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Abstract—This study aims at using forward model simulations 
and ground-measurements (biophysical and spectral) to estimate 
chlorophyll concentration from hyperspectral data and imagery. 
Its specific objectives were: (i) to evaluate various combinations 
of indices as estimators of chlorophyll content from simulated 
spectra (PROSPECT and SAILH); (ii) to establish chlorophyll 
predictive equations using spectral indices determined from field 
spectra and corresponding chlorophyll concentrations; (iii) to 
assess the effect of crop type (corn and wheat) on these 
relationships; and (iv) to validate and compare the indices’ 
prediction capability using hyperspectral images and ground 
truth measurements. Hence, intensive field campaigns were 
organized during the growing seasons of 2000, 2004, and 2005 in 
order to collect ground spectra and corresponding leaf 
chlorophyll content values as well as crop growth measures. The 
relationships between leaf chlorophyll content and combined 
optical indices have shown similar trends for both PROSPECT-
SAILH simulated data and ground measured datasets, indicating 
that both spectral measurements and radiative transfer models 
hold comparable potential for quantitative retrieval of crop foliar 
pigments. The dataset used showed that crop type had a clear 
influence on the establishment of predictive equations as well as 
on their validation. Moreover, corn and wheat data have led to 
contrasting agreement between estimated and measured 
chlorophyll contents even for the same predictive algorithm. 
Indices TCARI/TRDVI and TCI/TRDVI seem to be relatively 
consistent and more stable as estimators of crop chlorophyll 
content. 
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I.  INTRODUCTION 
The assessment of crop canopy health-status, abundance, 

and vigor is important for understanding the functioning of 
agro-ecosystems and modeling crop development processes. 
Deficiency in any essential nutrient strongly impacts crop 
growth and yield. Therefore, measurement of crop biophysical 
variables is required for monitoring crop development patterns, 
and improving yield quality by site-specific application of 
fertilizers. One of the most important variables is chlorophyll 

content which is used by agronomists and farmers to make 
important management decisions at critical growth stages (e.g., 
nitrogen supply). Its concentration in crop leaves depends to a 
great extent on soil nitrogen availability and on crop nitrogen 
uptake. Previous research activities have developed approaches 
to estimate vegetation chlorophyll content from remotely 
sensed data using physically-based models or spectral indices. 
However, no studies have investigated the use of different 
indices combinations nor evaluated the use of predictive 
equations established from laboratory- and ground-measured 
data (pigments and spectra). 

Previous studies have used laboratory analysis, field 
measurements and remotely sensed data to develop approaches 
for chlorophyll based on either the inversion of physically-
based models ([1], [2], [3]) or improved relationships between 
chlorophyll concentration and spectral indices ([4], [5]). 
Physically-based models are based on simulation of canopy 
reflectance, and creation of quantitative relationships between 
remotely sensed data and canopy attributes (LAI, Chlorophyll 
content, etc.) for inversion purposes. Approaches using spectral 
indices rely on semi-empirical relationships between 
laboratory-measured chlorophyll concentrations and observed 
spectral reflectances. Their strength lies in the fact that spectral 
indices are easy to compute and require little expertise, 
especially when based on physically explainable principles. 

This paper presents and discusses the use of forward model 
simulations and ground-measured data to make predictions of 
chlorophyll concentration from hyperspectral data and 
imagery. Its objectives were: (i) to examine the performance of 
various combinations of indices as estimators of chlorophyll 
content on the basis of simulated data using PROSPECT and 
SAILH; (ii) to use ground-measured spectra and corresponding 
laboratory-measured chlorophyll concentrations to establish 
chlorophyll predictive equations based on spectral indices 
ratios; (iii) to assess the dependency of the prediction 
relationships on the crop type (corn and wheat); and (iv) to 
compare the indices’ prediction capability using CASI 
(Compact Airborne Spectrographic Imager) hyperspectral 
images and ground truth measurements.  



II. MATERIAL AND METHODS 

A. Biophysical and spectral data 
The study area is the L’Acadie Experimental Research Sub-

station of the Horticultural Research and Development Centre 
of Agriculture and Agri-Food Canada, located St-Jean-sur-
Richelieu, Quebec, Canada. For the purpose of understanding 
nitrogen supply on crop growth, two crops (corn, wheat) were 
grown on different experimental or commercial fields, during 
three growing seasons (2000, 2004 and 2005). 

During these seasons, intensive field campaigns were 
carried out to collect spectral and biophysical data, namely: 

 - hyperspectral images acquisition with the Compact 
Airborne Spectrographic Imager (CASI), flown by the Earth 
Observations Laboratory at York University, and  

- a set of field and laboratory data sampled for biochemical 
and geochemical analysis, along with optical and biophysical 
measurements (leaf chlorophyll concentration, chlorophyll 
meter (SPAD) measurements, leaf area index (LAI), soil and 
crop spectra, and crop growth measures). 

The CASI hyperspectral images were processed to at-
sensor radiance using calibration coefficients determined in the 
laboratory by the Earth Observations Laboratory at York 
University, then transformed to absolute ground-reflectance 
using CAM5S atmospheric correction model. To perform this 
operation, an estimate of aerosol optical depth at 550 nm was 
derived from ground sun-photometer measurements. Data 
regarding geographic position, illumination and viewing 
geometry as well as ground and sensor altitudes were derived 
both from aircraft navigation data records and ground GPS 
measurements. 

Simulated spectra were obtained using the PROSPECT 
model which simulates upward and downward hemispherical 
radiation fluxes between 400 and 2500 nm, and relates foliar 
biochemistry and scattering parameters to leaf reflectance and 
transmittance spectra ([7]). The latter were used as inputs to 
simulate corn canopy reflectance for a wide range of 
chlorophyll concentrations. These simulations were generated 
by the canopy model SAILH [8] which is a variant of the SAIL 
(Scattering by Arbitrary Inclined Leaves) model improved to 
take into account the hotspot effect.  

 

B. Vegetation and chlorophyll indices 
Numerous optical indices were developed and successfully 

implemented to make estimates of chlorophyll concentration 
from leaf optical properties ([6], [2]). They are mainly 
exploiting the differences in reflectance between stressed and 
healthy vegetation in the spectral regions of the visible and the 
red-edge. Nevertheless, their use to predict the canopy 
chlorophyll content is not appropriate because canopy 
reflectance is strongly influenced by the changes in plant 
architecture, canopy structure, and soil background optical 
properties. On the other hand, traditional vegetation indices 
have shown low correlation levels with vegetation pigments, 
and certain insensitivity to soil optical properties, with 
acceptable relationships for leaf are index (LAI) estimation 
from remotely sensed data. Consequently, combinations 
involving the so-called chlorophyll indices variations and 
traditional vegetation indices were proposed to minimize LAI 
and soil background effects and maximize the response to 
chlorophyll concentrations ([4], [9]). Indices used in this study 
are presented in Table I. This is not a review meant to gather 
all published chlorophyll and vegetation indices; it shows only 
those indices selected for use in the present paper. 

 
TABLE I. SUMMARY OF CHLOROPHYLL AND VEGETATION INDICES ANALYZED IN THIS STUDY. USING HYPERSPECTRAL NARROW-BANDS, INDICES WERE 

QUANTIFIED BY THE FOLLOWING EQUATIONS WHERE RX IS THE REFLECTANCE AT THE GIVEN WAVELENGTH “X” IN nm 
 

Index Formula Reference 
Chlorophyll indices 

MCARI [ ] )(*)(*2.0)( 670700550700670700 RRRRRR −−−  Daughtry et al. (2000) 
TCARI [ ])(*)(*2.0)(*3 670700550700670700 RRRRRR −−−  Haboudane et al. (2002) 

TCI [ ]670700550670550700 /*)(*5.1)(*2.1 RRRRRR −−−  This study 
TCI1 [ ] 670700550670550700 /*)(*5.1)(*2.1 RRRRRR −−−  This study 
TCI2 [ ] 700670800550670550700 /)5.0(*)(*5.1)(*2.1 RRRRRRR ++−−−  This study 
TCI3 [ ] )(*)(*5.1)(*2.1 670700550670550700 RRRRRR −−−  This study 

   
Vegetation indices 

NDVI )()( 670800670800 RRRR +−  Rouse et al. (1974) 
RDVI )()( 670800670800 RRRR +−  Rougean and Breon (1995) 

SAVI )5.0()(*)5.01( 670800670800 ++−+ RRRR  Huete (1988) 
OSAVI )16.0()(*)16.01( 670800670800 ++−+ RRRR  Rondeaux et al. (1996) 
MSAVI [ ])(*8)1*2(1*2*5.0 670800

2
800800 RRRR −−+−+  Qi et al. (1994) 

TRDVI 5.0)()(*5.1 670800670800 ++− RRRR  This study 

 
 



III. RESULTS AND DISCUSSION 

A. Relationships between spectral indices and chlorophyll 
content 
To determine the most suitable combined index for leaf 

chlorophyll estimation, empirical regressions, with 
logarithmic and exponential functions, between optical ratios 
and chlorophyll concentrations were carried out using 
simulated and measured datasets. We evaluated the effect of 
the use of a given vegetation index on the relationship 
between the combined indices and chlorophyll content. 
Results obtained are represented in Fig. 1 where 
determination coefficients (R2) of the relationship with 
chlorophyll-combined indices were plotted as a function of 
vegetation indices used. One can conclude from these results 
four important remarks in terms of correlation stability. 

First, with simulated data, the consistency of the 
correlation is not influenced by vegetation indices but rather 
by chlorophyll indices (Fig. 1 top); indeed while TCARI 
yielded R2 between 0.91 and 0.96 (except for MSAVI with 
R2 = 0.87), the other chlorophyll indices exhibited higher R2 
values (0.96 - 1.00). 

Second, with the corn-measured dataset, the variability is 
primarily due to vegetation indices, with two distinctive 
performances: NDVI and OSAVI led to relatively weaker 
correlations (R2 from 0.64 to 0.81, but 0.43 for TCI2/NDVI) 
than the other indices (R2 from 0.80 to 0.88) (Fig. 1 centre). 

Third, with wheat-measured data, both chlorophyll and 
vegetation indices exert a certain control on the correlation: 
while TCARI seems to be the worst among chlorophyll 
indices (R2 from 0.33 to 0.40), NDVI and OSAVI generated 
the lowest correlations among vegetation indices (R2 from 
0.23 to 0.55) (Fig. 1 bottom). Fourth, with corn and wheat 
measured datasets used together, strong influences are 
exerted by both families of indices. Thus, while TCARI and 
TCI3 show the best overall performance amongst 
chlorophyll indices, TRDVI, MSAVI and SAVI seem to 
perform better than the other vegetation indices (Fig. 1 
bottom). 

Furthermore, one can notice that, in general, the average 
R2 values dropped from about 0.97 with simulated data, to 
about 0.85 for corn-measured data, down to around 0.56 in 
the case of wheat-measured data, with of course significantly 
lower average values for ratios involving NDVI and OSAVI. 
Additionally, considering both simulated and measured 
datasets, ratios using SAVI and TRDVI tend to be the most 
consistent and stable. Conversely, MSAVI did not perform 
as well with simulated and wheat measured data, while 
RDVI showed a relative weakness with corn and corn + 
wheat measured datasets. As a consequence, combined 
indices involving TRDVI were considered for further tests in 
the present study, namely for prediction and validation 
processes. 
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Figure 1. Determination coefficients between chlorophyll content and 

spectral indices ratios for various data sources: Simulated data 
(top), corn measured spectra (centre), and wheat measured 
spectra (bottom). 

 



B. Estimation of crop chlorophyll content and validation 
Predictive equations for different combined indices were 

applied to CASI images to generate maps of chlorophyll 
from which chlorophyll values were extracted and compared 
to ground truth measurements. Linear regressions were 
carried out to evaluate the predictive power of ratios used. 
Results (R2 and RMSE) are summarized in Table II which 
shows contrasting results in terms of: vegetation index 
influence, data source, and crop-type effect. The effect of the 
vegetation index is illustrated by the use of OSAVI and 
TRDVI in combination with chlorophyll indices MCARI and 
TCARI. TRDVI holds a striking advantage on OSAVI, with 
R2 average differences of 22%, 15.5% and 70% for MCARI, 
and 8.5%, 17.5% and 41% for TCARI, on validation data of 
corn, wheat, and corn + wheat, respectively. This difference 
in favor of TRDVI is corroborated by the noticeable 
improvement of the RMSE of the combinations using 
TRDVI. From Table II, it seems that datasets used to 
establish predictive equations had no significant impact on 
the agreement (R2) between estimated and measured 
chlorophyll. Each index led to similar R2 for all functions 
independently of data source. Conversely, the application of 
the equations to different crops led to very contrasting 
agreements between estimations and ground truth. 
Depending on the combined index, agreements were good to 
very good (R2 = 0.52-0.80) for corn field, moderate to good 
(R2 = 0.36-0.50) for wheat field, and insignificant to weak 
(R2 = 0.03-0.34) when corn and wheat were considered 
together (Table II). This crop-type effect is confirmed by the 
prediction accuracy expressed in terms of RMSE.  
TABLE II. DETERMINATION COEFFICIENTS AND RMSE (µg/cm2) FOR 

MEASURED CHLOROPHYLL versus CASI-ESTIMATED 
CHLOROPHYLL FOR CORN, WHEAT, AND CORN + WHEAT 

 
Indices R2 and RMSE for prediction equations from 

 Simulated data Corn spectra Wheat spectra 
Corn R2 RMSE R2 RMSE R2 RMSE 

MCARI/OSAVI 0.52 12.51 0.53 7.10 0.53 20.34 
TCARI/OSAVI 0.72 11.07 0.73 7.95 0.73 17.19 
MCARI/TRDVI 0.67 8.53 0.68 5.81 0.68 19.10 
TCARI/TRDVI 0.78 6.93 0.80 6.18 0.80 13.96 

TCI/TRDVI 0.74 11.31 0.76 5.95 0.76 17.33 
TCI1/TRDVI 0.75 7.98 0.76 5.72 0.76 17.46 
TCI2/TRDVI 0.71 6.96 0.71 6.02 0.71 19.29 
TCI3/TRDVI 0.67 8.53 0.68 5.81 0.68 19.10 

Wheat       
MCARI/OSAVI 0.40 12.85 0.40 15.33 0.39 4.88 
TCARI/OSAVI 0.36 7.62 0.36 9.07 0.35 5.21 
MCARI/TRDVI 0.46 13.14 0.47 14.75 0.47 4.67 
TCARI/TRDVI 0.43 10.12 0.43 9.01 0.43 4.81 

TCI/TRDVI 0.48 7.62 0.48 10.64 0.48 4.54 
TCI1/TRDVI 0.50 12.09 0.50 12.60 0.50 4.39 
TCI2/TRDVI 0.40 11.99 0.41 11.95 0.41 5.37 
TCI3/TRDVI 0.46 13.14 0.47 14.75 0.47 4.67 
Corn + Wheat       

MCARI/OSAVI 0.04 12.65 0.03 13.00 0.03 16.10 
TCARI/OSAVI 0.19 10.34 0.20 9.28 0.20 13.82 
MCARI/TRDVI 0.11 12.05 0.11 12.20 0.11 15.13 
TCARI/TRDVI 0.31 9.44 0.34 8.41 0.35 11.36 

TCI/TRDVI 0.25 10.49 0.27 9.38 0.27 13.78 
TCI1/TRDVI 0.16 11.15 0.17 10.65 0.17 13.85 
TCI2/TRDVI 0.20 10.67 0.20 10.30 0.20 15.40 
TCI3/TRDVI 0.11 12.05 0.11 12.20 0.11 15.13 

IV. CONCLUSION 
This study has presented and tested a remote sensing 

approach for chlorophyll estimation over crop canopies, with 
minimum effects from the canopy leaf area index (LAI). 
Based on simulated and measured datasets, we compared 
several combined indices which are both sensitive to 
chlorophyll content variations, and relatively resistant to the 
variations of LAI. The relationships between chlorophyll 
content and combined optical indices have shown similar 
trends for both PROSPECT-SAILH simulated data and 
ground measured datasets, indicating that both spectral 
measurements and radiative transfer models hold comparable 
potential for quantitative retrieval of crop foliar pigments. 
The dataset used showed that crop type had a clear influence 
on the establishment of predictive equations as well as on 
their validation. Moreover, corn and wheat data have led to 
contrasting agreement between estimated and measured 
chlorophyll contents even for the same predictive algorithm. 
Indices TCARI/TRDVI and TCI/TRDVI seem to be 
relatively consistent and more stable as estimators of crop 
chlorophyll content. 
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