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Abstract

This paper investigates attitude towards partial ambiguity in a laboratory setting

using di¤erent decks of 100 cards. We assess certainty equivalents on three symmetric

variants of the fully ambiguous urn in the classical Ellsberg 2-urn paradox by limiting

the range of the possible number of red cards with the rest black. In the interval

variants, the possible number of red cards ranges from n to 100 � n. In the disjoint
variants, the possible number of red cards can range from 0 to n and from 100 � n
to 100. In the third symmetric variant called two-point ambiguity, the number of red

cards is limited to either n or 100�n. For both interval and disjoint ambiguity, subjects
tend to value betting on a deck with a smaller set of ambiguous states more. For two-

point ambiguity, subjects exhibit greater aversion as n goes from 50 (no ambiguity)

to 10 in four steps. Paradoxically, there is a reversal from n = 10 to n = 0 which

turns out to be valued similarly as the no-ambiguity lottery with n = 50. We further

examine attitude towards skewed partial ambiguity by eliciting subjects� preference

between betting on a deck with a known number of n red cards versus betting on a

deck whose possible number of red cards can range from 0 to 2n. Here, subjects tend

to go from being averse to ambiguity at n = 50 and n = 40 to being ambiguity seeking

for n less than 30. We also discuss the implications of our �ndings for existing models

of decision making under uncertainty in the literature.
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1 Introduction

The classical 2-urn thought experiment of Keynes (1921, p.75) and Ellsberg (1961) suggests

that people generally favor betting on an urn with a known composition of 50 black and 50

white balls over betting on another urn with an unknown composition of black or white balls

which add to 100. Ellsberg (1961) further suggests a 3-color experiment in which subjects

would rather bet on red than on black and to bet on not red than not black in an urn with 30

red balls and 60 balls with unknown composition of yellow and black balls. Such preference,

dubbed ambiguity aversion, casts doubt on the descriptive validity of subjective expected

utility and has given rise to a sizable theoretical and experimental literature (see Camerer

and Weber, 1992; Al-Najjar and Weinstein, 2009). Notice that the nature of ambiguity

in the three-color paradox with drawing red having a known of chance of 1=3 versus the

chance of drawing blue being anywhere between 0 and 2=3 is skewed relative to that in the

2-urn paradox. While experimental evidence corroborating ambiguity aversion for the 2-

urn paradox has been pervasive, the corresponding evidence for the 3-color paradox appears

mixed. In their 1985 paper, Curley and Yates examine di¤erent comparisons involving skewed

ambiguity, e.g., an unambiguous bet of p chance of winning versus an ambiguous bet in which

the chance of winning can be anywhere between 0 and 2p and observe ambiguity neutrality

when the p is less than 0:4. This is corroborated by the �nding of ambiguity neutrality in

the 3-color urn in two recent papers (Charness, Karni and Levin, 2012; Binmore, Stewart,

and Voorhoeve, 2011). By contrast, ambiguity a¢ nity for more moderate levels of skewed

ambiguity have been observed in Kahn and Sarin (1988) and more recently in Abdellaoui et

al. (2011) and Abdellaoui, Klibano¤ and Placido (2011).

In their 1964 paper, Becker and Brownson introduce a re�nement of the 2-urn paradox

to the case of symmetric partial ambiguity with the number of red balls (or black balls) in

the unknown urn being constrained to be in a symmetric interval, e.g., [0:4; 0:6] or [:25; :75]

in relation to a fully ambiguous urn of [0; 100] and the 50� 50 urn denoted by f50g. They

�nd that subjects tend to be more averse to bets involving larger intervals of ambiguity.
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This motivates us to examine two additional kinds of symmetric ambiguous lotteries. One

involving two possible compositions �fng and f100�ng �shares the same end points as an

interval ambiguity lottery [n; 100� n]. This property has implications for maxmin expected

utility (MEU henceforth) of Gilboa and Schmeidler�s (1989) and its derivatives including

Ghirardato, Maccheroni and Marinacci (2004) and Maccheroni, Marinacci and Rustichini

(2006).

Another kind of symmetric partial ambiguity consisting of union of two disjoint intervals

[0; n] [ [100 � n; 100] is complementary to [n; 100 � n] since full ambiguity can be viewed

as a convex combination of [n; 100 � n] and [0; n] [ [100 � n; 100]. As we shall discuss in

the penultimate section of our paper, this latter property has strong implications for models

that view ambiguity as the second stage distribution of possible states occurring at an ex

ante �rst stage (Segal, 1987; Klibano¤, Marinacci, and Mukerji, 2005; Nau, 2006; Seo, 2009;

Ergin and Gul, 2009). The proposed disjoint ambiguity also possesses a property that is akin

to a form of discontinuity: for n < 50, drawing a red card from [0; n] precludes drawing a red

card from [100 � n; 100], but this constraint vanishes when n equals 50. This discontinuity

seems incompatible with the intuition of the value of a disjoint ambiguous lottery being

determined largely by the size of its set of ambiguous states, which changes continuously as

n goes to 50.

In Part I of our study, the observed patterns of behavior towards symmetric partial

ambiguity are summarized as follows:

1. For both interval and disjoint partial ambiguity, we observe aversion to increasing size of

ambiguity.

2. The certainty equivalents (CE) of the two-point ambiguity decreases from f50g to f40; 60g,

from f40; 60g to f30; 70g, from f30; 70g to f20; 80g, and from f20; 80g to f10; 90g except for

the last comparison when its CE increases signi�cantly from f10; 90g to f0; 100g. Notably,

CE of f0; 100g is not signi�cantly di¤erent from that of f50g.

3. Mean CE of the 2-point ambiguity lotteries exceeds the mean CE of the interval ambiguity
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lotteries which in turn exceeds the mean CE of the disjoint ambiguity lotteries.

In Part II of our study, we examine subjects�attitude towards di¤erent levels of skewed

ambiguity in a design that relates to what is used in Curley and Yates (1985). We �nd

that subjects tend to exhibit a switch in ambiguity attitude from aversion to a¢ nity at

around 30% for the known probability. This provides a rationale for the mixed evidence

for ambiguity aversion in the 3-color urn. Our �nding also echoes a further suggestion of

Ellsberg described in footnote 4 of Becker and Brownson (1964). "Consider two urns with

1000 balls each. In Urn 1, each ball is numbered from 1 to 1000, and in Urn 2 there are an

unknown number of balls bearing any number. If you draw a speci�c number say 687, you

win a prize. There is an intuition that many subjects would prefer the draw from Urn 2 over

Urn 1, that is, ambiguity seeking when probability is small". This intuition has been tested

by Einhorn and Hogarth (1985, 1986) in a hypothetical choice study involving 274 MBA

students. They �nd that 19% of their subjects are ambiguity averse with respect to the

classical Ellsberg paradox while 35% choose the ambiguous urn when 0.002 is the interval

of ambiguity rather than the unambiguous urn with an unambiguous winning probability of

0.001.

The rest of this paper is organized as follows. Section 2 presents details of our experimen-

tal design. Section 3 reports our experimental �ndings. Section 4 discusses the implications of

our experimental �ndings for a number of decision making models in the literature, including

Choquet expected utility (Schmeidler, 1989; Gilboa, 1987), models based on multiple pri-

ors (Gilboa and Schmeidler 1989; Ghirardato, Maccheroni and Marinacci, 2004; Maccheroni,

Marinacci and Rustichini 2006), models adopting a 2-stage approach (Segal, 1987; Klibano¤,

Marinacci and Mukerji, 2005; Nau, 2006; Ergin and Gul, 2009; Seo, 2009), and models based

on source preference (Chew and Sagi, 2008; Abdellaoui et al., 2011). Section 5 discusses the

related literature and concludes.
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2 Experimental Design

We adopt the following notation. We use fng to denote an unambiguous lottery based on a

deck of n red cards and 100�n black cards (betting on red). An ambiguous lottery is denoted

by the set of ambiguous states A. Speci�cally, A = fn; 100� ng for a symmetric two-point

ambiguity, A = [n; 100� n] for symmetric interval ambiguity, and A = [0; n][ [100� n; 100]

for symmetric disjoint ambiguity.1

We further de�ne three benchmark lotteries, B0 for A = f50g; B1 for A = f0; 100g

and B2 for A = [0; 100]. B1 appears to admit some ambiguity in interpretation. Being

either all red or all black may give it a semblance of a 50 � 50 lottery in parallel with its

intended interpretation as being 2-point ambiguous. Interestingly, B2 admits an alternative

description as follows. It can �rst be described as comprising 50 cards which are either all

red or all black while the composition of the other 50 cards remains unknown. This process

can be applied to the latter 50 cards to arrive at a further division into 25 cards which are

either all red or all black while the composition of the remaining 25 cards remains unknown.

Doing ad in�nitum gives rise to dyadic decomposition of [0; 100] into subintervals which are

individually either all red or all black.

Part I of our study is based on the following 3 groups of six lotteries.

Two-point ambiguity. This involves 6 lotteries with symmetric two-point ambiguity:

B0 = f50g; P1 = f40; 60g; P2 = f30; 70g; P3 = f20; 80g; P4 = f10; 90g; B1 = f0; 100g :

Interval ambiguity. This comprises 6 lotteries with symmetric interval ambiguity:

B0 = f50g; S1 = [40; 60]; S2 = [30; 70]; S3 = [20; 80]; S4 = [10; 90]; B2 = [0; 100]:

Disjoint ambiguity. This involves 6 lotteries with symmetric disjoint ambiguity:

B1 = f0; 100g ; D1 = [0; 10] [ [90; 100]; D2 = [0; 20] [ [80; 100]; D3 = [0; 30] [ [70; 100];

D4 = [0; 40] [ [60; 100]; B2 = [0; 100]:
1For symmetric ambiguity lotteries, notice that A remains the same whether one bets on red or on black.

Thus, a symmetric ambiguity lottery can be denoted by its associated A. For skewed ambiguity, the lottery
[0; 2n] is based on betting on red.
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The ambiguity structure of the 15 lotteries in Part I are illustrated below.

Figure 1. Illustration of 15 treatments in 3 groups.2

Part II of our study concerns attitude towards skewed partial ambiguity. It comprises

6 comparisons between two skewed lotteries: rn = fng and un = [0; 2n] where n =

5; 10; 20; 30; 40 and 50.

For both Part I and II lotteries, betting correctly on the color of a card (subject to their

choice in Part I while �xed to be red in Part II) drawn delivers S$40 (about US$30) for the

subject while betting incorrectly delivers nothing. To elicit the CE of a lottery in Part I,

we used a price list design (e.g., Miller, Meyer, and Lanzetta, 1969; Holt and Laury, 2002),

where subjects are asked to choose between betting on the color of the card drawn and

getting some certain amount of money. For each lottery, subjects have 10 binary choices

corresponding to 10 certain amounts ranging from S$6 to S$23. The order of appearance of

the 15 lotteries in Part I is randomized for each subject who each makes 150 choices in all.

Subsequent to Part I, we conduct Part II of our experiment consisting of 6 binary choices

with the order of appearance randomized.

At the end of the experiment, in addition to a S$5 show-up fee, each subjects is paid

based on his/her randomly selected decisions in the experiment. For Part I, one out of 150

choices is randomly chosen using dice. For Part II, one subject is randomly chosen to receive

the payment based on one random choice out of his/her 6 binary choices. (see Appendix A

2Interpretation of the �gures is the following: the upper red line represents the number for red cards and
the lower black line for black cards, while one vertical blue line represents one possible combination of the
deck. Also note that f50g, f0; 100g and [0; 100] are limit cases for di¤erent groups.
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for experimental instruction).

We are aware that our adoption of a random incentive mechanism (RIM) could be subject

to violation of the reduction of compound lottery axiom (ROCLA) or the independence

axiom (e.g., Holt, 1986). In Starmer and Sugden�s (1991) study of RIM, they �nd that

their subjects�behavior are inconsistent with ROCLA. More recently, Harrison, Martinez-

Correa and Swarthout (2011) test ROCLA speci�cally and their �nding is mixed. While

the analysis of choice patterns suggests violations of ROCLA, their econometric estimation

suggests otherwise. The use of RIM has become prevalent in part because it o¤ers an e¢ cient

way to elicit subjects�preference besides being cognitively simple (see Harrison and Rutstrom

2008 for a review).

We recruited 56 undergraduate students from National University of Singapore (NUS) as

participants using advertisement posted in its Integrated Virtual Learning Environment. The

experiment consisted of 2 sessions with 20 to 30 subjects for each session. It was conducted

by one of the authors with two research assistants. After arriving at the experimental

venue, subjects were given the consent form approved by at NUS�institutional review board.

Subsequently, general instructions were read to the subjects followed by our demonstration of

several example of possible composition of the deck before subjects began making decisions.

After �nishing Part I, subjects were given the instructions and decision sheets for Part II.

Most subjects completed the decision making tasks in both parts within 40 minutes. At

the end of the experiment, subjects received payment based on a randomly selected decision

made in addition to a S$5 show-up fee. The payment stage took up about 40 minutes.

3 Observed Choice Behavior

This section presents the observed choice behavior at both aggregate and individual levels

and a number of statistical �ndings.
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Part I. Summary statistics ares presented in Figure 2.3 We apply the Friedman test to

check whether the CEs of the 15 decks come from a single distribution. We reject the null

hypothesis that the CEs come from the same distribution (p < 0:001). Besides replicating the

standard �nding �CE of f50g is signi�cantly higher than that of [0; 100] (paired Wilcoxon

Signed-rank test, p < 0:001), our subjects have distinct attitudes towards di¤erent types of

partial ambiguity. Speci�cally, for the comparison between f50g and [0; 100], 62% of the

subjects exhibit ambiguity aversion, 33% of the subjects exhibit ambiguity neutrality, and

5% of the subjects exhibit ambiguity a¢ nity.

Figure 2. Switching points for lotteries in Part I.

The CEs for the 15 lotteries are highly and positively correlated in ranging from 58:8% to

91:6% (see Table S3 in Appendix B for pair-wise Spearman correlations). The correlations

between risk attitude measure by the CEs for B0 = f50g and ambiguity attitude, measured

by the di¤erence in CEs between that of B0 and those 14 ambiguous bets are generally highly

correlated, between 36:7% and 63:8%, except for B1 = f0; 100g with a correlation of 9:8%

(see Table S4 in Appendix B). The pairwise correlations for the ambiguity attitude towards

the 14 ambiguous bets are also highly positive, ranging from 55:1% to 87:3%, except for the

3Out of 15 Part I tasks, one subject exhibits multiple switching in one task and another exhibit multiple
switching in three tasks. Their data for these 4 tasks are exclude from our analysis.

3Data are coded in terms of the number of times each S chooses the lottery over a sure amount in the
10 binary choices. Out of 57 subjects, 2 exhibited multiple switching for a total of 4 decision sheets. For
details, please refer to Table S1 in Appendix B.
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correlations with B1 which range from 9:6% to 49:2% (see Table S5 in Appendix B). The

correlations identi�ed here are similar to those reported in Halevy (2007), and suggest a

common link between risk attitude and ambiguity attitude except for B1 which corroborates

the earlier observation that it may admit an additional interpretation as being almost a 50-50

lottery.

Using the Trend test, we check subsequently whether there is a signi�cant trend for each

group. This yields the following two observations.

Observation 1 (Interval and disjoint ambiguity): For lotteries related to interval ambiguity,

B0; S1; S2; S3; S4 and B2, there is a statistically signi�cant decreasing trend in CE as size

of AS increases (p < 0:001). For lotteries related to disjoint ambiguity, B1; D1; D2; D3; D4

and B2, there is also a statistically signi�cant decrease in CE as the size of AD increases

(p < 0:001).

Moreover, we count the number of individuals exhibiting speci�c patterns in Observation

1. For the 6 interval ambiguity lotteries, 24:1% of the subjects have the same CEs, 25:9% of

the subjects have non-increasing CEs, while none of the subjects has non-decreasing CEs.

For the 6 lotteries in the disjoint ambiguity, 24:1% of the subjects have the same CEs, 20:3%

of the subjects have non-increasing CEs, and 5:5% of the subjects have non-decreasing CEs.

As discussed in the Introduction, given that the size of ambiguity of [0; n][ [100�n; 100]

would double in the limit as n approaches 50, one may expect to observe an abrupt drop in

CE as n increases from 40 to 50: This does not appear to be case. The relatively smooth

change of CE in the overall data may suggest that subjects see the size of ambiguous states

in [0; n] [ [1� n; 1] as being 2n rather than n.

Observation 2 (Two-point ambiguity): For lotteries related to two-point ambiguity, B0; P1;

P2; P3; P4; and B1, there is a signi�cant nonincreasing trend in the CEs from B0 = f50g to

P4 = f10; 90g (p < 0:001). Interestingly, the CE of B1 reverses this trend and is signi�cantly

higher than the CE of P4 (paired Wilcoxon Signed-rank test, p < 0:005). Moreover, the

CE of B1 is not signi�cantly di¤erent from that of B0 (paired Wilcoxon Signed-rank test,
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p > 0:323).

At the individual level, for the 6 two-point ambiguity lotteries, 25:9% of the subjects

have the same CEs, 16:6% of the subjects have non-increasing CEs, 22:2% of the subjects

have non-increasing CEs until f10; 90g with an increase at B1, and 5:5% of the subjects

have non-decreasing CEs. Between B0 and B1, 44:5% of the subjects have the same CEs,

35:2% of the subjects display a higher CE for B0 than that for B1; and 23:2% of the subjects

exhibit the reverse. Between B1 and f10; 90g, 44:6% of the subjects have the same CEs,

41:1% of the subjects have a higher CE for B1 than for f10; 90g, and 14:3% of the subjects

exhibit the reverse, again corroborating the potentially ambiguous nature of B1:

Observation 3 (Across group): The mean CE of the two-point ambiguity lotteries, P1; P2;

P3; P4 and B1, exceeds that of the corresponding interval ambiguity lotteries, S1; S2; S3; S4

and B2 (p < 0:006). The mean CE of the interval ambiguity lotteries, B0; S1; S2; S3 and

S4, exceeds that of the corresponding disjoint ambiguity lotteries, B1; D1; D2; D3; D4, even

though each pair of Si and Di have the same size of ambiguity (p < 0:017).4

At the individual level, between two-point ambiguity and interval ambiguity, 25:9% of

the subjects have the same mean CEs across the �ve pairs of lotteries, fP1; S1g; fP2; S2g;

fP3; S3g; fP4; S4g and fB1; B2g, 55:6% of the subjects have higher CE for two-point than for

the corresponding interval ambiguity. The rest of 18:5% exhibit the reverse. Between interval

ambiguity and disjoint ambiguity, 29:6% of the subjects have the same mean CEs across the

�ve pairs, fS1; D1g; fS2; D2g; fS3; D3g; fS4; D4g and fB0; B2g, 48:1% of the subjects have

higher mean CEs for interval ambiguity than that for the corresponding disjoint ambiguity,

4Pairwise comparisons of CEs between two-point ambiguity lotteries and their corresponding interval
ambiguity lottery with the same best and worst priors are not signi�cantly di¤erent. In addition, pair-
wise comparisons between interval ambiguity lotteries and their corresponding disjoint ambiguity lotteries
maintaining the same size of ambiguity are also not signi�cant.
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and the rest 22:3% of the subjects have the reverse preference.

Figure 3. Proportion of subjects choosing the ambiguous lottery [0; 2n] .5

Part II. Figure 3 summarizes the proportion of subjects choosing the ambiguous deck. As

anticipated, between [0; 100] and f50g, a small proportion of 12:5% choose the latter. When

the proportion of subjects choosing the ambiguous lottery is signi�cantly lower (higher) than

the chance frequency of 0.5, we take the pattern to be ambiguity averse (seeking). Using a

simple t-test of di¤erence in proportions, we arrive at the following observation.

Observation 4 (Skewed ambiguity): Subjects are signi�cantly averse to moderate ambiguity

[0; 80] and [0; 100] (p < 0:001 for both cases) and signi�cantly tolerant of skewed ambiguity

for [0; 10], [0; 20] and [0; 40] (p < 0:002 in each case). There appears to be a switch towards

becoming ambiguity seeking at around [0; 60] (marginally signi�cant at p < 0:105).

Analyzing the behavior across all 6 choices, 14:3% of the subjects are consistently am-

biguity averse, 5:4% are consistently ambiguity seeking, but 39:3% are ambiguity averse

towards [0; 80] and [0; 100] and ambiguity seeking towards [0; 10], [0; 20] and [0; 40].

One issue in the experimental studies of ambiguity is that subjects may feel suspicious

that somehow the deck is stacked against them. Such a sentiment may be a confounding

factor when eliciting ambiguity attitude. In general, a minimal requirement to control for

5For details, please refer to Table S2 in Appendix B.
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suspicion would appear to be to let subjects choose which ambiguous event to bet on, e.g.,

subjects can choose whether to bet on red or black in the 2-color urn. (Einhorn and Hogarth,

1985, 1986; Kahn and Sarin, 1988, Abdellaoui et al., 2011; Abdellaoui, Klibano¤and Placido

2011). For symmetric partial ambiguity in Part I, we control for the e¤ect of suspicion by

allowing the subjects to choose which color to bet on, yet we consistently observe ambiguity

aversion. The e¤ect of suspicion is expected to be more pronounced for skewed partial

ambiguity in Part II when subjects only win on drawing a red card. It is noteworthy that

despite the possibility of suspicion, we observe ambiguity a¢ nity for three of the skewed

ambiguous lotteries [0; 5], [0; 10], and [0; 20] and that we do not observe a greater level of

ambiguity aversion for [0; 100]:

Table S6 in Appendix B displays the Spearman correlations in ambiguity attitude of

all 6 decisions. We �nd the correlation between [0; 100] and [0; 80] to be highly positive

and that the correlation between [0; 20] and [0; 10] is also highly positive. By contrast, the

correlation between [0; 100] and [0; 10] is marginally signi�cantly negative (p < 0:103) which

is compatible with a good proportion of subjects switching from ambiguity averse towards

the moderate ambiguity of [0; 80] and [0; 100] to ambiguity seeking for [0; 10], [0; 20], and

[0; 40].

4 Theoretical Implications

This section discusses the implications of the observed choice behavior for a number of mod-

els of attitude toward ambiguity in the literature. One approach involves using a nonadditive

capacity in place of a subjective probability measure in part to di¤erentiate among comple-

mentary events that are revealed to be equally likely. A related approach involves the use of

multiple priors to model the presence of ambiguity as in MEU (Wald, 1950; Hurwicz, 1951;

Gilboa and Schmeidler, 1989) and developed further in its derivatives ��-MEU (Ghirardato,

Maccheroni and Marinacci 2004) and variational preference (Maccheroni, Marinacci and Rus-
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tichini 2006). A di¤erent approach involves evaluating a lottery with ambiguous states in

a two-stage manner. Models adopting this approach include Segal (1987), Klibano¤, Mari-

nacci and Mukerji (2005), Nau (2006), Seo (2009) and Ergin and Gul (2009). Building on

the idea of source dependence in Tversky and Kahneman (1992), Fox and Tversky (1995)

and Heath and Tversky (1991), Chew and Sagi (2008) model source preferences that exhibit

limited probabilistic sophistication and distinguish between risks from unambiguous states

and those from ambiguous states.

To facilitate our analysis, we impose the following behavioral assumptions:

Symmetry (Part I): For treatment i 2 fB0; :::; P1; :::; S1; :::; D1; :::g, the decision maker is

indi¤erent between betting on red and black.

Conditional Symmetry (Part II): For treatment un = [0; 2n] with 2n cards of unknown color,

the decision maker is indi¤erent between betting on red and black conditional on not having

drawn among the 100� 2n black cards.

For the benchmark SEU model or more generally probabilistic sophistication, the prob-

abilities of the events Ri and Bi always equal 0:5 given symmetry where Ri and Bi denote

the respective events in treatment i: In particular,

SEUi = v (w) =2;

where w denotes the payment should subjects guess correctly. Thus, SEU predicts that all

lotteries in Part I have the same CEs. For Part II, a similar argument based on conditional

symmetry implies that rn � un for each n: Both implications are incompatible with the

observed behavior.

4.1 Non-additive Capacity Approach

One alternative to SEU, dubbed Choquet expected utility (CEU), is to formulate a non-

additive generalization by using a capacity in place of a probability measure (Gilboa, 1987;

Schmeidler, 1989). Under CEU, the utility for lottery i is given by:
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�(Ri)v (w) + (1� �(Ri))v(0) = �(Bi)v (w) + (1� �(Bi))v(0);

with �(Ri) = �(Bi) from symmetry: In relaxing additivity, the capacities or decision weights

assigned to red (or black) for di¤erent Part I lotteries need not be the same. At the same

time, for unambiguous lotteries, we typically assume that � is additive over unambiguous

events so that �(Rfng) = bn, where bn refers to the probability n=100: It follows that CEU can
generate the pattern of behavior in Part I and Part II if �(�) preserves the observed ordering.

In particular, for symmetric partial ambiguity lotteries, �(Ri) = �(Bi) < 0:5 for i 6= B0;

while �(Run) > bn for n less than 30 and �(Run) < bn for n greater than 30.
4.2 Multiple Priors Approach

Gilboa and Schmeidler (1989) o¤er the �rst axiomatization of the MEU speci�cation in

which an ambiguity averse decision maker behaves �as if�there were an opponent who could

in�uence the occurrence of speci�c states to his/her disadvantage. This intuition is captured

by equating the utility of an ambiguous lottery with the expected utility corresponding to

the worst prior in a convex set of priors �. It is straightforward to see that this model can

account for the classical 2-urn Ellsberg paradox. As the set of ambiguous states for lottery

i is symmetric around n = 50, the corresponding set of priors �i is also symmetric.6 Thus,

the MEU of lottery i is given by:7

min�2�i � (Ri) v (w) = min�2�i � (Bi) v (w) :

It follows that B0 � P1 � P2 � P3 � P4 � B1; B0 � S1 � S2 � S3 � S4 � B2 and

B1 � D1 � D2 � D3 � D4 � B2 if we require �i to depend only on the convexi�cation

of the set of priors. This contradicts our Observations 1, 2 and 3. Without any restriction

on the sets of priors, MEU can account for most of the observed behavior with a judicious

choice of the worst prior for each ambiguous lottery.

6Notice that we need to convexify the set of priors in disjoint ambiguous lotteries since the set of ambiguous
states is not convex.

7Note that the utility is the same with � (R) or � (B) due to symmetry, thus we use only � (R) for
subsequent exposition. We also normalize v (0) = 0:
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For Part II, MEU implies that rn � un under Conditional Symmetry, which is incompat-

ible with the observed a¢ nity for su¢ ciently skewed ambiguity (Observation 4).

Ghirardato, Maccheroni and Marinacci (2004) axiomatize the �-MEU model (�-M) as a

linear combination of maxmin EU and maxmax EU. Their representation, adapted to our

setting, is as follows:

�imin�2�i � (Ri) v (w) + (1� �i)max�02�i �0 (Ri) v (w) :

Besides inheriting most of the properties of MEU, the implications of �-MEU model

depend on the value of �i: Suppose �i is the same for all i and the assumed set of priors

coincide with actual set possible priors,8 MEU and �-MEU have the same implications for

Part I and Part II as long as � > 0:5:When allowing the freedom of choosing �; �-MEU can

explain all observed patterns. Notably, the observed pattern will impose some monotonicity

property of � regarding the size of ambiguity states. For example, to explain the aversion

to increasing size of ambiguity in the disjoint group [0; n] [ [100� n; 100], � needs to be an

increasing function of n, while for skewed ambiguous lottery un in Part II, a needs again to

be increasing of n to accommodate the observed switch from ambiguity a¢ nity to aversion.

At last, Gajdos et al. (2008) propose a "contraction" model, which permits a weighted

combination between SEU and MEU, and the implications would be similar to those of

MEU and �-MEU.

Maccheroni, Marinacci and Rustichini (2006) propose an alternative generalization of

MEU called Variational Preference (VP) as follows:

min�2� f� (Ri) v (w) + ci (�)g ;

where ci (�) : � (S) ! [0;1) is an index of ambiguity aversion. They show that VP could

be reduced to MEU if ci is an indicator function for �i. If we restrict ci to be the same

for all lotteries, then it will imply all lotteries in Part I are the same, which is obviously

implausible, while there will be no testable predictions if there are no restrictions on ci: One

approach is to make ci and cj the same conditioning on the priors that are common to i and

8Ghirardato, Maccheroni, and Marinacci (2004) also axiomatize this representation where � is constant.
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j while ci and cj each becomes unbounded when the underlying prior does not belong to the

respective sets of priors. In this case, we have:

min fV P ([n; 100� n]) ; V P ([0; n] [ [100� n; 100])g is constant for all n;

which is rejected by our Observation 1. The other approach permits size-dependent c func-

tions, if ci becomes smaller when the size of ambiguous states becomes larger, then VP is

able to accommodate the observed aversion to increasing size of ambiguity in Part I. But,

for Part II treatments, we have rn � un for all n under Conditional Symmetry, which does

not �t Observation 4.

4.3 Two Stage Approach

The idea of linking ambiguity aversion to aversion to two stage risks coupled with a failure

of the reduction of compound lottery axiom (ROCLA) is evident in the works of Becker and

Brownson (1964) and Gardenfors (1979). This is formalized in Segal (1987) who proposes

a two-stage model of ambiguity aversion with a common rank-dependent utility for both

�rst and second stage risks. Maintaining a two-stage setting without requiring ROCLA,

several subsequent papers (Klibano¤ et. al., 2005; Nau, 2006; Ergin and Gul, 2009; Seo

2009) provide axiomatizations of a decision maker possessing distinct preferences across the

two stages to model ambiguity aversion. We shall discuss successively here the implications

of our data on adopting a two-stage approach using both identical and distinct preference

speci�cations for the two stages.

To facilitate our analysis, we impose the following assumption.

Belief Consistency: Stage-1 beliefs �i for all i in Part I are updated using Bayesian rule from

�B2 which has the maximal support (set of ambiguous states).

In the sequel, we assume uniform stage-1 beliefs �A on the set of ambiguity states A for

each ambiguous lottery, and discuss successively the implications of adopting a two-stage

approach using both identical and distinct utility functions. The assumption of uniform

stage-1 beliefs follows from symmetry, conditional symmetry together belief consistency. We
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o¤er an induction based argument as follows. Consider a skewed ambiguity in which only

one ball has unknown color. Given conditional symmetry, a decision maker is indi¤erent

between red and black conditioning on this unknown ball. This implies that Stage-1 belief

�[0;1] takes the same value for each state f0g and f1g. Similarly, conditional symmetry and

belief consistency implies that �[0;2] (f0g) equals �[0;2] (f1g) which in turn equals �[0;2] (f2g).

This argument can be extended to show that stage-1 belief �[0;100] assumes the same value

for all states, i.e., stage-1 beliefs are uniform.

Same Utility in Both Stages

ROCLA has been invoked in evaluating compound lotteries using di¤erent NEU models.

Another approach, called compound independence, is to replace each branch of a compound

lottery by its CE and evaluate the resulting simple lottery. Both approaches are equivalent

under EU, but this is generally not the case for NEU models. Segal (1987, 1990) applies

rank-dependent utility (Quiggin 1982) with compound independence but not ROCLA and

showed that the decision maker can exhibit ambiguity aversion under certain restrictions on

the probability weighting function. Segal�s representation is as follows:R
v (c�) df (Mi) ; where c� = v�1 (v (w) f (� (Ri))) ;

where f is an increasing probability weighting function, c� is the CE for a stage-2 risk �;

and Mi is the cumulative distribution function of �i, which is linear due to uniform belief.

Assuming a convex probability weighting function f; we have the following implications:

B0 � S1 � S2 � S3 � S4 � B2; B1 � D1 � D2 � D3 � D4 � B2 and B0 = B1 � Pj:

The intuition for these implications is the following: for two-point group fn; 100� ng,

as n deviates from 50, the decision weight on stage-2 risk f100� ng becomes f (0:5), which

is less than 0:5 due to the convexity of f , thus the evaluation drops at �rst since the value

changes of fng and f100� ng relative to f50g are the same when n is close to 50. As

n decreases, this e¤ect is o¤set by the e¤ect that the value of f100� ng (f (1� bn) v (w))
increases faster than the value of fng (f (bn) v (w)) drops, which is again due to the con-
vexity of f , thus creating a reversal at last. The minimum point occurs at n? such that
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f 0 (1� bn?) =f 0 (bn?) = (1� f (0:5)) =f (0:5) ; which could be 10 as in Observation 2.
For the interval group [n; 100� n], the intuition is a bit more complicated: as n deviates

from 50, the decision weight on the best stage-2 risk f100� ng is f (1= (2n+ 1)), which

becomes disproportionately smaller compared to that on the other stage-2 risks. To the

opposite, the decision weight on the worst stage-2 risk fng is 1 � f (2n= (2n+ 1)) ; which

becomes disproportionately larger. This e¤ect of changes in decision weights o¤sets the e¤ect

of increasing value of f100� ng, thus we do not have the reversal when n approach 0 as in

point group. The intuition for the disjoint group is similar.

With the same restrictions on f; we can have rn � un for n small while rn � un for n

large.9 Next, we show by an intuitive example that the implications for cross group compar-

isons under the same restrictions may fail. Consider the lotteries [49; 51] and f49; 51g ; the dif-

ference between these two is that the decision weight on f50g in lottery [49; 51] is transferred

to f49g and f51g in lottery f49; 51g ; and the transferred weight to f51g : f (1=2)� f (1=3) ;

is less than that to f49g : f (2=3)�f (1=2) ; due to the convexity of f . Thus, similar intuition

as that for two-point group suggests that [49; 51] � f49; 51g ; contradicting Observation 3.

Besides RDU, one may also consider other NEU models, including (semi) weighted utility

(Chew, 1983; Chew, 1989) and disappointment aversion utility (Gul 1991) in the class of

betweenness models. Observation 1 shows that the valuation of [n; 100� n] is increasing in n

while the valuation of [0; n][ [100� n; 100] is decreasing in n:Moreover, interval group starts

from [0; 100] and ends at f50g while disjoint group starts from f0; 100g and ends at [0; 100] :

Due to the insigni�cant di¤erence between f50g and f0; 100g in Observation 2, there must

exist some n? such that [n?; 100� n?] � [0; n?] [ [100� n?; 100] ; then stage-1 betweenness

would imply [n?; 100� n?] � [0; n?] [ [100� n?; 100] � [0; 100] ; which is incompatible with

Observation 1.

Distinct Utilities across Two Stages

One may argue that stage-1 risk and stage-2 risk are distinct hence we need to depart from

9See Segal (1987) problem 3 for an example
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having two identical utility functions as in Segal (1987). Several papers, e.g., Klibano¤,

Marinacci and Mukerji (2005), Nau (2006), and Seo (2009), provide a two-stage model with

distinct EU�s, labeled DEU, as follows:R
� (c�) d�i; where c� = v�1 (� (Ri) v (w)) ;

where � is stage-1 utility function and v stage-2 utility function, and � being more concave

than v corresponds to �smooth ambiguity aversion� in their model. Given that � � v�1 is

concave, we have the following implications.

1. [0; 100] is between [n; 100� n] and [0; n] [ [100� n] :

2. Within group comparison. B0 � P1 � P2 � P3 � P4 � B1 for two-point ambiguity,

B0 � S1 � S2 � S3 � S4 � B2 for interval ambiguity, and B1 � D1 � D2 � D3 � D4 � B2

for disjoint ambiguity.

3. Cross group comparison. [n; 100� n] � fn; 100� ng � [0; n] [ [100� n] :

Implication 1 is due to stage-1 independence10 while implications 2 and 3 are straight-

forward as the decision maker is averse to stage-1 mean-preserving spread in terms of the

distribution of CEs. In particular, Implication 1 holds with only uniform belief. But, Impli-

cation 1 is incompatible with Observation 1 while Implication 2 and 3 is incompatible with

Observation 1, 2 and 3. For Part II treatments, a concave ��v�1 implies that rn � un which

is rejected by Observation 4. Thus we need to abandon both uniform belief and concavity

of � � v�1 for DEU to accommodate the observed behavior.11

One may consider adopting two distinct NEU models across two stages (see Ergin and

Gul, 2009). As observed earlier, we can rule out independence or betweenness as candidates

for Stage-1 utility and consider instead RDU. With Stage-1 RDU, it is clear that adopting

EU for the second stage cannot generate a reversal for the point group since the utility for

fn; 100� ng ; given by f (0:5) (1� bn) v (w) + (1� f (0:5)) bnv (w) ; is monotonic in n. More
generally, suppose that the stage-2 utility is similar to RDU. Recall that two-stage RDU

10The assumption of second order independence in Klibano¤, Marinacci and Mukerji (2005) has been
further discussed in Epstein (2010) and Klibano¤, Marinacci and Mukerji (2012).
11Numerical examples of Segal (1987) and Klibano¤, Marinacci and Mukerji (2005) are provided in Ap-

pendix C.

18



with the same convex probability weighting functions fails only in across-group comparison,

now consider a convex stage-1 probability weighting function f and a piecewise linear stage-2

weighting function g connecting 0 to f (0:5) and f (0:5) to 1. Similar intuitions as in Segal

(1987) apply when one considers implications for within group comparisons. For across-group

comparison, the utility for a two-point lottery fn; 100� ng becomes f (0:5) g (1� bn) v (w)+
(1� f (0:5)) g (bn) v (w) which is constant, and will be higher than the utility for the interval
group [n; 100� n] ; which is monotonically decreasing. Thus, we may perturb the function

g to be strictly convex and obtain a reversal in two-point group, hence deriving implications

of a two-stage distinct-RDU model which are compatible with our observations.

4.4 Source Preference Approach

The idea of source dependence and familiarity bias was suggested in several papers by Amos

Tversky and his colleagues in the 1990�s (Tversky and Kahneman, 1992; Heath and Tversky,

1992; Fox and Tversky, 1995). Subsequently, Chew and Sagi (2008) provide an axiomatic

model of source preference in terms of limiting probabilistic sophistication to smaller families

of events �decision makers behave as if they have sub-domains within which probabilistic

sophistication holds. Adapted to our setting, their model endogenously delivers a one-stage

representation for the benchmark lotteries, B0, B1, and B2, and a two-stage representation

for the various forms of partial ambiguity in which the unknown red and black cards form

a conditional small world while the rest forms the other one. Notice that the source view

of partial ambiguity can accommodate the two-stage approach by assuming that all states

fng are exchangeable. In the following, we derive the implications of our data for a di¤erent

application of source preference approach to the various partial ambiguity treatments.

Interval Ambiguity ([50� n; 50 + n]): The two end-intervals whose total length is 100�

2n are known � half red and half black � while the interval portion with length 2pn is

ambiguous. Assume that events of equal length within "known" and within "ambiguous"

are exchangeable, the overall CE is given by:
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v�1 (2bnv (d) + (1� 2bn) v (c)) ;
where v is the stage-1 utility and c = CEk

�
1
2
�w +

1
2
�0
�
and d = CEu

�
1
2
�w +

1
2
�0
�
with CEk

and CEu as the CE functionals for known and ambiguous domains respectively. Here, c > d

corresponds to ambiguity aversion.

Disjoint Ambiguity ([0; n][ [100� n; 100]): Either of the two end intervals with length n

is ambiguous, while the remainder with length 100� n is either all red or all black. Assume

that events of equal length within "either or" are exchangeable, the CE is given by:

v�1 (bnv (d) + (1� bn) v (c0)) ;
where c0 = CEe

�
1
2
�w +

1
2
�0
�
with CEe as the CE functional for the either all red or all black

domain. Here, c0 > d corresponds to another form of ambiguity aversion which matches

the observed pattern of B1 � B2. Notice that the above expression for CE converges to

v�1 (0:5v (d) + 0:5v (c0)) rather than d as n approaches 50: This relates to the dyadic decom-

position of [0; 100] into subintervals which are individually either all red or all black discussed

in Section 2. For the source model to deliver the same CE for B2, we need to restrict its

evaluation to undecomposed intervals of ambiguity.

The above implication of discontinuous behavior at n = 50 does not appear to be com-

patible with the relatively smooth change of CE for disjoint group in the overall data. This

suggests that subjects may view the size of ambiguous states in [0; n][ [100�n; 100] as being

2n, while viewing 100� 2n as being either all red or all black. Should subjects possess this

incorrect understanding, the CE would be given by:

v�1 (2bnv (d) + (1� 2bn) v (c0)) ;
which will converge continuously to d for the full ambiguity case.

Two-point Ambiguity (f50� n; 50 + ng): The two end intervals whose total length is

100� 2n are known - half red and half black - while the interval portion 2n is either all red

or all black, and the CE is given by:

v�1 (2bnv (c0) + (1� 2bn) v (c)) :
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We have the following implications on the source model.

1. For interval, disjoint and two-point ambiguity, monotonicity alone of v implies B0 � S1 �

S2 � S3 � S4 � B2 , B1 � D1 � D2 � D3 � D4 � B2 and B0 � P1 � P2 � P3 � P4 � B1:

2. Pj � Sj � Dj if c � c0 � d under the misperceived view of Dj:

Note that these two implications holds with only probabilistic sophistication on stage-1

utility, which can take a variety of forms besides EU.

3. For Part II, the CE is v�1 (2bnv (d)) for un; and cn = CEk (bn�w + (1� bn) �0) for its risk
counterpart rn. When n is small, suppose we have cn > bnw > 2bnd (the �rst inequality
corresponds to risk seeking while the second inequality corresponds to ambiguity aversion).

Then v (cn) > v (2bnd) > 2bnv (d) if v is concave, which is incompatible with Observation 4.
With stage-1 utility taking on a NEU form, the speci�cation can exhibit the desired behavior.

For example, with stage-1 WU, CE for un becomes v�1 (2bn! (d) v (d) = (2bn! (d) + 1� 2bn)) ;
which can accommodate the observed a¢ nity in small probability and aversion in moderate

probabilities if the weighing function satis�es ! (d) > 1; after normalizing ! (0) = ! (w) = 1.

Alternatively, with stage-1 RDU, CE for un is then given by v�1 (f (2bn) v (d)) ; which can
also �t Observation 4 if probability weighting function f exhibits an inverted S shape.

4.5 Summary

Without further assumptions to render more tractability, most models can explain a good

range of the observed behavior. The following table summarizes the implications from various

models based on additional assumptions that are speci�c to the di¤erent models. It is

worthwhile to revisit the behavior of the 2-point ambiguous lotteries fn; 100 � ng as it

approaches B1 = f0; 100g whose either all red or all black nature may give it some semblance

of B0 = f50g:Among subjects with nonconstant CE�s for the 2-point ambiguous lotteries,

22:4% assign nonincreasing CE�s as n approaches 50 while 30:0% assign nonincreasing CE�s

only until n equals 40 when there is a reversal with the CE being close to that of B0. The

data suggest that some subjects see B1 as B0 due to its all red or all black nature. To the
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extent this may be the case, the observed discontinuous behavior in the two-point group runs

counter to several models of ambiguity reviewed in this section. One way to address this

discontinuity is to posit that some subjects do view B1 and B0 as being similar and assign

them similar values for their CE�s. This accounts for the tick with an asterisk for MEU,

�-MEU, DEU, and source preference in Table 1 below. A cross with an asterisk indicates

a failure to account for the corresponding observed behavior under some speci�c auxiliary

condition discussed in the preceding subsections.

EU NEU EU NEU
Obs  1 Aversion to size of A S and A D ü x* x* x* x ü x* ü ü
Obs  2 Aversion to spread of A P  except at B 1 ü ü ü* ü* x ü ü* ü ü*
Obs  3 2Point > Interval > Disjoint ü ü x* x* x x* x* ü ü

Skewed Affinity to ambiguity ü x x* x x ü x* ü ü
Moderate Aversion to ambiguity ü ü ü ü x ü ü ü ü

*under additional auxiliary conditions

Source

Part I

Part II

Attitude towards Partial Ambiguity DistinctSame
MEUαMVP

Multiple Priors
CEU

 TwoStage

Table 1. Summary of implications of our data for di¤erent models

5 Conclusion

Much of the research following Ellsberg (1961) has tended to focus on ambiguity aversion

in an all or nothing fashion � either fully known or fully ambiguous (see review in the

introduction) with few exceptions, e.g., Becker and Brownson (1964) and Curley and Yates

(1985). In this paper, we introduce novel variants of partial ambiguity, namely two-point

ambiguity and disjoint ambiguity, study attitude towards partial ambiguity experimentally,

and discuss the implications of the observed behavior on a number of models of ambiguity

attitude. Our results contribute to a growing experimental literature on testing various

models of decision making under uncertainty. Hayashi and Wada (2011) make use of a

�snakes and ladder�game and �nd evidence against the descriptive validity of MEU. Using

a design involving the two-color urn being drawn twice with replacement, Yang and Yao

(2011) show that both MEU and DEU inherit speci�c implications which are incompatible
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with observed behavior. L�Haridon and Placido (2010) test Machina�s (2009) examples of

several Ellsbergian variants which are shown in Baillon, L�Haridon, and Placido (2011) to

violate the implications of MEU, DEU, VP in addition to CEU. Machina (2012) o¤ers further

challenge to ambiguity models with additional Ellsbergian variants, which along with his

2009 examples turn out to be compatible with the representation in Segal (1987) according

to Dillenberger and Segal (2012).12

Partial ambiguity o¤ers a potentially fruitful avenue to extend existing models to situa-

tions where the information possibilities are incomplete or con�icting. Consider an example

due to Gardenfors and Sahlin (1982):

Consider Miss Julie who is invited to bet on the outcome of three di¤erent tennis

matches. As regards match A, she is very well-informed about the two players.

Miss Julie predicts that it will be a very even match and a mere chance will

determine the winner. In match B, she knows nothing whatsoever about the

relative strength of the contestants, and has no other information that is relevant

for predicting the winner of the match. Match C is similar to match B except that

Miss Julie has happened to hear that one of the contestants is an excellent tennis

player, although she does not know anything about which player it is, and that

the second player is indeed an amateur so that everybody considers the outcome

of the match a foregone conclusion.

The kind of risks illustrated in this example �match A for known risk, match B for inter-

val ambiguity, and match C for disjoint ambiguity �seem representative of what we observe

including the setting of entrepreneurial risks as suggested by Knight (1921). In addition,

attitude towards skewed ambiguity, especially the extreme ones, is of particular interest

when one concerns designing lottery tickets (Quiggin, 1991) such as whether consumers with

12Some experimental studies of behavior relating to ambiguity attitude includes those linking it to com-
pound lotteries (Yates and Zukowski, 1976; Chow and Sarin, 2002; Halevy, 2007; Abdellaoui, Klibano¤, and
Placido, 2011; Miao and Zhong, 2012) and those linking it to familiarity bias (Tversky and Kahneman 1992;
Chew et al, 2008; Abdelloui et al, 2011; Chew, Ebstein, and Zhong, 2012).
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skewed ambiguity a¢ nity may prefer pari-mutuel bets over �xed odd bets. Finally, we note

that the notion of partial ambiguity can be used in domains where ambiguity aversion has

been successfully applied, including �nance (Epstein and Wang, 1994; Epstein and Schnei-

der, 2008; Mukerji and Tallon, 2001), contract theory (Mukerji, 1998), and game theory

(Marinacci, 2000).
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A Instructions

DECISION MAKING STUDY

GENERAL INSTRUCTIONS

Welcome to our study on decision making. The descriptions of the study contained in this

instrument will be implemented fully and faithfully.

Each participant will receive on average $20 for the study. The overall compen-

sation includes a $5 show up fee in addition to earnings based on how you make

decisions.

All information provided will be kept CONFIDENTIAL. Information in the study

will be used for research purposes only. Please refrain from discussing any aspect of the

speci�c tasks of the study with any one.

1. The set of decision making tasks and the instructions for each task are the same for

all participants

2. It is important to read the instructions CAREFULLY so that you understand the

tasks in making your decisions.

3. At ANY TIME, if you have questions, please raise your hand.

4. PLEASE DO NOT communicate with others during the experiment.

5. Do take the time to go through the instructions carefully in making your decisions.

6. Cell phones and other electronic communication devices are not allowed.
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INSTRUCTION FOR PART I

This is the �rst of two parts for today�s study. It is made up of 15 decision sheets. Each

decision sheet is of the form illustrated below.

Option A Option B Decision

1 A B1 A B

2 A B2 A B

3 A B3 A B

4 A B4 A B

5 A B5 A B

6 A B6 A B

7 A B7 A B

8 A B8 A B

9 A B9 A B

10 A B10 A B

Each such table lists 10 choices to be made between a �xed Option A and 10 di¤erent Option

B�s.

Option A involves a lottery, guessing the color of a card randomly drawn from a deck of 100

cards with di¤erent compositions of red and black. If you guess correctly, you receive $40;

otherwise you receive nothing. Di¤erent tasks will have di¤erent compositions of red and

black cards as described for each task.

The Option B�s refer to receiving the speci�c amounts of money for sure, and are arranged

in an ascending manner in the amount of money.

For each row, you are asked to indicate your choice in the �nal �Decision�column �A or B

�with a tick (
p
).

Examples of Option A

Each example involves your drawing a card randomly from a deck of 100 cards containing
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red and black cards.

Example 1: The deck has 50 red cards and 50 black cards as illustrated below.

RED 0 100

BLACK 100 050

50

Example 2: The deck has either 25 or 75 red cards with the rest of the cards black, as

illustrated below.

RED 0 100

BLACK 100 0

25

75

75

25

Example 3: The number of red cards may be anywhere between 0 and 25 or between 75

and 100 with the rest of the cards black, as illustrated below.

RED 0 100

BLACK 100 075 25

25 75

Example 4: The number of red cards may be anywhere between 25 and 75 with the rest of

the cards black, as illustrated below.

RED 0 100

BLACK 100 0

25

75

75

25

Example 5: The number of red cards is anywhere between 0 and 100 with the rest of the
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cards black, as illustrated below.

RED 0 100

BLACK 100 0

Selection of decision sheet to be implemented: One out of the 15 Decision Sheets

(selected randomly by you) will be implemented. Should the sheet be chosen, one of your

10 choices will be further selected randomly and implemented.
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Sample Decision Sheet of PART I

PART I DECISION SHEET - DECK [0-10]U[90-100]

This situation involves your drawing a card randomly from a deck of 100 cards containing

red and black cards. The number of red cards may be anywhere from 0 to 10 or from 90 to

100 with the rest of the cards black, as illustrated below.

RED 0 100

BLACK 100 0

10 90

90 10

Option A: You guess the color �rst. You then draw a card from the deck of cards constructed

in the above described manner. If you guess the color correctly, you receive $40. Otherwise,

you receive $0.

The Option B column lists 10 amounts each corresponding to what you will receive for sure

if you choose this option.

DECISION: For each of the 10 rows, please indicate your decision in the �nal column with

a tick (
p
).

Option A Option B Decision

1 Betting on the cards Receiving $6 for sure A B

2 Betting on the cards Receiving $9 for sure A B

3 Betting on the cards Receiving $11 for sure A B

4 Betting on the cards Receiving $13 for sure A B

5 Betting on the cards Receiving $14 for sure A B

6 Betting on the cards Receiving $15 for sure A B

7 Betting on the cards Receiving $16 for sure A B

8 Betting on the cards Receiving $18 for sure A B

9 Betting on the cards Receiving $20for sure A B

10 Betting on the cards Receiving $23 for sure A B
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INSTRUCTION FOR PART II

This is the second and �nal part for today�s study. In this part, you will make 6 binary

choices. At the end of this part, one of you will be randomly chosen to receive the outcome

of one of his/her decisions, also randomly chosen, out of the 6 binary choices made.

Example: Consider Option A and Option B below.

Option A: This bet involves your drawing a card randomly from a deck of 100 cards containing

red and black cards. The deck has 25 red cards, and 75 black cards. If you draw the red

card, you win $40, otherwise you win nothing.

RED 0 100

BLACK 100 0

25

75

Option B: This bet involves your drawing a card randomly from a deck of 100 cards containing

red and black cards. The number of red cards may be anywhere from 0 to 50 with the rest

of the cards black. If you draw the red card, you win $40, otherwise you win nothing.

RED 0 100

BLACK 100 0

50

50

Please circle your choice: A B
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Sample Decision Sheet of PART II

DECISION SHEET FOR PART II

Consider Option A and Option B below.

Option A: This bet involves your drawing a card randomly from a deck of 100 cards containing

5 red cards and 95 black cards. If you draw a red card, you receive $40. Otherwise, you

receive $0.

RED 0 100

BLACK 100 0

5

95

Option B: This bet involves your drawing a card randomly from a deck of 100 cards containing

red and black cards. The number of red cards may be anywhere from 0 to 10 with the rest

of the cards black. If you draw a red card, you receive $40. Otherwise, you receive $0.

RED 0 100

BLACK 100 090

10

Please circle your choice: A B
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B Supplementary Tables

Table S1. Summary statistics of switching point for the lotteries in Part I.

Ambiguity Mean S.E. N
[0,100] 0.125 0.044 56
[0, 80] 0.250 0.057 56
[0, 60] 0.607 0.065 56
[0, 40] 0.696 0.061 56
[0, 20] 0.696 0.061 56
[0, 10] 0.696 0.061 56

Table S2. Proportion of subjects choosing the ambiguous lottery.

Table S3. Spearman correlation of CEs for lotteries in Part I.
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Ambiguity attitude P1 P2 P3 P4 B1 S1 S2 S3 S4 B2 D1 D2 D3 D4
Risk attitude 0.364 0.439 0.484 0.515 0.098 0.411 0.608 0.634 0.471 0.567 0.619 0.638 0.580 0.504

Table S4. Spearman correlation of risk attitude and ambiguity attitudes in Part I.

Table S5. Spearman correlation of ambiguity attitudes in Part I.

[0,100] [0,80] [0,60] [0,40] [0,20] [0,10]
[0,100] 1
[0,80] 0.530 1
[0,60] 0.194 0.380 1
[0,40] 0.132 0.112 0.423 1
[0,20] 0.015 0.112 0.344 0.578 1
[0,10] 0.220 0.067 0.344 0.324 0.578 1

Table S6. Spearman correlation of ambiguity attitudes in Part II.

C Numerical Examples

The following are numerical examples of two-stage RDU (Segal 1987) and two-stage distinct

EU (Klibano¤, Marinacci, and Mukerji, 2005), with v (x) =
p
x (normalize v (w) = 1);

f (p) = p2 and � (x) = x1=3:
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Solid Line: Two-point Group f50� n; 50 + ng :

Dashed Line: Interval Group [50� n; 50 + n] :

Dotted Line: Disjoint Group [0; 50� n] [ [50 + n; 100] :

x� axis: n:

y � axis: CE for di¤erent treatments.
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