGley

a b R2 p a b R2 p

HR PCs 4.33 19.45 0.66 b0.001 −11.30 39.14 0.55 b0.001
ECa 4.40 19.45 0.68 b0.001 −10.07 39.14 0.44 b0.001
SAR 3.96 19.45 0.55 b0.001 −9.18 39.14 0.37 b0.001

Note: simple linear regression is used to evaluate the correlation; a and b are the
scale and offset of the linear function; p is the statistical significance of the
correlation; and R2 is the coefficient of determinant.
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successfully extracted the soil drainage information contained in
AWC100 andDGley. It is interesting to investigate the relationship
between soil drainage classes and the canonical variates derived
from the independent sets. The maximum likelihood algorithm
was applied on the canonical variates to assign drainage classes
to all the soil samples. The overall classification accuracy, the
kappa coefficient, and the data ranges for the three drainage
classes are given in Table 6. For instance, if the canonical variate
Fig. 8. Categorized scatter-plot between canonical variates and the two water regime
depth (DGley; cm). The canonical variates are derived from the hyperspectral reflect
apparent electrical conductivity within 0–30 cm (ECa30) and 1–100 cm (ECa100). Th
imperfectly drained (×), and poorly drained (○) soils.
derived from the HR PCs dataset is used for drained
classification, an overall accuracy of 80% and kappa coefficient
of 0.55 is obtained, representing a moderate agreement between
the observed and classified classes. For this canonical variate, a
value smaller than−1.82 is assigned toMD, bigger than−0.47 is
assigned to ID, and in between −1.82 and −0.47 is assigned to
ID. The classification results are comparable with that of the
discriminant analysis given in Table 2, with the only exception
that the kappa coefficient of the HR PCs dataset is decreased
from 0.68 to 0.55. The advantage of the canonical variate is that
it is a continuous presentation of soil drainage, which possibly
reveals the within-class soil drainage variability.

The relationship between the canonical variate and the two
soil water regimes was also investigated. The correlation using a
linear regression is summarized in Table 7. In the table, a and b
represent the scale and offset of the linear function using the
canonical variate as independent variable. R2 is the determinant
coefficient, and p is the significance level. The scale factors show
that the canonical variates are positively correlated with AWC100,
and negatively correlated with DGley. Categorized scatter-plot
between the water regimes and the canonical variates was shown
s: the available water capacity within 0–100 cm of soil (AWC100; cm) and gley
ance principal components (HR PCs), SAR HH and VV polarizations, and soil
e categories are observed soil drainage classes of moderately well drained (●),
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in Fig. 8. The categories in the figure represent soil drainage class
observed from field survey. MD, ID and PD samples are
symbolized with dots, crosses and circles, respectively. It is
obvious that canonical score increases when soil drainage
changes from MD to PD. Although a linear relationship might
not be the best to relate the water regimes with the canonical
variates, all the relationships are significant at p b0.001 level.

5. Conclusions

The ability of mapping within-field soil drainage conditions
using high-resolution hyperspectral reflectance data, C-Band
synthetic aperture radar HH and VV polarizations, apparent soil
electrical conductivity data, and topographic variables derived
from DEM, was evaluated in this study. Two approaches were
proposed and tested for soil drainage mapping. The first approach
was based on discriminant analysis and maximum likelihood
classifier, and the second approach was based on canonical ana-
lysis. Categorical and continuous mapping of soil drainage re-
sulted from these two approaches, respectively.

The study showed that, within-field soil drainage could be
effectively mapped using high-resolution optical and C-Band
radar remote sensing data, and apparent soil electrical conductivity
data acquired under bare soil conditions. Topographic variables
derived from high-resolution DEM had a lower discriminating
ability in this study when used alone. Most probably it is because
the study fields are relatively flat with limited variability in the
topographic variables. However, when combined with the other
datasets, topographic variables could improve drainage classifica-
tion. The results showed that the sample-lead classification of
remote sensing data could be used to predict soil drainage classes.
This potentially provides an alternativeway to themore traditional
soil field survey, which usually requires more resources especially
to meet the requirements of precision agriculture. On the other
hand, the proposed canonical analysis provides an opportunity to
map soil drainage on a continuous basis, revealing the continuous
variation of many soil conditions.

The approaches developed in this study were based on ground
truthing and statistical analysis rather than on a physical model.
The results cannot be applied to a different environment without
performing a proper calibration. However, the proposed metho-
dology for mapping detailed soil information using remotely
sensed data could be applied to other areas to reduce the effort in
field soil surveys. Impacts from other factors, such as vegetation,
surface roughness, agriculture land use and variable crop residue
conditions were not evaluated, although they could influence the
efficiency of mapping soil drainage using remote sensing data. A
preliminary stratification procedure should be considered in
further study to fully investigate the impact of these agro-
environmental factors for soil drainage mapping.
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