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ABSTRACT-A growing number of studies have focused on evaluating vegetation indices in terms of their 
sensitivity to vegetation biophysical parameters as well as to external factors affecting canopy reflectance. In 
this context, leaf and canopy radiative transfer models have provided a basis for understanding the behaviour 
of such indices, particularly their resistance to external perturbing effects related to soil background, 
illumination, and atmospheric conditions. But, so far no studies have thoroughly assessed the impact of leaf 
chlorophyll concentration changes on the ability of spectral indices to predict green leaf area index (LAI). 
Because the variables LAI and chlorophyll content have similar effects on canopy reflectance in the visible 
and red edge portions of the solar spectrum, there is a need to uncouple these effects in order to accurately 
assess each of these variables. In the present work we used PROSPECT and SAILH models to simulate a wide 
range of crop canopy reflectances which were used to study the sensitivity of a set of vegetation indices to LAI 
variability. The aim of the paper was to present a method for minimizing the effect of leaf chlorophyll content 
on the prediction of vegetation green LAI, and to propose an index that adequately predicts the LAI of crop 
canopies. Accordingly, we have developed new algorithms that proved to be the best predictor of green LAI 
with respect to potentially confounding leaf chlorophyll concentration effects. The technique has been 
validated using CASI hyperspectral reflectance images acquired on different dates (1999, 2000, 2001), over 
fields with various crops (corn, wheat, and soybean) at different growth stages, containing plots with various 
fertilization treatments. Maps of predicted LAI were generated and corresponding statistics were compared to 
ground truth data. Evaluation of predictions revealed good agreement with field measurements.  

 

 

1  INTRODUCTION  

Green leaf area index (LAI) is one of the canopy 
parameters that plays a major role in vegetation 
physiological processes, and ecosystems functioning; 
it has been frequently used by agronomists and crop 
physiologists to assess crop conditions and growth.  Its 
estimation from remote sensing data has motivated the 

development of various approaches and techniques for 
LAI mapping at local, regional, and global scales 
(Baret and Guyot, 1991; Daughtry et al., 1992; Chen 
et al., 2002; etc.). While some studies have focused on 
model inversion (Jacquemoud et al., 2000), and 
spectral mixture analysis (Hu et al., 2002; Peddle and 
Johnson, 2000; Pacheco et al., 2001), others have 
expended considerable effort to develop relationships 
between green LAI and spectral vegetation indices 
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(Spanner et al., 1990; Chen and Cihlar, 1996; 
Fassnacht et al., 1997). Though these indices were 
well correlated with green LAI, studies have 
demonstrated that they were as well very responsive to 
other vegetation descriptors such as canopy cover, 
chlorophyll concentration and absorbed 
photosynthetically active radiation (Broge and 
Leblanc, 2000; Broge and Mortenson, 2002; Daughtry 
et al., 2000; Gitelson et al., 2001; Haboudane et al., 
2002a). Consequently, to meet the requirements 
related to prediction accuracy and consistency, there is 
a need for the design of specific spectral indices that 
are ideally sensitive exclusively to a vegetation/canopy 
descriptor of interest. For instance, Daughtry et al. 
(2000) and Haboudane et al. (2002) have each 
suggested index-based approaches to estimate leaf 
chlorophyll content with minimal confounding effects 
due to LAI. 

The objective of the present study is to evaluate 
the potential of selected spectral indices in terms of 
quantifying green LAI of crop canopies. Indices were 
assessed regarding their sensitivity to chlorophyll 
concentration changes, and their linearity and 
saturation with green LAI increase. As a part of the 
study, a new index is suggested and its LAI 
predictions are compared to ground truth data. 

 

2  DATA COLLECTION AND PROCESSING  

The study area is located near Ottawa, Canada at the 
former Greenbelt Farm. Over three successive years, 
different crops (soybean, corn, wheat) were grown on 
a 30-ha field with a drained clay loam soil as well as 
on adjacent fields operated by a private producer. The 
experiments consisted of dividing the main field into 
four regions receiving various nitrogen treatments: 
100% of the recommended fertilization (155 kg ha-1) 
over a flat region, 100% of recommended nitrogen 
over a region with a gentle topographic slope, 60% of 
the recommended rate, and no nitrogen application 
(0%). They were thus laid out to promote development 
of remote sensing techniques for detection of plant 
stresses in precision agriculture, particularly stresses 
due to nitrogen deficiency, water deficit, and 
topographic influence. Within each region, a grid of 
georeferenced points spaced every 25 m was 
established on a representative section of 150 m x 150 
m These locations were used to monitor crop 
biophysical parameters during the growing season, 
particularly during intensive field campaigns 
coinciding with image acquisition. Details on the 
experimental site are presented in Pattey et al. (2001).  

Hyperspectral images were acquired by the 
Compact Airborne Spectrographic Imager (CASI), 
operated by the Centre for Research in Earth and 
Space Technology (CRESTech). Simultaneously, a set 

of field and laboratory data were collected for 
biochemical and geochemical analysis, along with 
optical and biophysical measurements. Ground truth 
measurements included: (i) collection of leaf tissue for 
laboratory determination of leaf chlorophyll 
concentration, (ii) crop leaf reflectance and 
transmittance measurements using an integrating 
sphere (Li-Cor model 1800-12) coupled with a single 
mode optical fibre to a spectrometer (GER1500, GER, 
Millbrook, NY), (iii) chlorophyll meter (Minolta 
SPAD 502) measurements, (iv) leaf area index (LAI) 
measurements using the Plant Canopy Analyzer (Li-
Cor model LAI-2000) and an area meter (LI-3100, Li-
Cor, Lincoln, NE), and (v) crop growth measures. 

During 2000 and 2001 growing seasons, CASI 
hyperspectral images were collected in three different 
deployments, using two modes of operation: the 
multispectral mode, with 1 m spatial resolution and 7 
spectral bands suitable for sensing vegetation 
properties (489.51, 554.98, 624.63, 681.42, 706.12, 
742.31, and 776.69 nm); and the hyperspectral mode, 
with 2 m spatial resolution and 72 channels covering 
the visible and near infrared portions of the solar 
spectrum from 408 to 947 nm with a bandwidth of 7.5 
nm. Acquisition dates were planned to coincide with 
different phenological development stages, providing 
image data covering the earliest, middle and latest 
periods of the growth season.  

The hyperspectral digital images collected by 
CASI were processed to at-sensor radiance using 
calibration coefficients determined in the laboratory by 
CRESTech (Centre for Research in Earth and Space 
Technology). Then the CAM5S atmospheric 
correction model (O’Neill et al., 1997) was used to 
transform the relative at-sensor radiance to absolute 
ground-reflectance. To perform this operation, an 
estimate of aerosol optical depth at 550 nm was 
derived from ground sun-photometer measurements. 
Data regarding geographic position, illumination and 
viewing geometry as well as ground and sensor 
altitudes were derived both from aircraft navigation 
data recordings and ground GPS measurements. 

Reflectance curves derived from processed CASI 
images showed the presence of spectral anomalies 
associated with atmospheric absorption features at 
specific wavelengths. Although we applied model-
based atmospheric corrections, the calculated 
reflectances are still affected by spectrally-specific 
errors owing mostly to an under-correction of some 
atmospheric components effects (oxygen and water 
vapour absorption). These imperfections in reflectance 
data cube retrieval are a problem common to 
hyperspectral systems due to limitations in the 
performance of atmospheric correction models and to 
variations across the detector array in nominal imager 
characterisations in spectral registration and 
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bandwidth. The flat field calibration is a correction 
technique used to remove the residual calibration-
induced noise and atmospheric effects from 
hyperspectral reflectance image cubes. Its aim is to 
improve overall quality of spectra and provide 
apparent reflectance data that can be compared with 
laboratory spectra (Boardman, and Huntington, 1996). 
It requires the presence, and identification in images of 
spectrally-flat uniform areas where the spectral 
anomalies can be unambiguously attributed, in narrow 
spectral ranges, to atmospheric effects and the solar 
spectrum. In CASI images, these features were 
observed over asphalt and concrete areas within the 
same image where the reflectance spectra are assumed 
to be flat or nearly flat over these features. Using 
signatures of such scene elements, we calculated 
coefficients that adequately compensated for the 
effects of atmospheric water and oxygen absorption. 
After those coefficients were applied to the entire 
image, but only in the specific spectral ranges affected, 
we checked the signatures of different components of 
the image and found that observed residual features 
have been successfully removed. 

 

4  LAI AND CHLOROPHYLL EFFECTS ON 
CANOPY REFLECTANCE  

The chlorophyll content effect on canopy reflectance 
is presented in Figure 1 for a preliminary analysis of 
SAILH simulated spectra. It shows reflectance 
differences induced by changes in leaf chlorophyll 
concentration (5 – 70 µg cm-2) for a known medium 
LAI (=3). The relative spectral difference is performed 
between spectra representing various chlorophyll 
contents and the spectrum corresponding to   50 µg 
cm-2. Wavelength regions that are the most sensitive to 
leaf pigment variability are centered on 550 nm in the 
green and 715 nm in the red edge. The narrow peak 
observed at 715 nm seems to be shifted to longer 
wavelength when leaf chlorophyll concentrations 
increase. This corresponds to the transition from 
chlorophyll absorption processes in the red 
wavelengths to within-leaf scattering in the near-
infrared region (Munden et al., 1994). In fact, an 
increase of chlorophyll content induces a broadening 
of chlorophyll absorption feature in the red (670-680 
nm) and, therefore, moves the red-edge position to 
longer wavelengths (Daughtry et al., 2000) as seen on 
Figure 1. The relatively wide window of sensitivity to 
pigment variation in the green is due to the canopy 
reflectance decrease generated by the increase in leaf 
chlorophyll concentration. 

 

3  CANOPY REFLECTANCE SIMULATIONS 

Leaf optical properties were simulated using the 
PROSPECT model (Jacquemoud and Baret, 1990; 
Jacquemoud et al., 1996), which simulates upward and 
downward hemispherical radiation fluxes between 400 
and 2500 nm, and relates foliar biochemistry and 
scattering parameters to leaf reflectance and 
transmittance spectra. It requires the leaf internal 
structure parameter N, the chlorophyll a + b content 
Cab (µg cm-2), the equivalent water thickness Cw (cm), 
and the leaf dry matter content Cm (g cm-2) to 
determine leaf reflectance and transmittance signatures 
in the optical domain. 

In contrast, major LAI effects on canopy 
reflectance occur around 685 nm and beyond 740 nm 
(Figure 2). Unlike chlorophyll concentration, LAI 
generates weak variations of reflectance spectrum at 
550 nm and at 720 nm. It can be seen that high 
differences in the red region (685-690 nm) are 
observed only for low LAI values (0.1, 0.5, and 1.0). 
This phenomenon could be associated with the 
influence of non-photosynthetic materials and dry 
biomass on canopy reflectance when green biomass 
represents a relatively small proportion. The major 
variations induced by LAI in the near-infrared are due 
to the canopy structural development and multiple 
scattering which is particularly important at these 
wavelengths. Based on these simulations, it can be 
seen that chlorophyll interactions with radiation are 
limited to the optical domain ranging from 400 nm to 
725 nm, while LAI influences are observed over the 
red and near-infrared portions. Their combined effects 
occur over the red edge region where LAI and 
chlorophyll density increasely contribute to the shift of 
the red edge position. 

Canopy reflectance spectra were simulated using 
a variant of the SAIL (Scattering by Arbitrary Inclined 
Leaves) model (Verhoef, 1984) called SAILH. It was 
adapted to take into account the hotspot effect or the 
multiple scattering in the canopy (Kuusk, 1985). It is a 
turbid-medium model that approximates the canopy as 
a horizontally uniform parallel-plane infinitely-
extended medium, with diffusely reflecting and 
transmitting elements. Typical SAILH inputs are: 
canopy architecture defined by the leaf area index 
(LAI) and the leaf angle distribution function (LADF), 
leaf reflectance and transmittance spectra for given 
chlorophyll content per unit area, underlying soil 
reflectance, and the illumination and viewing 
geometry (solar zenith and sensor viewing angles). 
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Figure 1   Relative canopy reflectance differences (difference between spectra representing various chlorophyll contents 

and the spectrum corresponding to 70 µg cm-2) for an LAI of 3. In the legend, Chl40-70 represents the difference 
between spectra corresponding to chlorophyll contents 40 and 70 µg cm-2. 
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Figure 2   Relative canopy reflectance differences (difference between spectra representing various LAI values and the 

spectrum corresponding to LAI = 12) for a chlorophyll content of 35 µg cm-2. In the legend, LAI_04-12 
represents the difference between spectra corresponding to LAI values 4 and 12. 

 
 

5  LAI ESTIMATION: MODELLING AND 
PREDICTION  

Different techniques have been developed in order to 
improve green LAI estimation over large areas, mainly 
through the use of spectral indices, model inversions 
(Jacquemoud et al., 2000), and spectral mixture 

analysis (Hu et al., 2002; Peddle and Johnson, 2000; 
Pacheco et al., 2001). The widely used approach was 
to establish relationships between ground-measured 
LAI and vegetation indices (Spanner et al., 1990; 
Chen and Cihlar, 1996; Fassnacht et al., 1997). 
Consequently, a large number of relationships were 
developed, with a wide range of determination 
coefficients (0.05 < r2 < 0.66) between satellite-
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derived spectral indices and LAI (Baret and Guyot, 
1991; Chen, 1996; Brown et al., 2000). 

Several optical indices have been reported in the 
literature and have been proven to be well correlated 
with various vegetation parameters such as LAI, 
biomass, chlorophyll content, and photosynthetic 
activity. Efforts focused on improving vegetation 
indices and rendering them insensitive to variations in 
illumination conditions, observing geometry, and soil 
properties. Thus, the performance and the suitability of 
a particular index are generally determined by its 
sensitivity to a characteristic of interest. Consequently, 
only a few of the most common vegetation indices 
were presented in this paper aiming to study leaf 
chlorophyll concentration effects on LAI predictions. 

Their formulae and references are provided in Table 1 
below where G, R and NIR denote canopy reflectance 
in the green (550 nm), red (670 nm), and near-infrared 
(800 nm), respectively. A detailed discussion on some 
spectral indices can be found in Zarco-Tejada (2000), 
Broge and Leblanc (2000) and Haboudane et al. 
(2002a). 

Evaluation of the performance of these indices 
was based on canopy reflectance spectra simulated 
with the radiative transfer models PROSPECT and 
SAILH. It was conducted with consideration of the 
following criteria:  index sensitivity to chlorophyll 
effects, its saturation level when LAI increases, and 
the linearity of its relationship with LAI. 
 

 

Table 1  Information about the spectral indices evaluated in the present research. 

 

Acronym Name Formula Reference 

NDVI Normalized difference vegetation 
index 

)()( RNIRRNIR +−  (Rouse et al., 
1974) 

MSAVI Modified second soil-adjusted 
vegetation index [ ] )(*8)1*2(1*2

2
1 2 RNIRNIRNIR −−+−+ (Qi et al., 1994) 

MCARI1 Modified chlorophyll absorption 
ratio index 

[ ])(*2.0)(*2 GNIRRNIR −−−  (Haboudane et 
al., 2002a) 

MCARI2 Modified second chlorophyll 
absorption ratio index 

[ ]
)**8.0(

)(*52.0)(*9.1*35.1
RRNIRNIR

GNIRRNIR
++

−−−  (Haboudane et 
al., 2002a) 

 

6  RESULTS AND ANALYSIS  

 
To understand the chlorophyll effect on LAI 
estimation from reflectance data, we plotted spectral 
indices against green LAI as a function of chlorophyll 
concentration (Figure 3). For each index, the number 
of the curves expresses the variation of chlorophyll 
content from 10 to 100 µg cm-2 with an increment of 5 
µg cm-2. As a preliminary analysis, it can be seen that 
all indices behave logarithmically rather than linearly 
with LAI. NDVI and MSAVI show a similar 
resistance to chlorophyll content changes, with clear 
sensitivity only to chlorophyll concentrations in the 
lower range (10 to 25 µg cm-2). The main difference 
between these two indices is that NDVI reaches a 

saturation level when LAI exceeds 2, while MSAVI 
shows a better dynamic response even extending to 
high LAI levels (up to 6) (Figure 3). The best 
behaviour in terms of both insensitivity to pigments 
variation and responsivity to LAI changes is given by 
MCARI1 and MCARI2. They offer the advantage of 
being the most resistant to chlorophyll changes and the 
least sensitive to the saturation phenomena. Indeed, 
MCARI1 and MCARI2 have almost unique 
relationships with green LAI independent of 
chlorophyll content changes. Because it has the 
advantage of including a soil adjustment term, 
MCARI2 was used to develop a predictive equation 
for estimation of canopy green LAI based on these 
model simulations for use with remotely sensed data. 
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Figure 3  Effects of chlorophyll content on the relationships 

between spectral indices and green LAI. Application 
to canopy reflectance simulated using PROSPECT 
and SAILH. The curves correspond to various 
chlorophyll contents ranging from 5 to 100 µg cm-2 
in steps of 5 µg cm-2. 

 
For analyses of the linearity between spectral indices 
and green LAI, real reflectance data were extracted 
from CASI hyperspectral images. The latter were 
acquired in intensive field campaigns carried out in 
1999, 2000, and 2001 over soybean, corn and wheat 
canopies. Indices under evaluation in this study were 
calculated from these data, then, plotted against the 
NIR reflectance as shown in Figure 4. The choice of 
NIR reflectance is due to the fact that above-canopy 
reflectance in the NIR is drastically affected by 
vegetation structural changes rather than by pigments 
concentration variations (Figures 1 and 2). 

As can be seen in Figure 4, vegetation indices 
show different trends when plotted as a function of 
NIR reflectance. NDVI offered the weaker dynamic 

range, and saturated quickly with the increase of NIR 
reflectance. In contrast, MSAVI and MCARI2 
appeared to be more sensitive to NIR reflectance 
changes, however, their behaviour is characterised by 
a gentle asymptotic trend at high NIR reflectance 
values. The overall best linear relationship is offered 
by MCARI1, but further analyses have shown that it 
results in an overestimation at high LAI values. 
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Figure 4   Relationships between evaluated spectral indices 

and the near-infrared (NIR) reflectance from CASI 
hyperspectral images collected over various crops. 

 
A predictive relationship has been established to make 
green LAI estimations as a function of MCARI2 
(Figure 5). The overall best fit was given by an 
exponential curve with a coefficient of determination 
(r2) exceeding 0.98. One can see that, for a wide range 
of chlorophyll concentrations (15 to 100 µg cm-2), 
there is a unique relationship between MCARI2 and 
green LAI. A corresponding predictive equation has 
been retrieved and successfully applied to CASI 
hyperspectral images to map green LAI status over 
agricultural fields seeded with corn, wheat, and 
soybean (Figure 6). Results of comparison between 
estimates using remote sensing and measurements in 
the field and laboratory are summarised in Table 2 
below. 
 
Table 2 Comparison estimated-measured LAI: determination 
coefficient and RMSE. 
  

Crop Determination coeff. (r2) RMSE 
Corn 
Wheat 
Soybean 

0.82 
0.92 
0.96 

0.87 
0.76 
0.87 
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Figure 5   Relationships between Green LAI and MCARI2, 

for chlorophyll content varying from 15 to 100 µg 
cm-2 and green LAI ranging from 0.3 to 7. 

 
Spatial distribution of green LAI in corn, wheat, and 
soybean canopies is illustrated by the map in Figure 6. 
It represents the early growth stage as observed during 
the first intensive field campaign in summer 2001 
(June 13). It shows two important features: (i) growth 
differences between fields of corn, wheat, and 
soybean, and (ii) effects of soil texture, topography, 
and fertilization on wheat conditions. Indeed, at this 
early stage, wheat has reached an advanced growth 
level, with LAI ranging from 0.2 to 7, in comparison 
to corn and soybean with LAI values not exceeding 
0.4. LAI variability within the wheat field is controlled 
by nitrogen treatments, soil texture, and drainage 
conditions. Thus, high LAI levels observed in the 
north-eastern portion of the field (reddish tones) are 
associated with high nitrogen supply and the presence 
of a sandy soil, while low LAI values (blue and cyan 
tones) present in the north-western portion of the field 
result from deleterious topographic effects.  Lack of 
nitrogen supply caused the low LAI levels (cyan, 
bright green tones) encountered in the south-western 
portion of the field.  
 
 
7  CONCLUSION 
 
The study presented in this paper has focused on 
developing a remote sensing approach to estimate 
green LAI of crop canopies, with minimum effects 
from chlorophyll concentration variations. Estimates 
based on modeling (PROSPECT & SAILH) and 
indices-based approach have shown that the pattern of 
crop LAI had responded to the spatial variability of 
various surface attributes such as: soil texture, 
topography features, soil nitrogen content. The 

research has demonstrated the potential of airborne 
CASI reflectance data for detecting and characterizing 
the spatial heterogeneity of LAI of interest to precision 
agriculture. Moreover, it has shown the important role 
of linked leaf-canopy models (PROSPECT and 
SAILH used in this case) in developing and testing 
various spectral indices, as well as understanding 
effects of key vegetation biochemical and structural 
parameters on canopy reflectance. 
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Figure 6    Map of green LAI determined with 
MCARI2-based algorithm from a 
CASI hyperspectral image. 
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