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Abstract. LAI is retrieved from directional and hyperspectral observations by numerical inversion of 

coupled leaf and canopy radiative transfer models. In this research the inversion method is applied to 

airborne hyperspectral and multi-view-angle DAIS data (Digital Airborne Imaging Spectrometer) 

acquired over an intensively-managed poplar plantation. The effects of LAI and leaf Mean Tilt Angle 

(MTA) interactions are discussed and the magnitude of the error in LAI estimation associated with 

fixing the MTA to its mean value is provided by an uncertainty analysis of the inversion method. The 

effects of the background spectral signature are discussed and a technique for background assignment 

is proposed. Inversion method results are assessed comparing LAI estimates with field measurements 

and compared to VI-based semi-empirical regression model results. 



1 Introduction 

 

Vegetation plays a major role in land surface ecosystem functioning and Leaf Area Index (LAI) is a 

key biophysical parameter that describes synthetically vegetation development and vigour. LAI is 

required, as a driving variable in many models that estimate the water and carbon exchanges between 

vegetated ecosystems and the atmosphere, i.e. SVAT schemes (Soil Vegetation Atmosphere Transfer), 

and BGC simulation models (BioGeochemical Cycle). The knowledge of the temporal and spatial 

variability of this parameter is of great interest for the application of such models. RS  (Remote 

Sensing) might provide an accurate estimate of LAI, repeatable, and spatially distributed. 

 

The properties of vegetated surfaces are usually estimated from remote observations through semi-

empirical regression models (e.g. Dawson, 2000). Such models use statistical relationships in which a 

limited number of in situ measurements of the biophysical parameter examined are usually correlated 

with a spectral vegetation index (e.g. Rondeaux, 1995). The robustness of these relationships is 

influenced by many factors: the contribution of background reflectance, the structural and biochemical 

canopy characteristics (foliage elements orientation and aggregation, branch contributions, vegetation 

vertical stratification, the spatial variability of leaf chlorophyll and water content), and finally the 

viewing geometry. 

 

An alternative to the semi-empirical approach is offered by the use of radiative transfer models, which 

simulate the interactions of solar radiation with the vegetated medium, reconstructing the reflectivity 

both at leaf and canopy levels. 

 

The use of such models in inverse mode consists of numerically minimizing the difference between 

remote observations and the spectral reflectances modelled for a set of biophysical parameters of 

interest. This technique allows the estimation of both biochemical and structural parameters in 

predictive mode, without requiring parameterisation (Bicheron and Leroy, 1999; Jacquemoud, 1993). 

 



The capability to acquire nearly contemporary observations with different view angles, offered by 

airborne sensors and new generation satellite sensors (e.g. MISR, CHRIS-PROBA), is expected to 

improve the accuracy of vegetation structural parameter estimation (Verstraete and Pinty, 2001). In 

fact, given that the interaction of the radiation with the physical medium generates an anisotropic field 

of reflectivity, it is possible to describe the vegetation parameters that control this interaction (e.g. 

LAI) from the variation of reflectivity observed at different view angles. 

 

2 Study area 

 

The experiment was conducted in an intensively-managed poplar plantation located in an area 

periodically subjected to flooding, with variable hydrological conditions, reflecting cut-off meanders, 

and causing differences in standing biomass within even-aged plantations.  

[Figure 1] 

The study area (figure 1) is located North-East of the city of Pavia on the west bank of the Ticino river 

and it’s representative of an intensive poplar plantation (I-214 clones, spacing 6 x 6 m) of about 120 

ha. The plantation, composed by different stands with tree age ranging from two to ten years, is a 

permanent experimental site of CARBOEUROFLUX net managed by IES-JRC (Ispra, Italy). 

 

3 Data collection 
 
3.1 Field measurements 

 

An intensive field campaign was conducted for measuring a set of parameters that are summarized in 

table 1. 

[Table 1] 

Overstory LAI and mean tilt angle (LAIo, MTA) were estimated with Li-Cor LAI2000-PCA. Due to 

the relatively small area of the poplar stands the analysis of gap fractions was limited to four rings (Li-

Cor, 1992). Such indirect measurements supply, more properly, an estimate of an effective LAI of the 

overstory (ePAI, effective plant area index, including stems and branches). 



Neglecting the effects of the non-random distribution of the foliage (with clumping index Ω close to 1 

in broadleaf canopy), the only correction applied was to remove the contribution of stems and 

branches by repeating the measurements in winter-time (no foliage present), thus measuring a stem 

area index (SAI), and then subtracting this value (SAI) from ePAI. This corrected estimate, egLAIo 

(effective green LAI of the overstory), will be referred to as gLAIo in of the remainder of  this paper. 

 

3.2 RS data 

 

On 20/06/01, from 10.30 to 11 a.m. (local solar time), 4 and 3 stripes were acquired by DAIS (Digital 

Airborne Imaging Spectrometer) and ROSIS (Reflective Optics System Imaging Spectrometer) sensors 

(DLR-Germany), respectively. Geometric parameters of the data take and spectral characteristics of 

the sensors are reported in table 2 and figure 2. Flight-lines (figure 3) were designed with the aim of 

maximizing the number of DAIS directional observations (in the principal solar plane) of the target 

area. 

[Table 2] 

[Figure 2] 

Three parallel stripes along the orthogonal solar plane and one along the principal solar plane were 

acquired. 

[Figure 3] 

Processed RS data were provided by DLR using ATCOR4 (Richter, 2000) at the correction level 2b. 

The atmospheric correction (based on MODTRAN4 code, Berk et al., 1989) considered the effects of 

angular dependence of the atmospheric radiance and transmittance, and the aerosol contributions 

(estimated through ground photometric measurements collected during the overpass).  

 

4 Inversion of radiative transfer models 
 

Radiative transfer models used in this work are the canopy reflectance model SAILH (Verhoef, 1984, 

modified after Kuusk, 1991) and the leaf optical properties model PROSPECT (Jacquemoud and 

Baret, 1990). 



 

4.1 Definition of inversion strategy and minimization algorithm 

 

PROSPECT and SAILH model coupled (PROSAILH in the following) were inverted on hyperspectral 

and directional DAIS data. Spectral reflectance was averaged over a spatial window of 3x3 pixels in 

order to remove canopy cover discontinuities. All the available directional observations for every 

pixel (ranging from 2 to 4) were used simultaneously in the inversion process. Among the set of the 

parameters, two were fixed to a nominal value: N, the leaf structure parameter (PROSPECT) and 

MTA (SAILH). The N nominal value was set to 1.33 as estimated by PROSPECT inversion on leaf 

reflectance and transmittance spectra (Meroni et al., 2002). MTA was set to its measured mean value 

(for a discussion on the error committed see the paragraph 4.3, Effect of LAI and MTA interaction).  

 

The spectral domain of the merit function was selected from the available DAIS bands. Some bands 

were discarded due to noise and the spectral domain selected was: 808-923nm ∪ 1020-1033nm ∪ 

1541-1639nm ∪ 1995-2291nm. In the inversion process the merit function (∆2) was defined as 

follows: 

 

∆2 = ΣdoΣλ [Robs(VA,λ)- Rmod(VA,λ,P)]2    (1) 

 

where, 

- Σdo refers to the summation over the available directional observations; 

- Σλ refers to the summation over the wavelengths of the merit function spectral domain; 

- Robs(VA,λ) is the observed reflectance for a given view angle (VA) and wavelength (λ); 

- Rmod(P) is the modelled reflectance for a given view angle, wavelength and set of model parameter 

(P). 

A quasi-Newton algorithm (NAG library, routine E04YAF) was used to minimize the merit function.  

 

4.2 Effect of the background spectral signature 



 

Part the poplar canopy present in the study area is characterised by a layer of understory vegetation 

that varies in species composition and density as a function of ecological conditions at ground level 

(soil type and humidity, radiation, time since the last tillage, etc.). In order to study the effect of this 

vegetated understory, two test areas (24m x 24m each, table 3) were selected with different forest 

structural conditions, and tilled few days before the overpass to completely remove the understory. 

[Table 3] 

The effect of the background is shown by two radiometric transects, test areas A and B, collected over 

the tilled areas and the nearby non-tilled areas (figure 4): along each profile the gLAIo is constant (as 

well as other general ecological conditions of the canopy) and thus the source of variation in canopy 

reflectance is due to the influences of different backgrounds (bare soil for the tilled area and 

understory vegetation for the untilled). 

[Figure 4] 

The transition from the tilled to untilled areas causes the reflectance to increase at 810 nm and to 

decrease at 1573 and 2122 nm because the reflectance of a vegetated background is higher than the 

reflectance of a bare soil in the NIR plateau and lower in the MIR wavelengths (the difference in NIR 

reflectance is limited in this case because the dry soil present displayed a high reflectance in this 

region). 

This “understory effect” was also found when inverting PROSAILH on those reflectances resulting 

from a mixture of canopy and underlying understory, yielding an overestimation of gLAIo when a soil 

spectral signature was provided to the model as the background signature. 

 

Providing the inversion with the proper background signature (collected in-field with a 

spectroradiometer, ASD-FieldSpec Pro) resulted in more accurate gLAIo estimation in all sites where 

a field spectrum was available. A further analysis of the dataset (gLAIo, field spectra and inversion 

estimates) showed that the LAI retrieval procedure accuracy is not compromised if only the type of 

background signature provided in terms of broad categories: bare soil, sparse understory vegetation 

and dense understory vegetation (see paragraph 5, Inversion results). 

 



In order to automatically extract this information (type of background) from RS images a neural 

network (NN) approach (e.g. Binaghi et al., 2000) was used to produce a map of the background. NN 

is able to integrate the contextual information of a high geometric resolution panchromatic image 

generated from ROSIS data with the spectral information of a selection of lower geometric resolution 

hyperspectral bands from DAIS (figure 5). 

[Figure 5] 

Below the canopy crowns, different micro-climatic conditions (radiance, moisture, and wind regime; 

soil type, etc.) determine the presence of diverse vegetated understory. These local conditions 

influence, and are partially controlled by, the structural characteristics of forest stands such as canopy 

closure, crown radius, trees density, etc. 

The use of ROSIS high-resolution imagery (1 m pixel size) allowed taking into account these forest 

characteristics; whereas the hyperspectral information provided by DAIS sensor allowed the 

recognition of the vegetated understory presence and vigour (in terms of density classes). 

 

4.3 Effect of LAI and MTA interaction 

 

The analysis of a preliminary set of inversions (data not shown) evidenced that LAI and MTA were 

not easily separable. Even if the hot spot parameter (sl) is not totally independent from LAI and MTA 

as well (Jacquemoud et al., 1995), this seems to be a minor problem when a set of directional 

observations is available.  

 

A possible solution to the LAI-MTA interaction problem is to estimate separately the parameters of 

interest introducing constraints such as the knowledge of one parameter (Jacquemoud, 1993). An 

uncertainty analysis was performed in order to quantify the magnitude of the error in LAI retrieval 

introduced by fixing, in the inversion process, the MTA to its field mean value calculated from 

LAI2000 measurements. 

The goal is to provide information concerning the effect of fixing MTA (an ellipsoidal leaf angle 

distribution was used in the model) on the accuracy of LAI estimation by generating a set of canopy 

spectral signature using the model in direct mode with variable input parameters (including MTA) for 



3 levels of LAI (representing the range measured in field LAI=1,2,3 m2m-2) and afterward inverting 

the model with a fixed MTA on the generated set of spectra. 

The uncertainty analysis was performed using SimLab (SimLab 1.1, 2001), software capable of global 

quantitative analysis, designed for Monte Carlo analysis. 

The selection of ranges and distributions of input factors for Monte Carlo execution was based on the 

analysis of the field measurement dataset, literature, design of the inversion procedure, design of the 

airborne overflight (for sun and view angles). The sample set (50 arrays of input factors) was created 

with a stratified sampling method (latin hypercube sampling) in order to achieve a better coverage of 

the sample space of the input factors. Each element of the sample set created is supplied to the 

PROSAILH as input, and the model is run in direct mode 50 times for each level of LAI value 

considered. The results of each model evaluation are used as input in the inversion of PROSAILH: 

two input parameters, N and MTA, are assigned to their mean value, while the remaining is kept free. 

LAI estimated by inversion is the model outcome that is used for uncertainty study.  

 

Even if significant errors arise from the largest LAI value considered, an analysis of the error in LAI 

estimation as a function of the deviation of the assigned MTA from the true MTA (figure 6) reveals 

that, in the range of one SD of the measured MTA the error is limited (table 4). 

[Figure 6] 

[Table 4] 

 

5 Inversion results  

Our results show that, supplying a plausible background signature to the inversion, PROSAILH 

provides an accurate estimation of the green LAI of the overstory (gLAIo). The accuracy of the 

estimates was evaluated in terms of SDEP (Standard Deviation Error in Prediction) calculated on the 

basis of all the available LAI field measurements in the test area (n=35). Different strategies were 

explored in order to assign a background spectral signature to each inversion (table 5). 

[Table 5] 

 



The accuracy of each strategy (ordered on the X axis by increasing elaboration and sampling cost) is 

reported in figure 7 together with a description of the available dataset of LAI field measurements. 

[Figure 7] 

 

It is worth noting that the “exact” strategy is an abstraction representing the best accuracy obtainable 

with such approach and that it’s not operatively applicable (all the background types were assigned 

according to the in-field inspection).  

Nevertheless, the accuracy provided by the other strategies seems reasonable for most of the 

environmental applications (e.g. SVAT and BCG modelling). 

 

6 A comparison with semi-empirical regression models 

 

A number of studies demonstrated that it is possible to obtain LAI estimations through statistical 

regressions based on optical vegetation indices (VIs) obtained from remote sensing data of various 

kinds (Franklin, 1986; Spanner et al., 1990; Fassnacht et al., 1997). These relationships are formalized 

in different analytical expressions with coefficients largely conditioned by the type of vegetation 

examined and by the local environmental conditions (Chen et al., 1997; Turner et al., 1999). Among 

all the proposed LAI-VIs relationships we will refer to the widely-used LAI-NDVI regression model. 

 

A comparison of the performances of PROSAILH and semi-empirical LAI-NDVI regression models 

in estimating the overstory green LAI is rather difficult. These approaches are different in “nature”: 

PROSAILH being predictive (no in situ calibration is needed) while regression models need for 

calibration by definition. Moreover, NDVI is related to the total green LAI (overstory+understory) 

whereas PROSAILH seems able to isolate the overstory contribution when a plausible background 

spectral signature is provided. 

 

Regression estimations should be accurate when the proportion between overstory green LAI and total 

green LAI of the samples used in calibration is of the same magnitude as that included in the samples 

on which the regression is applied in prediction. Further it is necessary that the variance of the factors 



(other than LAI) controlling the spectral response of the canopy (e.g. soil reflectance, leaf 

biochemistry) is fully accounted for in the calibration set.  

 

PROSAILH estimates, on the other hand, should be reliable when the hypotheses of the model are 

met, i.e. the canopy can be represented by a turbid medium. Assuming that the model hypotheses are 

satisfied, that a single regression may be used to estimate LAI in the study area, and that 

measurements are not affected by random errors, the following exercise was designed in order to 

compare the accuracies (SDEP) of PROSAILH and a typical LAI-NDVI regression model (DAIS data 

from flightline in the principal solar plane were used). SDEP was calculated as follows: the set of 

available LAI field measurements (n = 35) was divided in two subsets: one for the regression 

coefficients computation (70% of the measurements) and the other one to test the regression (SDEP 

computation). Then, in order to simulate a number of possible in situ LAI planning scheme strategies, 

21 arrays of k samples (with k ranging form 4 to the total number of available measurements, 25) 

were extracted from the first subset. Each array of this set was then used to calibrate the regression (a 

logarithmic relationship between NDVI and gLAIo, showing the highest coefficient of determination, 

was used). The SDEP of the regression was then calculated on the testing set. The process was 

repeated 50 times to explore the variability of the accuracy as a function of the particular sample 

chosen. 

 

Each sample extraction (including the testing set) was performed by a stratified sampling method in 

which the samples were chosen randomly ensuring the coverage of the sample full range, simulating 

the condition of a priori knowledge of LAI variability that is not always achievable in field. The 

results of this exercise are shown in figure 8. 

[Figure 8] 

Regressions show a large SDEP variation when they are calibrated using a limited sample number. 

This is due to the proportion of green LAI overstory/green LAI not included in the calibration set 

dynamically considered, together with the soil reflectance and leaf biochemistry variability, etc. Such 

calibration sample set may indeed be, or not be, representative of the variability present in the testing 

set. When the number of sample used in regression calculations is increased, a lower SDEP variation 



is observed, indicating that regression predictions are insensitive to the composition of the particular 

sample used. 

 

The magnitude of the reduction in SDEP variation for increasing number of sample (note that is 

obviously 0 when all 25 samples are used) represents a trend that cannot be generalized because the 

population variance (the total variance) might not be fully explained by the presented sample variance. 

Thus, a safe threshold on the number of measurements to be taken in field cannot be deduced. 

 

6 Conclusion 

 

In this work, coupled PROSPECT and SAILH models were inverted to estimate the leaf area index 

with an acceptable accuracy. Some strategies for minimizing the effect of a rather varying understory 

were tested: the availability of a background map seems crucial to the LAI retrieval accuracy.  

 

The NN understory map (paragraph 4.2) fails to recognize the correct background when the 

overlaying canopy cover is dense. This occurrence does not diminish the map’s utility because in such 

a situation (dense canopy) the understory influence on model inversion is minimal. The analysis of 

LAI estimation error confirms this hypothesis:  gLAIo estimation SDEP is contained even in 

correspondence with map error in understory assignment. 

 

A comparison exercise between regression models and inversion of PROSAILH model showed that 

regressions calibrated with a limited number of LAI-NDVI pairs provide an accuracy that is highly 

variable depending on the particular sample chosen. 

 

PROSAILH estimate accuracy is comparable with that of regression models (higher when a map of 

the background type is used in the selection of the background reflectance to be provided to the 

inversion algorithm). 
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FIGURES: 

 

Figure 1: Study area and field measurements (see table 1). 

 

 

Figure 2: Position and width of DAIS and ROSIS bands. 

 

Figure 3: Flightlines geometry, front view (A), ground projection (B). 

 



  

Figure 4: Radiometric transects referring to A and B test areas: the starting point is located in the tilled 

area, after distance 30m the reflectance refers to a canopy over a non-tilled terrain. Wavelengths are 

reported in the graphic. 

 

 

Figure 5: Extraction of the background map using high geometric and high spectral resolution data 

and NN. 

 

 



Figure 6: Error in LAI prediction as a function of the error committed in fixing the MTA in the 

inversion process (error in MTA ass. = ass. MTA – true MTA; error in LAI retr. = retr. LAI – true 

LAI). 

 

 

 

Figure 7: PROSAILH inversion gLAIo SDEP for different background spectral signature assignment 

(for the acronyms see Table 4). 

 

 

Figure 8: SDEP of regression models (as a function of the number of sample used in calibration), and 

of PROSAILH model inversions of MVA data, calculated on the same dataset (10 test samples). 

 



TABLES: 

Category Parameters Technique 
Forestry   

 Tree diameter and height, crown radius Direct measurements 
Radiometry   

 Aerosol optical thickness1, leaf 
reflectance and transmittance2, spectra of 
surfaces3  

1Photometer, 2spectrorad., 
3spectrorad. + integ. sphere 

Biophysical parameters  
 MTAo

1, LAIt (total)1, LAIo
1, LAIu

1; 
fractional cover: Fco

1,2, Fcu
2,3

1Li-Cor LAI2000, 2direct 
meas., 3digital camera 

Biochemical parameters  
 Leaf relative chlorophyll content1, Leaf 

chlorophyll ab2, Leaf water2, SLA2 
(Specific Leaf Area) 

1Minolta Spad 502, 
2laboratory measurements 

Table 1: Field measurements summary. Subscripts o and u refer to overstory and understory, 
respectively and superscript number link parameter with measurement technique. 
 

Sensor Altitude Swath, FOV pixel size 

DAIS  1800 m 1280 m, ±29° 250×250 cm
ROSIS  1800 m 420 m, ± 8° 100×100 cm

Table 2: Data take geometric characteristics. 
 

Test area LAIo gLAIo Fc% 

A 2.33 2.14 90 
B 1.5 1 60 

Table 3: Structural characteristics of the test areas selected, Fc is the canopy crowns fractional cover. 
 

 LAI=1 LAI=2 LAI=3

 SDEP 0.08 0.17 0.30 
Mean  0.99 1.99 2.99 
SD  0.08 0.17 0.30 

Table 4: Standard Deviation Error in LAI Prediction (SDEP) caused by fixing the MTA; mean and 
standard deviation of the predicted values in one SD of the measured MTA are reported for the three 
levels of LAI considered. 
 

  Method 
B.S.  Spectral signature of Bare Soil was provided to every 

inversion 
S.U.V.  Spectral signature of a Sparse Vegetated Understory 

provided to every inversion 
MinRMSE  Each inversion was repeated with three possible 

backgrounds (bare soil, sparse understory, dense 
understory), the estimate showing the minimum RMSE in 
the minimization process was chosen 

map 5  The background map (paragraph 4.2), was used as a 
criterion to assign the background signature 

map 3  As in map 5, the background map was resampled to 3 
classes (see MinRMSE) 

exact  The most appropriate background for each inversion was 
supplied 

Table 5: Summary of background assignment strategies. 
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