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Abstract

What is the best way to reduce trade frictions when resources are scarce? To an-

swer this question, we develop a framework that nests previous general equilibrium

gravity models and show that the macro-economic implications of these various models

depend crucially on two key model parameters, which we term the “gravity constants.”

Based only on the value of the gravity constants, we derive sufficient conditions for

the existence and uniqueness of the trade equilibrium and, given observed trade flows,

completely characterize all comparative statics for any change in bilateral trade fric-

tions. We then develop a methodology for estimating these gravity constants without

needing to assume a particular micro-foundation of the gravity trade model. Finally,

we use these results to derive the set of trade friction reductions that (to a first-order)

maximize welfare gains given an arbitrary constraint.

∗We thank Andy Atkeson, David Atkin, Lorenzo Caliendo, Arnaud Costinot, Jonathan Dingel, Dave
Donaldson, Pablo Fajgelbaum, John Geanakoplos, Penny Goldberg, Sam Kortum, Xiangliang Li, Giovanni
Maggi, Kiminori Matsuyama, Ralph Ossa, Steve Redding, Andres Rodriguez-Clare, Chris Tonetti, and
numerous seminar and workshop participants for excellent comments and suggestions. A Matlab toolkit
which is the companion to this paper is available on Allen’s website. All errors are our own.
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1 Introduction

What is the best way to reduce trade frictions when resources are scarce? This question is

of first-order importance to policy makers, but trade economists have made little progress

finding an answer. A primary difficulty is that the numerous and varied general equilibrium

forces at play in trade models imply that changing any particular bilateral trade friction will

affect not only those trading partners but also all other locations in the world. This makes it

difficult to predict the effect of any particular change in trade frictions, let alone determine

the optimal set of trade friction reductions. Adding to the difficulty is that while some work

has been done understanding general equilibrium forces in particular models, little is known

about the extent to which these forces differ across models. At a first glance, characterizing

the optimal set of bilateral trade friction reductions while accounting for general equilibrium

forces without relying on a particular model seems a daunting task.

In this paper, we attempt this daunting task. To do so, we develop a framework that

nests previous gravity trade models in order to provide a “universal” characterization of

their general equilibrium forces.1 We show that the main theoretical properties and, given

observed trade flows, all comparative statics of gravity trade models depend solely on two key

model parameters that we call “gravity constants.” We then provide closed form expressions

for the complete set of (local) comparative statics and use these expressions to develop a

method of estimating the gravity constants without needing to choose a particular trade

model. Finally, we use the resulting estimates to derive the set of unilateral and multilateral

trade friction reductions that (to a first-order) maximize welfare gains given an arbitrary

constraint.

The universal gravity framework we develop is based on four restrictions: (i) a “modern”

version of gravity, whereby bilateral trade flows depend on (endogenous) exporter and im-

porter shifters and (exogenous) bilateral trade frictions;2 (ii) aggregate output equals total

sales; (iii) trade is balanced; and (iv) (gross) income is a log-linear function of the exporting

and importing shifters (which practically translates to the condition that gross income is

proportional to labor income). The aforementioned gravity constants are simply the coeffi-

cients of this log-linear function. It turns out that these assumptions – which are ubiquitous

1Examples of gravity models covered under our specification is perfect competition models such as An-
derson (1979), Anderson and Van Wincoop (2003), Eaton and Kortum (2002), Caliendo and Parro (2010)
monopolistic competition models such as Krugman (1980), Melitz (2003) as specified by Chaney (2008), Arko-
lakis, Demidova, Klenow, and Rodŕıguez-Clare (2008), Di Giovanni and Levchenko (2008), Dekle, Eaton,
and Kortum (2008), and the Bertrand competition model of Bernard, Eaton, Jensen, and Kortum (2003);
see Table 1 for details.

2This version of the gravity model was first introduced by Eaton and Kortum (2002), Anderson and
Van Wincoop (2003), and Redding and Venables (2004). Baldwin and Taglioni (2006) and Head and Mayer
(2013) carefully discuss the econometric issues arising from the use of this specification.
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throughout the trade literature – impose sufficient structure on aggregate trade flows to

completely characterize all general equilibrium interactions.

We derive sufficient conditions for the existence and uniqueness of the equilibrium of the

model that depend solely on the gravity constants.Given the simple mapping of different

gravity models to gravity constants, these sufficient conditions are straightforward to check

and relax the sufficient conditions presented by Alvarez and Lucas (2007). This methodology

can also be extended to consider multiple sectors of production, as in Chor (2010), Costinot,

Donaldson, and Komunjer (2010), and Caliendo and Parro (2010) and economic geography

models with mobile factors of production as in Helpman (1998) and Allen and Arkolakis

(2014).

When trade frictions are “quasi-symmetric” (as is assumed in much of the empirical

gravity literature, e.g. Eaton and Kortum (2002) and Waugh (2010)), we further show that

the unique way of satisfying trade balance is for trade flows to be bilaterally balanced. This

implies an equilibrium relationship between the exporting and importing shifters, a result

(implicitly) used by Anderson and Van Wincoop (2003), Allen and Arkolakis (2014) and

others to simplify the equilibrium system of equations for particular models. Given this

result, we show that quasi-symmetric trade costs extend the range of gravity constants for

which uniqueness can be ensured.

Our second theoretical result is to show that there exist two “dual” interpretations of the

general equilibrium gravity model. In the first interpretation, a planner maximizes world

income subject to trade remaining balanced and an aggregate world resource constraint. In

the second interpretation, a planner maximizes a weighted average of world welfare subject

to only the aggregate world resource constraint, where welfare is assumed to be written as a

function of trade openness (as in the class of trade models considered by Arkolakis, Costinot,

and Rodŕıguez-Clare (2012)). Using these dual interpretations, we apply the envelope the-

orem to derive the elasticity of both world income and world welfare to any bilateral trade

costs, which can both be expressed solely as a function of observed trade flows and the

gravity constants. While the expression for world income is, to the best of our knowledge,

novel, the expression for world welfare has been derived previously for gravity models with

CES demand by Atkeson and Burstein (2010), Burstein and Cravino (2012), and Fan, Lai,

and Qi (2013); our derivation extends this result to any gravity trade model where welfare

can be expressed as a function of trade openness (which Arkolakis, Costinot, Donaldson,

and Rodŕıguez-Clare (2012) show holds for a large class of homothetic utility functions).

This latter results will prove useful for determining the welfare-maximizing trade friction

reductions.

We then turn to the empirical properties of the model by asking what can be said using our
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framework given observed trade flows. We first characterize the extent to which model fun-

damentals can be recovered from the trade data. We show that trade models are intrinsically

under-identified: the same trade data can be perfectly matched by different combinations

of model fundamentals. Notably, the gravity constants cannot be identified from observed

trade flows alone. This result provides a general characterization of the non-identification

inherent to gravity models discussed for particular models by Waugh (2010), Eaton, Kortum,

Neiman, and Romalis (2011), Burstein and Vogel (2012), Ramondo, Rodŕıguez-Clare, and

Saborio-Rodriguez (2012) and Arkolakis, Ramondo, Rodŕıguez-Clare, and Yeaple (2013).

To examine how changes in bilateral trade frictions affect equilibrium trade flows and

incomes we first derive an analytical expression for the (large) matrix of elasticities of all bi-

lateral trade flows to changes in all bilateral trade frictions. As with the aggregate elasticities,

this expression depends only on observed trade flows and the gravity constants, indicating

that apart from these two model parameters, all macro-economic implications – i.e. the

changes in trade flows, gross incomes, and, given the assumption above, welfare – for all

gravity models are the same. We then derive a system of equations that show how arbitrary

(possibly non-infinitesimal) changes to the trade friction matrix affect macro-economic vari-

ables; this expression also depends only on the gravity constants and observed trade flows.

While the non-infinitesimal results generalize those developed by Dekle, Eaton, and Kortum

(2008) and Arkolakis, Costinot, and Rodŕıguez-Clare (2012), the closed form solution for the

trade elasticities is, the the best of our knowledge, the first in the literature.

We then turn to the question of welfare-maximizing trade friction reductions. Given

the closed form expressions of the comparative statics, we show how to calculate the set of

trade friction changes that maximize (to a first-order) the change in welfare for an arbitrary

constraint on the total change in trade frictions. In special cases, this expression also takes

a closed form: for example, the eigenvector corresponding to the largest eigenvalue of the

observed trade flow matrix is the set of trade friction reductions that maximizes the increase

in world welfare, countries are constrained to reduce their trade frictions non-discriminately,

and the costs of trade friction reductions are equal for all countries. While Ossa (2014) uses

a computational approach to calculate optimal tariffs, we offer the first closed form char-

acterization of the welfare-maximizing change in trade frictions in a many location general

equilibrium framework.

More generally, the welfare-maximizing set of trade friction reductions will depend on the

value of the gravity constants, so we show how the general equilibrium gravity estimator can

be combined with the observed trade flows and an observed trade cost shock – in our case,

a number of countries joining the WTO between 1995 and 2005 – to estimate the gravity

constants without needing to specify a micro-economic foundation. Using the analytical ex-
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pression for comparative statics we derive, we develop a new gravity estimator that explicitly

incorporates the general equilibrium effects that a change in the bilateral trade friction be-

tween any two countries has on all other bilateral trade flows. This estimator is in the spirit

of the structural estimation done by Anderson and Van Wincoop (2003); unlike Anderson

and Van Wincoop (2003), however, we derive a closed form solution for estimator, and show

that it can be interpreted as an ordinary least squares regression where the typical gravity

regressors have undergone a transformation to account for general equilibrium effects.

Finally, we use our estimates of the gravity constants to determine the welfare-maximizing

unilateral and multilateral set of trade friction reductions. We assume for simplicity that

all trade frictions are equally costly to reduce, but emphasize that our methodology can be

applied for any arbitrary cost of reducing trade frictions. We find that countries like Cuba

and North Korea have the most to gain from unilaterally reducing their import frictions.

The welfare-maximizing multilateral trade friction reductions are concentrated amongst the

wealthiest countries, which causes the welfare in those countries to disproportionately in-

crease; indeed, the welfare of the poorest countries are actually falls slightly.

Our work is related to a small but growing literature analyzing the structure of general

equilibrium models of trade. Notably, Arkolakis, Costinot, and Rodŕıguez-Clare (2012) derive

a closed form expression for changes in welfare as a function of changes in openness, allowing

for ex-post evaluations of the welfare effects of changes in trade frictions. In contrast, we

derive analytical expressions for all macroeconomic outcomes of interest using only the initial

level of trade flows, thereby allowing for ex-ante predictions of the change in welfare for

possible changes in trade frictions. Notice that in all the models we consider the elasticity

of trade does not vary with the level of trade (for models with variable elasticity see Novy

(2010), Head, Mayer, and Thoenig (2014),Melitz and Redding (2014), and Fajgelbaum and

Khandelwal (2013)). While we assume that the gravity constants are fixed in this paper,

our derivations show how changes to those gravity constants affect the general equilibrium

forces of the model.

Our paper is also related to Costinot (2009), who examines the patterns of trade that hold

true across many models. His primary focus, however, is on the specialization of countries

in particular sectors, whereas we are concerned with the pattern of aggregate trade flows

in a gravity framework. More broadly, our paper shows that the macroeconomic conditions

inherent in gravity trade models impose sufficient structure so that its particular microeco-

nomic details do not pose a problem in its characterization. Given the difficulties arising in

guaranteeing the uniqueness of equilibrium and characterizing comparative statics in general

equilibrium models, this constitutes a significant benefit.3

3See Kehoe (1985) and Shafer and Sonnenschein (1993) discussing issues arising from aggregation or the
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The paper is organized as follows. In the next section, we present the universal framework

and discuss how it nests existing general equilibrium gravity models. In Section 3, we present

the theoretical results for existence and uniqueness, as well as the dual interpretations of the

problem. In Section 4, we present the empirical results for identification and comparative

statics given observed trade flows. In Section 5, we apply these results study optimal trade

friction reductions. Section 6 concludes.

2 The universal gravity framework

Consider a world comprised of a set S ≡ {1, ..., N} of locations.4 Let Yi denote the gross

income of location i, Xij the total value of location j’s imports from location i, and Kij > 0

the associated bilateral trade frictions. In our universal gravity framework, the endogenous

outcomes of the model are summarized by the variables γi and δi, which capture the exporting

and importing “capacity” of each location, respectively. In the context of a particular micro-

founded model, these variables will map to a combination of endogenous model outcomes –

such as wages or the price index of a location – and model fundamental parameters – such

as productivities or labor endowments.

We focus our attention on models satisfying several equilibrium conditions. These condi-

tions are sufficient to fully characterize the general equilibrium structure of the models yet

general enough to nest a number of seminal gravity trade models.

Gravity. Our first condition restricts our attention to trade models which yield a gen-

eralized form of the gravity equation pioneered by Tinbergen (1962).

Condition 1. For any countries i ∈ S and j ∈ S, the value of aggregate bilateral trade flows

is given by Xij = Kijγiδj.

The two endogenous variables have an explicit role in this equation as exporting and

importing shifters. The exogenous bilateral trade frictions capture the effects of bilateral

trade costs; they could be inverse functions of bilateral distance, various exporting barriers

faced by exporting countries, etc. Note that larger values of Kij indicate lower bilateral trade

frictions.

Goods market clearing and trade balance. We proceed by defining two equilibrium

conditions that are standard assumptions for modern general equilibrium gravity models:

goods market clearing and trade balance. We say that goods markets clear if the output

consideration of production.
4The choice of a finite number of locations is not necessary for the the results that follow, but it saves on

notation, avoids several thorny technical issues, and is consistent with the majority of the trade literature.
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for all i ∈ S is equal to the value of the good sold to all destinations. This condition is

practically an accounting identity. Formally:

Condition 2. For any location i ∈ S, Yi =
∑

j∈S Xij.

Furthermore we assume that trade is balanced, i.e. that output for all i ∈ S is equal to

the amount spent on good purchased from all other destinations:

Condition 3. For any location i ∈ S, Yi =
∑

j∈S Xji.

While balanced trade is a standard equilibrium condition in general equilibrium gravity

models, it is important to note that trade is not balanced empirically. This empirical discrep-

ancy is an inherent limitation arising from the use of a static model to explain an empirical

phenomenon with dynamic aspects. However, given both its ubiquity in the literature and

the necessarily ad hoc nature of any alternative assumption (e.g. exogenous trade deficits),

balanced trade seems the natural assumption on which to focus. We relax this assumption in

the characterization of the empirical properties of the model in Section 4 when we introduce

exogenous deficits across countries, following Dekle, Eaton, and Kortum (2008).5

Relationship between income and the shifters. Our last condition postulates a

log-linear parametric relationship between gross income and the exporting and importing

shifters:

Condition 4. For any location i ∈ S, Yi = Biγ
α
i δ

β
i , where we define α ∈ R and β ∈ R to be

the gravity constants and Bi > 0 is an (exogenous) location specific shifter.

Condition C.4 regulates the extent to which income responds to changes in the two

endogenous shifters. The gravity constants determine the importance of the exporting and

importing shifters in determining a location’s income, which will prove crucial in determining

the general equilibrium forces of the system. In practice, C.4 is analogous to the standard

condition that the income in a location is proportional to the income earned by the factors

of production in that location (e.g. local labor). As a result, models in which income is not

proportional to returns to factors will not generally satisfy C.4: for example, by including

tariff revenue as an additive source of income, Ossa (2014) does not satisfy this condition.

5In fact, total income may differ from total spending even in a static setup, e.g. if fixed exporting costs are
partially paid in labor of the exporting location (see e.g. Arkolakis (2010) and Di Giovanni and Levchenko
(2009)). Even in such cases, however, for the trade balance to hold it is sufficient that the income generated
from the fixed exporting cost in each bilateral trading relationship is a constant fraction of bilateral sales, as
pointed out by Arkolakis, Costinot, and Rodŕıguez-Clare (2012).
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Our final condition is a normalization. Note that the system of equations defined by

C.2-C.3 already implies Warlas’ law.6 As a result, we make the following assumption to pin

down the equilibrium level of trade flows.

Condition 5. World income equals to one:7∑
i

Yi = 1. (1)

In what follows, for any given gravity constants α and β, income shifters {Bi} and bilateral

trade frictions {Kij}, we define a general equilibrium gravity model to be a set of export

shifters {γi} and import shifters {δi} that satisfy gravity, goods market clearing, trade bal-

ance, factor market clearing, and the normalization (1), i.e. a general equilibrium gravity

model is any trade model where conditions C.1-C.5 are satisfied.

Example: the Armington model To make things concrete, we will provide a simple

example of a general equilibrium trade model. In the Armington (1969) model, first for-

mulated in general equilibrium by Anderson (1979), each location produces a differentiated

variety (which is sold at marginal cost) and consumers have constant elasticity of substi-

tution (CES) preferences with elasticity of substitution σ and where we denote by Pi the

Dixit-Stiglitz CES price index across all varieties. We assume that production combines

labor and an intermediate input in a Cobb-Douglas fashion, where the share of labor is

given by ζ ∈ (0, 1], and the intermediate input uses the same CES aggregator of goods from

all countries as the final consumption good. Thus, with productivity Ai, the unit cost of

production in location i is simply wζiP
1−ζ
i /Ai.

In this model, the value of bilateral trade from i ∈ S to j ∈ S is:

Xij = τ 1−σ
ij

(
wζiP

1−ζ
i

Ai

)1−σ

P σ−1
j Yj (2)

where wi is location’s i wage, Ai is the location’s productivity and the marginal production

cost is wi
Ai

, τ ij is the iceberg cost of delivering i’s good in destination j, and Yi is again its

income. It is also straightforward to show that output is proportional to wage income and

is given by

Yi = wiLi/ζ (3)

6To see this note that summing these two equations over all i 6= N and equating them we obtain∑
i 6=N

∑
j Xij =

∑
i 6=N

∑
j Xji. By the definition of gross world income being total trade across all markets

we obtain trade balance for the Nth location which implies Warlas’ law.
7This is a valid normalization as long as α 6= β. When α = β, a suitable alternative normalization is∑
i∈S γi = 1. None of the following results, unless explicitly noted, depend on the normalization chosen.
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where Li is the population in location i. According to the definition of gravity, C.1, we have

γi ≡

(
wζiP

1−ζ
i

Ai

)1−σ

, δi ≡ P σ−1
i Yi,

which allows us to write C.4 as

Yi = γ
1

1−σζ
i δ

1−ζ
1−σζ
i A

σ−1
σζ−1

i L
ζ(σ−1)
σζ−1

i ,

so that α ≡ 1
1−σζ , β ≡

1−ζ
1−σζ , and Bi = A

σ−1
σζ−1

i L
ζ(σ−1)
σζ−1

i . Note that if σ > 1 and σζ > 1, then

α, β< 0 and a higher productivity Ai will increase both the exporting ability and the income

of the location. At the same time increases in wages increase exports but decrease income.

Table 1 lists a number of seminal trade models that fall into the universal gravity frame-

work and show how the micro-founded model fundamentals map to the gravity constants α

and β.8 There are several things to highlight from this table: first, while in some models the

elasticity of trade flows to the variable trade cost (often called the “trade elasticity”) maps

one-to-one to a gravity constant, in others it does not. Hence, the trade elasticity and the

gravity constants are distinct parameters in general equilibrium gravity models. Second, the

interpretation of the gravity constants depends on the particular model; as a result, different

micro-foundations for the gravity model may imply different preferred values for the gravity

constants. As we will see in the next two sections, this will prove important, as the gravity

constants determine the strength of the general equilibrium forces in the model.

3 Theoretical properties

We first consider the theoretical properties of the general equilibrium gravity framework.

3.1 Existence and Uniqueness

In this section, we provide sufficient conditions for establishing existence and uniqueness in a

general equilibrium gravity model. We start by formulating the equilibrium system implied

by our assumptions. Using C.2 and C.3 and substituting out Xij and Yi with the definitions

C.1 and C.4, respectively, yields:

8While these models all feature constant elasticity demand, our results hold for all models that satisfy
the conditions below even if they depart from this assumption. See for example the class of homothetic
and non-homothetic demand functions considered by Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare
(2012).
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Biγ
α−1
i δβi =

∑
j

Kijδj (4)

and

Biγ
α
i δ

β−1
i =

∑
j

Kjiγj (5)

and using C.4, C.5 becomes: ∑
i

Biγ
α
i δ

β
i = 1. (6)

Thus, given model fundamentals Bi, Kij and gravity constants α, β, equilibrium is defined

as γi and δi for all i ∈ S such that equations (4), (5) and (6) are satisfied. In the special

case where α = β = 1, it is immediately evident from equations (4) that (5) have a solution

only if the matrices with elements
Kij
Bi

and
Kji
Bi

both have a largest eigenvalue equal to one.

Since this will not generally be true, in what follows we exclude this case.

To proceed, we define xi ≡ Biγ
α−1
i δβi and yi ≡ Biγ

α
i δ

β−1
i . By reformulating the system

in terms of xi, yi (see Appendix A.1 for details), equations (4) and (5) take the form of a

standard system of non-linear equations. It turns out that this reformulation of the problem

provides a method of solving for the trade equilibrium system using functions that map a

compact space onto itself. This has two advantages over the standard formulation given

in equations (4) and (5): first, by restricting the potential solution space, it facilitates the

calculation of the equilibrium; second, it allows us to generalize results used in the study of

integral equations to prove the following theorem:

Theorem 1. Consider any general equilibrium gravity model. If α + β 6= 1, then:

i) The model has a positive solution and all possible solutions are positive;

ii) If α, β ≤ 0 or α, β ≥ 1, then the solution is unique.

Proof. See Appendix A.1.

Note that condition (ii) of Theorem 1 provides sufficient conditions for uniqueness; for

certain parameter constellations (e.g. particular geographies of trade costs), equilibria may

be unique even if the conditions are not satisfied. In practice, however, we have found that

there exist multiple equilibrium for particular geographies when condition (ii) is violated.

The methodology to prove Theorem 1 turns out to be quite general. In what follows, we

provide two useful extensions.
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Multiple sectors

Our approach also can be naturally extended to the cases where there are multiple sectors.

Suppose there are a set s ∈
{

1, ..., S̃
}

of sectors and that the bilateral trade flow between

location i and location j in sector s is

Xs
ij = Ks

ij (γi)
(
δsj
)
,

where Ks
ij can include sector-specific trade frictions or productivities. With multi-sector

gravity models, we implicitly assume that there are no frictions on labor markets so that the

wages in location i is equalized across sectors. That is why we can assume that the origin

effect, γi, is independent of the sector s. Condition C.4 becomes:

Yi = Bi (γi)
α

(∏
s

(δsi )
θt

)β

.

The first two terms are the same as before, but the last term is slightly different from what

we have in a single-sector economy.

The other two equilibrium conditions are:∑
j

Xs
j,i = Bs

i Yi∑
s

∑
j

Xs
i,j = Yi.

The first equation assumes that location i’s expenditure in each sector is a constant fraction of

its total income. The second equation is the extension of the good market clearing condition

we have in a single-sector case.

It turns out that the conditions for uniqueness with multiple sectors are the same as with

a single sector, which we formalize in the following proposition:

Corollary 1. (1) There exists a solution to the multi-sector gravity model if α, β ≤ 0 or

α, β > 1. (2) That solution is unique if α, β ≤ 0 or α, β > 1.

Proof. See Online Appendix B.1.

Note that unlike the single sector case, we cannot prove the existence of a solution when

it is not unique; this is due to the presence of cross-sectoral linkages.
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Economic geography

Our approach can also be naturally extended to allow for labor mobility as in economic

geography models. To do so, we slightly alter condition C.4 to allow for the gross income

in a location to depend additionally on an endogenous constant λ, which can be interpreted

as a monotonic transformation of welfare (which is equalized across locations in economic

geography models). The level of this endogenous constant is then determined by a labor

market clearing condition that can be written as a sum across locations of a log-linear

function of endogenous variables.

Condition 4’. For any location i ∈ S, Yi = 1
λ
Biγ

α
i δ

β
i , where λ > 0 is an endogenous

variable and all other variables are as above. Furthermore, we require that λc =
∑

iCiγ
d
i δ

e
i

for some c, d, e ∈ R.

It is straightforward to show that the economic geography model of Allen and Arkolakis

(2014) (which under certain parametric configurations is isomorphic to the economic geog-

raphy models of Helpman (1998), Redding (2014), and Bartelme (2014)) satisfies Condition

C.4’; see Online Appendix B.3 for details.

Given this alternative condition, we modify part (ii) of Theorem 1 slightly to prove the

following Corollary:

Corollary 2. Consider any economic geography model that satisfies conditions C.1, C.2,

C.3, C.4’, and C.5. Then (i) there exists a solution as long as α + β 6= 1; and (ii) the

equilibrium is unique if α, β ≤ 0 or α, β > 1.

Proof. See Online Appendix B.2.

We should note that Corollary 2 shows that the uniqueness condition presented in Allen

and Arkolakis (2014) holds for an arbitrary set of trade costs, i.e. the assumption in that

paper of symmetric trade costs is not necessary. Indeed, as we now show, assuming a

(generalized) form of trade cost symmetry has important implications for the equilibrium.

3.2 Quasi-symmetry

It turns out that we can extend the range in which uniqueness is guaranteed if we constrain

our analysis to a particular class of trade frictions which are the focus of a large empirical

literature on estimating gravity trade models. We call these trade frictions quasi-symmetric.

Definition 1. Quasi Symmetry: We say the trade frictions matrix K is quasi-symmetric if

there exists a symmetric N ×N matrix K̃ and N × 1 vectors KA and KB such that for all
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i, j ∈ S we have:

Kij = K̃ijK
A
i K

B
j , where K̃ij = K̃ji

Loosely speaking, quasi-symmetric trade frictions are those that are reducible to a sym-

metric component and exporter- and importer-specific components. While restrictive, it is

important to note that the vast majority of papers which estimate gravity equations assume

that trade frictions are quasi-symmetric; for example Eaton and Kortum (2002) and Waugh

(2010) assume that trade costs are composed by a symmetric component that depends on

bilateral distance and on a destination or origin fixed effect.

When trade frictions are quasi-symmetric we can show that the system of equations (31)

and (32) can be dramatically simplified, and the uniqueness more sharply characterized.

Theorem 2. Consider any general equilibrium gravity model with quasi-symmetric trade

costs. Then:

i) The balanced trade condition is equivalent to the origin and destination shifters being

equal up to scale, i.e.

γiK
A
i = κδiK

B
i (7)

for some κ > 0 that is part of the solution of the equilibrium.

ii) If α + β ≤ 0 or α + β ≥ 2, the model has a unique positive solution.

Proof. See Appendix A.2.

Part i) of the Theorem 2 is particularly useful since it allows to simplify the equilibrium

system into a single non-linear equation:

γα+β−1
i = κβ−1

∑
j

K̃ijB
−1
i

(
KA
i

)1−β (
KB
i

)β
γj. (8)

In addition, because the exporter and importer shifters in gravity models will (generally)

be composites of exogenous and endogenous variables, by showing that the two shifters

are equal up to scale, Theorem 2 provides a more precise analytical characterization of the

equilibrium. We should note that the results of Theorem 2 have already been used in the

literature for particular models, albeit implicitly. The most prominent example is Anderson

and Van Wincoop (2003), who use the result to show the bilateral resistance is equal to

the price index.9 To our knowledge, Head and Mayer (2013) are the first to recognize the

importance of balanced trade and market clearing in generating the result for the Armington

model; however, Theorem 2 shows that the result applies more generally to any general

9The result is also used in economic geography by Allen and Arkolakis (2014) to simplify a set on non-
linear integral equations into a single integral equation.

13



equilibrium gravity model with quasi-symmetrical trade costs and balanced trade. Note,

however, that part (i) of Theorem 2 also implies that for all i, j ∈ S, we have Xij = Xji, i.e.

trade flows are bilaterally balanced, which is typically rejected empirically.

Figure 1 illustrates the range of α and β for which uniqueness of the model can be guar-

anteed. It should be noted that while most of the examination of existence and uniqueness of

trade equilibria has proceeded on a model-by-model case, the gross substitute methodology

used by Alvarez and Lucas (2007) has proven enormously helpful in establishing conditions

for existence and uniqueness. It can be shown (see Online Appendix B.4) that an application

of the gross-substitutes methodology works only when α ≤ 0 and β ≤ 0; hence, the tools

used in Theorems 1 and 2 extend the range of trade models for which uniqueness can be

proven, including, for example, the Armington model with intermediate inputs.

Example: Armington model with quasi-symmetry Consider again an Armington

model with intermediate inputs, but now assume that trade costs are quasi-symmetric. From

part (i) of Theorem 2, we have γi = κδi, which implies:

(
wδiP

1−δ
i

Ai

)1−σ

KA
i = κP σ−1

i wiLiK
B
i ,

or equivalently:

Pi = w
1+(σ−1)δ

(1−σ)(2−δ)
i

(
κLiA

1−σ
i

KB
i

KA
i

) 1
(1−σ)(2−δ)

. (9)

Equation (9) provides some intuition for the uniqueness condition presented in Theorem 2:

when σ < 1
2
, it is straightforward to show that the elasticity of the price index with respect to

the wage is less than one. This implies that the wealth effect may dominate the substitution

effect, so that the excess demand function need not be downward sloping.

In addition, combining equation (9) with equation (8), assuming δ = 1, and noting that

welfare Wi = wi
Pi

yields the following equation:

κW σσ̃
i Lσ̃i =

∑
j

KijA
(σ−1)σ̃
i Aσσ̃j L

σ̃
jW

−(σ−1)σ̃
j , (10)

where σ̃ ≡ σ−1
2σ−1

.10 Equation (10) holds for both trade models (where labor is fixed) and

10When there are only two countries (so that trade costs are necessarily quasi-symmetric), we can use
equation (10) to derive a single non-linear equation that yields the relative welfare in the two countries

K22

(
W 1

W 2

)σσ̃
−K11

(
W 1

W 2

)(1−σ)σ̃

+K21

(
W 1

W 2

)σ̃
= K12.

Comparative statics for welfare with respect to changes in Kij can be characterized using the implicit function
theorem in this case.
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economic geography models (where labor is mobile); in the former case, Li is treated as

exogenous parameter and Wi solved for; in the latter case Li is treated as endogenous and

Wi is assumed to be constant across locations. Hence, Theorem 2 highlights the fundamental

similarity between trade and economic geography models.

3.3 Two dual representations

In this section, we show that the solution of the general equilibrium gravity model can

be equivalently expressed as the solution to two distinct maximization problems: one for

world income and one for world welfare. These dual interpretations allow us to apply the

envelope theorem to derive expressions for the elasticity of world income and world welfare,

respectively, to any change in bilateral trade frictions.

Consider first the problem of choosing the set of origin and destination shifters to max-

imize world income subject to trade remaining balanced and the aggregate feasibility con-

straint that world income can be equivalently calculated by summing over trade flows or

using condition C.4:

max
{γ},{δ}

∑
i∈S

∑
j∈S

Kijγiδj

s.t.
∑
j

Kijγiδj =
∑
j

Kjiγjδi ∀i ∈ S and
∑
i∈S

∑
j∈S

Kijγiδj =
∑
i∈S

Biγ
α
i δ

β
i , (11)

where we now choose as a numeraire that γ1 = 1 rather than choosing world income as a

numeraire (since maximizing the numeraire is not a well defined problem).

Alternatively, consider the problem of maximizing a weighted average of world welfare

subject to only the aggregate feasibility constraint. Of course, in the absence of a micro-

foundation of the gravity trade model nothing can be directly said about the welfare of

the equilibrium (as we have not specified preferences). However, Arkolakis, Costinot, and

Rodŕıguez-Clare (2012) show that for a large class of trade models, the welfare of a location

can be written solely as an increasing function of its openness to trade and an exogenous

parameter, i.e. for all i ∈ S, welfare in location i, can be written as:11

Wi = CW
i λ

−1/ρ
ii = CW

i

(
Biγ

α−1
i δβ−1

i

)1/ρ

, (12)

where CW
i > 0 is an (exogenous) parameter and ρ > 0 is an exogenous scalar. If welfare

can be written as in equation (12), we can define world welfare as a weighted average of the

11In addition to CES preferences, this includes a larger class of homothetic demand functions including
the symmetric translog demand function (see also Feenstra (2003b)) and the Kimball demand function (see
Kimball (1995)); see Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare (2012).

15



welfare in each location:

W ≡
∑
i∈S

ωiWi =
∑
i∈S

ωiC
W
i

(
Biγ

α−1
i δβ−1

i

)1/ρ

,

where ωi > 0 are the weights placed on the welfare in each location. Then the following

world welfare maximization problem is well defined:

max
{γ},{δ}

W

s.t.
∑
i∈S

∑
j∈S

Kijγiδj =
∑
i∈S

Biγ
α
i δ

β
i . (13)

It turns out that the solution to both the world income maximization problem (11) and the

world welfare maximization problem (13) is the solution to the general equilibrium gravity

model, which we prove in the following proposition:

Proposition 1. Consider any general equilibrium gravity model. If α+ β > 2 or α+ β < 0

(which by part (ii) of Theorem 2 guarantees uniqueness), then:

(i) The solution of the general equilibrium gravity model is equivalent to the solution of

the world income maximization problem (11).

(ii) If welfare can be expressed as in equation (12), then there exists a set of weights {ωi}
such that the solution of the general equilibrium trade model is equivalent to the solution of

the world welfare maximization problem (13).

Proof. See Appendix A.3.

An advantage of the dual approach is that it allows us to apply the envelope theorem

to derive an expression for how any change in bilateral trade frictions affects world income

and world welfare. Using the world income maximization dual interpretation, the elasticity

of world income to Kij is:

∂ lnY W

∂ lnKij

=

[
(κi − κj) +

α + β

α + β − 2

]
Xij

Y W
, (14)

where κi is the Lagrange multiplier on the balanced trade constraint and can be shown to

be the solution to the following linear system:

β − α
α + β − 2

+ κi =
∑
j∈S

Xij

Yi
κj.
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When trade costs are quasi-symmetric, part (i) of Theorem 2 implies that Xij = Xji so that

expression (14) becomes even more straightforward:

1

2

(
∂ lnY W

∂ lnKij

+
∂ lnY W

∂ lnKji

)
=

α + β

α + β − 2

Xij

Y W
, (15)

i.e. a symmetric increase in any pair of Kij (i.e. a symmetric reduction of bilateral trade

frictions) increases world income by an amount proportional to the importance of those

bilateral trade flows, where the proportion is a function of the gravity constants.12

Applying the envelope theorem to the world welfare maximization interpretation, the

elasticity of world welfare to Kij is even simpler:

∂ lnW

∂ lnKij

=
1

ρ

Xij

Y W
. (16)

This expression has been derived for gravity models with CES demand by Atkeson and

Burstein (2010), Burstein and Cravino (2012), and Fan, Lai, and Qi (2013); our derivation

extends this result to any gravity trade model where welfare can be expressed as in equation

(12). This expression will prove useful when examining the set of welfare-maximizing trade

frictions reductions in Section 5.

4 Empirical implications

Thus far, we have examined the theoretical properties of the general equilibrium gravity

framework. We now ask in what ways can the general equilibrium gravity framework be

used in conjunction with an observed set of bilateral trade flows. In particular, given any

set of observed trade flows {Xij} and gravity constants α and β, we show to what extent

model fundamentals such as bilateral trade frictions can be recovered and derive expressions

for how the model equilibrium will change with any change in the underlying bilateral trade

flows.

Before proceeding to these results, however, we must address an issue familiar to trade

empiricists: in contrast to assumption C.3, trade data is usually not balanced. It is not obvi-

ous how one ought to address unbalanced trade (which we view as a dynamic phenomenon)

in the context of a static model. In what follows, we treat the trade deficits as exogenous,

as in Dekle, Eaton, and Kortum (2008). Define Ei ≡
∑

j∈S Xji to be the expenditure in

location i ∈ S, Yi ≡
∑

j∈S Xij to be the output in location i ∈ S and D̄i ≡ Ei− Yi to be the

12Note that if α+ β > 2 or α+ β < 0, then α+β
α+β−2 > 0.
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(exogenous) trade deficit. In this case, equation (5) becomes:

Biγ
α
i δ

β
i + D̄i =

∑
j

Kjiγjδi (17)

There are two disadvantages to allowing for exogenous deficits: first, the theoretical results

presented above (in particular, the uniqueness of the equilibrium) do not necessarily hold;

second, welfare cannot be expressed as in equation (12). Subject to these caveats, the

empirical results below hold with (exogenous) trade deficits.

4.1 Identification

We first examine the extent to which one can recover model parameters given observed trade

flows alone, which we summarize in the following proposition.

Proposition 2. Take as given any (possibly unbalanced) set of observed trade flows {Xij}.
Choose any gravity constants α and β, set of income shifters {Bi} and set of own trade

flow frictions {Kii}. Then there exists a unique set of {Kij}i 6=j (and set of exogenous trade

deficits
{
D̄i

}
) that, given the chosen parameters, yield equilibrium trade flows that equal to

the observed trade flows.

Proof. See Appendix A.4.

Proposition 2 shows that general equilibrium gravity models are fundamentally under-

identified in two ways. First, there exists an inability to determine which model parameter

is responsible for the level of trade flows. In particular, the scale of the bilateral trade

frictions and the income shifters cannot be separately identified: intuitively, a larger value of

the income shifter can be counteracted with lower bilateral trade frictions without affecting

the equilibrium. Second, the observed trade flows can be rationalized by the model for

any chosen value of α and β (as long as α 6= β). That is, the gravity constants cannot

be identified using trade flow data alone. This result underpins why previous attempts to

estimate (transformations of) these gravity constants have relied on additional sources of

data such as prices (see e.g. Eaton and Kortum (2002), Simonovska and Waugh (2009),

and Waugh (2010)). As we show below in Section 5.2, however, the gravity constants can be

estimated without relying on a particular model if both trade flows and information regarding

trade frictions are observed.
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4.2 Comparative Statics

In this section, we consider how changes in model fundamentals affect trade flows and income.

We first consider infinitesimal changes and derive a closed form expression that yields the

elasticities of all exporter and importer shifters to all bilateral trade frictions. This expression

depends only on observed trade flows and the gravity constants. We then show the same

result holds for an arbitrary (non-infinitesimal) change to the trade friction matrix.

4.2.1 Local Comparative Statics

Consider a local change in any bilateral trade friction Kij; how does this affect equilibrium

trade flows and incomes? It turns out it is possible to provide an analytical expression for the

elasticity of all exporter or importers shifters to all infinitesimal changes in bilateral trade

frictions.

Define X to be the observed N × N trade flow matrix whose 〈i, j〉th element is Xij, Y

is the N ×N diagonal income matrix whose ith diagonal element is Yi, and E is the N ×N
diagonal income matrix whose ith diagonal element is Ei. Define the 2N × 2N matrix A as

follows:

A ≡

(
(α− 1) Y βY −X

αE−XT (β − 1) Y

)
.

Furthermore, define A+ to be the Moore-Penrose pseudo-inverse of A and A+
kl to be the

〈k, l〉th element of A+. The following proposition shows how all elasticities can be immedi-

ately determined from matrix A+:

Proposition 3. Consider any general equilibrium gravity model yielding the matrix of equi-

librium trade, income and expenditure flows X,Y,E, respectively. Then:

i) If A has rank 2N − 1, then:

∂ ln γl
∂ lnKij

= Xij ×
(
A+
l,i + A+

N+l,j + c
)

and
∂ ln δl
∂ lnKij

= Xij ×
(
A+
N+l,i + A+

l,j + c
)
, (18)

where c is a scalar that ensures the normalization C.5 holds.

ii) If trade is balanced then A is rank 2N − 1 (1) when either α, β ≤ 0 or α, β > 1 or

|α| > 1 and β = 1 or |β| > 1 and α = 1; or (2) for all but a finite number of constellations

of (α, β) if trade costs are quasi-symmetric.

Proof. See Appendix A.5.

We should note that the choice of the constant c (and hence the elasticities) will depend on

the normalization chosen: given C.5, c = 1
(α+β)YW

Xij

∑
l Yl
(
α
(
A+
l,i + A+

N+l,j

)
+ β

(
A+
N+l,i + A+

l,j

))
,
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whereas the alternative normalization γ1 = 1 implies ∂ ln γ1

∂ lnKij
= 0, so that c = Xij ×

(A1,i + AN+1,j). We should also note that while the expression for the elasticities will hold

whenever A has rank 2N − 1, which apart from the sufficient conditions above can also be

checked directly given observed trade flows and a chosen set of gravity constants.

Because all model outcomes (e.g. trade flows and location incomes) are functions of

the exporter and importer shifters, Proposition 3 provides a closed form solution for the

the complete set of model elasticities. In particular, it is straightforward to determine how

changing the trade costs from i to j affects trade flows between any other bilateral trade pair

k and l:13

∂ lnXkl

∂ lnKij

=
∂ ln γk
∂ lnKij

+
∂ ln δl
∂ lnKij

= Xij ×
(
A+
k,i + A+

N+k,j + A+
N+l,i + A+

l,j + 2c
)
. (19)

Similarly, Proposition 3 can be applied to determine how changing the trade costs from i to

j affects income in any location l:

∂ lnYl
∂ lnKij

= α
∂ ln γl
∂ lnKij

+ β
∂ ln δl
∂ lnKij

= Xij ×
(
α
(
A+
l,i + A+

N+l,j + c
)

+ β
(
A+
N+l,i + A+

l,j + c
))
.

(20)

If trade flows are balanced and welfare can be written as in equation (12), then we can also

determine the elasticity of welfare in any location l to any change in trade costs from i to j:

∂ lnWl

∂ lnKij

= Xij ×
1

ρ

(
(α− 1)

(
A+
l,i + A+

N+l,j + c
)

+ (β − 1)
(
A+
N+l,i + A+

l,j + c
))

(21)

Hence, given observed trade flows and the gravity constants α and β (and ρ in the context

of welfare), all general equilibrium gravity models deliver identical predictions for all local

comparative statics. We use this powerful result in Section 5 to characterize the welfare-

maximizing set of trade friction reductions.

4.2.2 Global Comparative Statics

Now consider how an arbitrary change in the trade friction matrix K affects bilateral trade

flows. In what follows, we denote with a hat the ratio of the new to old value of the variable,

i.e. x̂ ≡ xnew

xold
. The following proposition, which generalizes the results of Dekle, Eaton, and

Kortum (2008), provides an analytical expression relating the change in the exporter and

importer shifters to the change in trade frictions and the initial exporting and importing

shares:

13If k = i and l = j, then ∂ lnXkl

∂ lnKij
= 1 + ∂ ln γk

∂ lnKij
+ ∂ ln δl

∂ lnKij
, where the addition of one accounts for the direct

effect on Kkl.
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Proposition 4. Consider any given set of observed trade flows X, gravity constants α and

β, and change in the trade friction matrix K̂. Then the percentage change in the exporter

and importer shifters, {γ̂i} and
{
δ̂i

}
, if it exists, will solve the following system of equations:

γ̂α−1
i δ̂βi =

∑
j

(
Xij

Yi

)
K̂ij δ̂j and γ̂αi δ̂

β
i

Yi
Ei

+
D̄i

Ei
=
∑
j∈S

(
Xji

Ei

)
K̂jiγ̂j δ̂i. (22)

Proof. See Appendix A.6.

Note that equation (22) inherits the same mathematical structure as equations (4) and

(17). As a result, if trade is balanced (so that D̄i = 0 and Yi = Ei for all i ∈ S), then

part (i) of Theorem 1 proves that there will exist a solution to equation (22) and part (ii) of

Theorem 1 provides conditions for its uniqueness.

As with the local comparative statics, equation (22) only depends on trade data and

parameters α and β; hence, for any given change in trade frictions, all the gravity trade

models with the same α and β must imply the same change in the exporter and importer

shifters γi and δi and hence trade flows and incomes. If welfare can be written as in equation

(12), the change in location and global welfare will also be the same.

This proposition characterizes the comparative statics for a wide class of gravity trade

models. In the case where β = 0, it can be shown (see Online Appendix B.5) that the

comparative statics can be characterized using import shares alone. This special case (and

its welfare implications) is discussed in Proposition 2 of Arkolakis, Costinot, and Rodŕıguez-

Clare (2012).

5 Welfare maxizing trade friction changes

Armed with the theoretical results above, we finally turn to the question originally posed:

what is the set of changes in bilateral trade frictions that maximize welfare subject to an

arbitrary constraint?

5.1 The optimization problem

We first demonstrate how the local comparative static results from Proposition 3 can be used

to inform the choice of optimal trade policy, as well as estimate the potential welfare gains

from such a policy. As is well known, reducing trade frictions (e.g. increasing Kij) increases

trade openness, thereby increasing welfare. In general, this implies trade policies that reduce

bilateral trade frictions are welfare enhancing. What is less understood, however, is how
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to quantify the relative benefit of reducing various bilateral trade frictions. In particular,

we ask: how much should each bilateral trade friction be reduced in order to maximize the

increase in welfare when reducing trade frictions between a certain bilateral pair comes at

the expense of not being able to reduce trade frictions as much elsewhere? Having an answer

to this question seems necessary in order to understand how policy makers with limited

resources ought best allocate those resources.

Before proceeding, we should note that because of the particular form of condition C.4,

our approach does not allow one to consider tariff revenue (as, e.g., in Ossa (2014)); in-

stead, our approach is best suited to the study of other trade policies such as infrastructure

development, non-tariff barriers, etc. that change trade frictions without directly affecting

income. Empirical evidence suggests these non-tariff trade costs comprise a significant por-

tion of trade policy restrictions (see e.g. Anderson and Van Wincoop (2004) and Looi Kee,

Nicita, and Olarreaga (2009)).

Formally, consider a planner who seeks to choose a set of changes in trade frictions in order

to maximize a weighted average of the (first-order) change in welfare across all locations:

max
{zij}

∑
l∈S

∑
i∈S

∑
j∈S

ωl
∂ lnWl

∂ lnKij

zij s.t. G (z) = 0, (23)

where ωl is the weight the planner places on the change in welfare in location l, zij is

the percentage change in the bilateral trade friction Kij, z is the N × N matrix whose

〈i, j〉 element is zij and G (z) is a function which specifies the constraint under which the

planner operates. For example, G (z) =
∑

i∈S
∑

j∈S pijzij − B would reflect the fact that

the total expenditure on bilateral trade friction reductions has a budget of B (where the

price of a percentage increase in Kij is pij). In general, G (·) captures whatever factors

prevent the planner from simply reducing trade frictions (increasing Kij) as much as possible,

thereby making the problem economically interesting. Note that while our framework offers

no guidance on what form those constraints take, our procedure is equally valid for any

(differentiable) G (·).
From equation (21), once the matrix A+ has been calculated from observed trade flows

and the gravity constants, the elasticity of welfare in any location l ∈ S with respect to

the change in trade costs between any two countries i ∈ S and j ∈ S, i.e. ∂ lnWl

∂ lnKij
, can be

immediately determined from a linear combination of elements of the matrix. We should

note that while it is possible to calculate the set of welfare elasticities
{
∂ lnWl

∂ lnKij

}
i,j

without the

use of equation (21), doing so would require changing each bilateral trade cost separately by

a small amount and recalculating the model equilibrium; since there are N2 bilateral trade

costs, such a process would be onerous.
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Once the complete set of welfare elasticities is calculated equation (21), equation (23) is

simply a constrained optimization problem with the familiar first order necessary conditions

for all i ∈ S and j ∈ S:

ωl
∂ lnWl

∂ lnKij

= λ
∂G (z)

∂zij
. (24)

The N2 equations in equation (24) along with the constraint G (z) = 0 can then be jointly

solved to determine the welfare-maximizing trade cost changes z∗ and the Lagrange multiplier

λ.

In what follows, we consider two special cases of equation (23): (1) a unilateral trade

policy governing import frictions; and (2) a multilateral trade policy where trade friction

reductions are non-discriminatory.

Welfare-maximizing unilateral trade friction reductions

Consider a particular location l ∈ S that only has the ability to reduce the trade frictions

from its importers. For simplicity, assume that G (z) ≡ 1
2

∑
i∈S z

2
il − 1, i.e. the cost of

reducing (or increasing) location l’s import frictions is convex. Then equation (23) becomes:

max
{zil}i∈S

∑
i∈S

∂ lnWl

∂ lnKil

zil s.t.
∑
i∈S

z2
il = 1 (25)

The first order conditions (24) immediately imply that the welfare-maximizing unilateral

trade friction reductions {zuniil } are proportional to the welfare elasticities:

zuniil =
∂ lnWl

∂ lnKij

/λ,

where λ =

(∑
i∈S

(
∂ lnWl

∂ lnKij

)2
) 1

2

is the Lagrange multiplier, which captures how much the

elasticity of the change in welfare of a country to increasing the extent of trade friction

changes in the welfare-maximizing way: i.e. the “potential unilateral gains for trade.”

Welfare-maximizing multilateral “non-discriminatory” trade friction reductions

Consider now a planner who attempts to maximize a weighted average of the world-wide

increase in welfare subject to a“non-discrimination”constraint where a location must equally

reduce its trade frictions with all its exporting and importing partners. We assume that

the weights attached to each location are those so that the welfare maximization problem

corresponds to the competitive equilibrium (see part (ii) of Proposition 1). As in the previous
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example, we assume for simplicity that the trade friction reduction costs are convex. Then

equation (23) becomes:

max
{zi}i∈S

∑
i∈S

∑
j 6=i

∂ lnW

∂ lnKij

zizj s.t.
∑
i∈S

z2
i = 1.

(We exclude the i = j terms so that domestic trade costs remain unchanged). The first order

conditions (24) now imply that the welfare-maximizing multilateral trade friction reductions

{z∗i } solve the following system of equations:

2λz∗i =
∑
j 6=i

(
∂ lnW

∂ lnKij

+
∂ lnW

∂ lnKji

)
z∗j ⇐⇒

λ̃z∗i =
∑
j 6=i

(Xij +Xji) z
∗
j , (26)

where λ is the Lagrange multiplier, λ̃ ≡ 2ρ−1λY W , and the second line relied on the re-

lationship between the world welfare elasticity and observed trade flows given in equation

(16) ∂ lnW
∂ lnKij

= 1
ρ

Xij
YW

. Equation (26) shows that the reduction in bilateral trade frictions which

maximizes world welfare is simply the eigenvector of the observed trade flows corresponding

to the largest eigenvalue (when the trade matrix is added to its transpose and has zeros along

the diagonal). Furthermore, that largest eigenvalue is proportional to the elasticity of world

welfare to increasing the extent of the trade friction reductions in a welfare-maximizing way.

5.2 Estimating the gravity constants

As Proposition 3 shows, given observed trade flows and a set of gravity constants, the welfare

elasticities can be calculated without specifying a particular micro-foundation of the gravity

model. While trade flows are easily observed, it is not obvious how to choose the correct

gravity constants, especially since Proposition 2 shows that observed trade flow data can be

rationalized for any set of gravity constants.

One option would be to calibrate the gravity constants to values agreed upon by the lit-

erature. For example, in the context of an Armington trade model with intermediate inputs,

we could choose to match a trade elasticity of negative four (consistent with Simonovska

and Waugh (2009)) and a labor share in the production function of one-half (consistent with

Alvarez and Lucas (2007)) – hereafter the “AL” parameter constellation – yielding gravity

constants of α = −2
3
, β = −1

3
, and ρ = 2.14 Alternatively, we could choose to match Eaton

14Alvarez and Lucas (2007) also report the results of their simulations for two alternative values of the
trade elasticity.
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and Kortum (2002) – hereafter the “EK” parameter constellation – who find a trade elastic-

ity of 8.28 and a labor share of 0.21, yielding gravity constants of α = −1.05, β = −0.83,

and ρ = 1.73. We instead opt to estimate the gravity constants in order to best match the

observed general equilibrium forces present in the data.

Given Proposition 2, we know that trade data alone is insufficient to estimate the gravity

constants; however, if both trade data and information about trade costs are observed, then

the gravity constants can be recovered. Suppose, for example, that (the change in) trade

costs is a function of a vector of observables T̂ij, i.e. ln K̂ij = T̂ ′ijµ, where the prime denotes

a transpose. Then the gravity constants can be recovered in a two-stage estimation process.

First, one estimates the (log) change in exporter and importer shifters using the observed

(log) change in trade flows, ln X̂o
ij:

ln X̂o
ij = T̂ ′ijµ+ ln γ̂i + ln δ̂j + εij,

where we interpret the residual εij as classical measurement error. Second, one estimates the

gravity constants by projecting the observed (log) change in income, ln Ŷ o
i , on the estimated

change in exporter and importer shifters
{

ln γ̂Ei
}

and
{

ln δ̂Ej

}
:

ln Ŷ o
i = α ln γ̂Ei + β ln δ̂Ei + νi.

While theoretically straightforward, this procedure is practically difficult, as the model pre-

dicts that the residual νi – unless it is pure measurement error – will be correlated with

both ln γ̂Ei and ln δ̂Ei . This omitted variable bias arises because any unobserved change in

the income shifter Bi (which causes the income of a location to be higher than observables

would imply) will enter the residual and increase both the location’s exports (through goods

market clearing) and imports (through balanced trade). As a result, estimates of α and β

will be biased upwards.

An alternative procedure is to rely on the general equilibrium structure of the model.

By incorporating the general equilibrium effects within the estimator, there is no need for

a two stage estimation procedure. In particular, we use the structure of the model – which

incorporates both C.1 (corresponding to the first stage above) and C.4 (corresponding to the

second stage above) – to calculate the change in the exporter and importer shifters directly.

Formally, we can estimate the gravity constants α and β and the trade cost parameter µ by

minimize the squared errors of the observed change in trade costs and the predicted change
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in trade costs:

(α∗, β∗, µ∗) ≡ arg min
α,β∈R,µ∈RS

∑
i

∑
j

(
ln X̂o

ij − T̂ ′ijµ− ln γ̂i

(
T̂µ;α, β

)
− ln δ̂j

(
T̂µ;α, β

))2

,

(27)

where we emphasize that the change in the origin and destination shifters will be deter-

mined in general equilibrium and depend on both the gravity constants and the trade cost

parameter.

It turns out that equation (27) is best solved by first estimating the µ given a set of

gravity constants α and β and then solving for the α and β. Denote µ (α, β) as the trade

cost parameter which minimizes the squared error for a given α and β. Consider the following

first order approximations of the log change in the exporter and importer shifters:

ln γ̂i

(
T̂µ
)
≈
∑
k

∑
l

∂ ln γi
∂ lnKkl

T̂ ′klµ and ln δ̂j

(
T̂µ
)
≈
∑
k

∑
l

∂ ln δj
∂ lnKkl

T̂ ′klµ. (28)

By taking first order conditions and applying these first order approximations, we can derive

a straightforward closed form solution for µ (α, β) (once we turn the N × N matrices into

N2 × 1 vectors).15 Let T̂ now denote the N2 × S vector whose 〈i+ j (N − 1)〉 row is the

1×S vector T̂ ′ij, D (α, β) is the N2×N2 matrix whose 〈i+ j (N − 1) , k + l (N − 1)〉 element

is
∂ lnXij
∂ lnKkl

(which from Section 4.2 is a function only of the gravity constants and observed

trade flows), and ŷ denote the N2 × 1 vector whose 〈i+ j (N − 1)〉 row is ln X̂o
ij. Then the

general equilibrium gravity estimator is:

µ (a, β) =

((
D (α, β) T̂

)′ (
D (α, β) T̂

))−1 (
D (α, β) T̂

)′
ŷ. (29)

Equation (29) says that, to a first order, the general equilibrium estimator is the coefficient

one gets from of an ordinary squares regression of the observed hatted variables on a “general

equilibrium transformed” explanatory variable T̂GEij :

ln X̂o
ij =

(
T̂GEij

)′
µ+ εij,

where:

T̂GEij ≡
∑
k

∑
l

∂ ln X̂ij

∂ ln K̂kl

T̂kl.

15In principal, the general equilibrium estimator could be calculated without applying a first-order ap-
proximation using an iterative procedure or through a non-linear least squares routine as in Anderson and
Van Wincoop (2003). However, the closed form solution greatly simplifies the estimation procedure. Fur-
thermore, Monte Carlo simulations suggest that the error arising from the first-order approximation used is
small.
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Intuitively, the general equilibrium transformed regressors capture the effect of the entire

set of explanatory variables on any particular observed bilateral trade flow.16 As a result,

µ (α, β) directly accounts for all (first-order) general equilibrium effects arising from the

network structure of trade flows.17

We then find the gravity constants α and β which minimize the total squared error. From

equation (29) (and the fact that a projection matrix is idempotent), the estimation of the

gravity constants can be written as:

(α∗, β∗) = arg min
α,β∈R

ŷ′

(
I− T̂

((
D (α, β) T̂

)′ (
D (α, β) T̂

))−1 (
D (α, β) T̂

)′)
ŷ. (30)

We pursue a simple grid search method. Rather than searching directly across all (α, β)

space, we instead search across elasticities of substitution (σ) and labor shares (ζ), which

has the advantage of being easier to compare to existing estimates.

5.3 Data

We now describe the data we use to calculate the welfare-maximizing trade friction reductions

and estimate the gravity constants.

Our trade data comes from the CEPII gravity data set of Head, Mayer, and Ries (2010).

This data set has several advantages: it covers bilateral trade flows between over two hundred

countries, allowing us to construct the nearly complete world trade network; it includes both

trade flow and GDP data, allowing us to measure own trade flows; and it is widely used,

allowing comparability with other empirical studies. We clean the data in three steps. First,

we construct own trade flows. To do so, we rely on the market clearing and balanced trade

conditions, which implies that own trade is simply the difference between observed income

and total exports or total imports, respectively.18 Second, to avoid inferring infinitely high

trade frictions between bilateral trade flows we replace any missing or zero bilateral trade

16One ought not be concerned that equation (19) provides elasticities for
∂ lnXij

∂ lnKij
whereas the elasticities

required for the general equilibrium estimator are the “hatted” elasticities
∂ ln X̂ij

∂ ln K̂kl
, as it is straightforward

to show that
∂ ln X̂ij

∂ ln K̂kl
=

∂ lnXnew
ij

∂ lnKkl
, i.e. the “hatted” elasticities are the same as the new elasticities. To see

this, apply the comparative statics derivation in the proof of Proposition 3 to the global comparative static
system of equations in equation (22).

17We show that our “general equilibrium” estimator of µ (α, β) can provide both efficiency improvements
and avoid certain problems of omitted variable bias when compared to the standard fixed effects estimator
of µ using Monte Carlo simulations in Online Appendix B.7.

18If income exceeds total imports (exports), we define own trade flows as income less total exports (im-
ports); if income exceeds both total imports and exports, we define own trade flows as income less the average
of total imports and exports.
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flows with a small positive value. Finally, we balance the trade flows; while this is not strictly

necessary, it guarantees that the equilibrium is unique, and as a result, the elasticities we

estimate are well-defined. To do so, we ignore the observed level of trade flows and instead

treat the observed import shares λij ≡ Xij∑
iXij

as the true data. We then find the unique set

of incomes that are consistent with those import shares and balanced trade by solving the

following linear system of equations:

Yi =
∑
j

λijYj.

By the Perron-Frobenius theorem, there exists a unique (to-scale) set of Yi;
19 we pin down

the scale with the normalization that
∑

i∈S Yi = 1. Given these equilibrium Yi, we then

define the balanced trade flows Xb
ij = λijYj.

20

For the observables that change trade costs (i.e. T̂), we use WTO membership. The

WTO was founded on January 1, 1995, replacing the General Agreement on Tariffs and

Trade (GATT). Of the 201 countries in our trade data, 125 were original WTO members.

Between 1995 and 2005, an additional twenty-one countries joined the WTO.21 In what

follows, we assume that, apart from a common time trend ν, the only change in bilateral

frictions between 1995 and 2005 was a (common) reduction in trade costs (i.e. an increase

in K̂ij) between new WTO members and all other WTO members:

K̂ij = µT̂ij + ν,

where T̂ij is an indicator variable equal to one if either i or j is a new WTO member and

its trading partner is a new or existing WTO member. While this is admittedly a strong

assumption, note that by focusing on the change in trade flows rather than their level, we

allow for any effect of time-invariant variables (e.g. distance, common language, shared

border, etc.) on trade frictions.

19The Perron-Frobenius theorem guarantees that there exists a unique (to-scale) strictly positive vector
that solves Yi = κ

∑
j λijYj for the largest value of κ > 0. Since import shares sum to one, it is straightforward

to show that κ = 1 in this case: κ =
∑

i Yi∑
i

∑
j λijYj

=
∑

i Yi∑
j Yj

∑
i λij

= 1.

20 It is straightforward to see that these trade flows are balanced:
∑
j X

b
ji =

∑
j λjiYi = Yi

∑
j

Xji∑
j Xji

=

Yi =
∑
j λijYj =

∑
j X

b
ij .

21The new members were Albania, Armenia, Bulgaria, China, Ecuador, Estonia, Georgia, Croatia, Jordan,
Kyrgyzstan, Cambodia, Lithuania, Moldova, Macedonia, Mongolia, Nepal, Oman, Panama, Saudi Arabia,
and Taiwan.
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5.4 Results

We now report the estimated gravity constants, the estimated effects of joining the WTO,

and the welfare-maximizing trade policy implied by the observed trade flows and estimated

gravity constants.

Gravity Constants

Figure 2 presents the R-squared of the general equilibrium estimator on the gains from the

WTO across all values of the share of labor in the production function (ζ) and the elasticity

of substitution (σ) (which maps one-to-one to the gravity constants). As is evident, the

GE estimator maximizes the R-squared of the regression (or, equivalently, minimizes the

squared error of equation (30)) when σ = 14.775 and ζ = 0.075. Recalling that α = 1
1−σζ

and β = 1−ζ
1−ζσ , this implies that the GE estimator most closely matches the data when α and

β are both large and negative; at the maximum R-squared, α = −30.2 and β = −27.9. From

Proposition 3, it can be shown that as as α and β approach negative infinity, the difference

between the direct effect of a trade cost shock and the indirect effect of a trade cost shock (i.e.
∂ lnXij
∂ lnKij

− ∂ lnXkl
∂ lnKij

for some k 6= i and j 6= l) gets larger. Large negative gravity constants thus

imply that the general equilibrium effects are small relative to the direct effects of joining

the WTO.

How does imposing the general equilibrium conditions affect the fit of the model? A

simple way of answering this question is to compare the fit of the GE estimator with a

traditional fixed effects estimator where the estimated exporter and importer shifters of each

country are not constrained to satisfy general equilibrium conditions. The R-squared of the

traditional fixed effects estimator is 0.1978, which is substantially larger than the 0.0234

of the general equilibrium estimator; however, a better fit is to be expected given that the

traditional fixed effects estimator includes 402 covariates compared to two covariates for the

general equilibrium estimator.

The effect of the WTO

Figure 3 depicts the estimated effect of WTO membership on bilateral trade frictions. At

the preferred estimates of the gravity constants, joining the WTO is associated with a 37

percent reduction in bilateral trade frictions (i.e. a 37 percent increase in Kij). This result is

similar given alternative parameter constellations: WTO membership is estimated to reduce

bilateral trade frictions by 41 percent under either the EK parameter constellation or the

AL parameter constellation.
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Figure 4 illustrates the average estimated change in welfare for new WTO members, ex-

isting WTO members, and non-members for all combinations of gravity constants given the

estimated coefficients reported in Figure 3 using the global comparative statics methodol-

ogy of Section 4.2.2. As with the effect of the WTO on trade frictions, the three gravity

constellations imply similar welfare effects: the maximum R-squared gravity constellation

implies that the welfare in countries joining the WTO increased on average by 18 percent,

compared to 13 percent and 12 percent increases with the EK and AL parameter constel-

lations, respectively. Existing WTO members also benefit, albeit to a much smaller extent,

with all three parameter constellations estimating roughly 1 percent increases in welfare.

Non-WTO members, however, are hurt by the resulting trade diversion of other countries

joining the WTO, although the welfare losses are less than half a percentage point under all

three parameter constellations.

Welfare-maximizing trade friction changes

Given the estimated gravity constants, we proceed to determine the welfare-maximizing

unilateral and bilateral trade friction reductions.22 As an example, Figure 5 depicts the

welfare-maximizing unilateral reduction in trade costs for the United States. The results are

intuitive: to maximize welfare in the U.S., it should concentrate its import friction reductions

on its major trading partners (e.g. Canada, Mexico, China, Brazil, and Western Europe), at

the expense of reducing its trade frictions only a small amount with less important trading

partners like African countries.

How much does the U.S. (or any other country) benefit from reducing its import costs

unilaterally? Figure 6 depicts the Lagrange multiplier of the unilateral welfare maximization

problem (25) for each country, which recall can be interpreted as the “potential unilateral

gains for trade.” The potential benefits of unilateral trade friction reductions are the smallest

in countries with sizable domestic production relative to external trade such as the United

States, India, and Russia. The potential gains for smaller countries which engage in substan-

tial trade (e.g. Belgium) are larger. However, countries where political constraints results

to restricted trade – for example, North Korea, Burma, Somalia, Cuba, and Iraq – face the

largest potential gains from freer trade. Intuitively, these countries trade very little with a

number of large trading partners, which implies they have a large marginal utility of relaxing

those bilateral trade frictions.

Figure 7 depicts the “non-discriminatory” reduction in trade frictions that maximizes the

22The distribution of optimal trade friction changes are nearly identical when using either the AL or EK
constellation of gravity constants; see Online Appendix B.7.
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increase in world welfare.23 Because the elasticity of world welfare to changes in bilateral

trade frictions is proportional to the level of trade flows, the welfare-maximizing multilateral

trade policy reduces trade frictions most for those countries with the largest trade flows, such

as the United States, China, and countries in Western Europe and least for countries like

those in Africa that trade less. Figure 8 illustrates the distribution of welfare effects of the

optimal multilateral trade policy across countries. There is substantial heterogeneity in the

welfare effects of the optimal policy: the countries that reduced their trade frictions most

benefit from the policy, while the majority of countries are actually made slightly worse off

from the resulting trade diversion. Of course, we emphasize that these quantitative results

depend on the given constraint G (·) where all changes to bilateral trade frictions are assumed

to be equally costly: the results would differ if there was heterogeneity across bilateral pairs

in the cost of trade friction reductions, although the methodology developed above could

still be applied.

6 Conclusion

In this paper, we first show that the general equilibrium forces in many gravity trade models

depend crucially on the value of two “gravity constants.” In particular, given observed trade

flows, these gravity constants are sufficient to determine all comparative statics of the model.

This result – along with a way of estimating the gravity constants themselves – allows us

to determine how any change in bilateral trade frictions will affect the model equilibrium

without needing to specify a particular underlying trade model. This paper hence contributes

to a growing literature emphasizing that the micro-economic foundations are not particularly

important for determining a trade model’s macro-economic implications.

We use our results to analytically characterize the welfare-maximizing set of trade friction

reductions (to a first order) subject to an arbitrary constraint. Surprisingly, certain special

cases yield closed form solutions: for example, the welfare-maximizing non-discriminatory

multilateral trade policy is the eigenvector corresponding to the largest eigenvalue of the

observed trade flow matrix. In general, we view this as a necessary step toward determining

optimal trade policy in a many location general equilibrium model.

By providing a universal framework for understanding the general equilibrium forces in

gravity trade models, we hope that this paper provides a step toward unifying the quan-

titative general equilibrium approach with the gravity regression analysis common in the

23Since ∂ lnW
∂ lnKij

∝ Xij > 0 from equation (16), the Perron-Frobenius theorem guarantees the vector of

trade friction changes that solve equation (26) will be strictly positive, i.e. it will be optimal for all countries
to reduce their trade frictions.
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empirical trade literature. Toward this end, we have developed a toolkit that operationalizes

all the theoretical results presented in this paper, including the calculation of the equilib-

rium, identification, calculation of local and global comparative statics, and estimation.24 We

also hope the tools developed here can be extended to understand other general equilibrium

spatial systems, such as those governing the structure of cities.

24The toolkit is available for download on Allen’s website.
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Arkolakis, C., A. Costinot, and A. Rodŕıguez-Clare (2012): “New Trade Models,

Same Old Gains?,” American Economic Review, 102(1), 94–130.

Arkolakis, C., S. Demidova, P. J. Klenow, and A. Rodŕıguez-Clare (2008):

“Endogenous Variety and the Gains from Trade,” American Economic Review, Papers and

Proceedings, 98(4), 444–450.
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Figure 1: Existence and Uniqueness

Notes : This figure shows the regions in (α, β) space for which the gravity equilibrium is
unique generally and in the special case when trade frictions are quasi-symmetric. Existence
can be guaranteed throughout the entire region with the exception of when α + β = 1 or
α = β = 1.
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Figure 2: Estimating the gravity constants
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Notes : This figure shows the R-squared of the general equilibrium estimator for the effect of
joining the WTO on bilateral trade flows for all combinations of the elasticities of substitution
and the share of labor in the production function. The yellow star indicates where the R-
squared is maximized (at σ = 13.775 and ζ = 0.075), which corresponds to gravity constants
of α = −30.2 and β = −27.9. Also indicated are the parameter values used in Eaton and
Kortum (2002) (diamond) and the Alvarez and Lucas (2007) (circle).
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Figure 3: The effect of the WTO on bilateral trade frictions
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Notes : This figure shows the iso-contours of the estimated effect of the WTO on bilateral
trade frictions for all combinations of the elasticities of substitution and the share of labor in
the production function. The yellow star indicates where the R-squared is maximized; also
indicated are the estimated gains from the WTO using parameter values from Eaton and
Kortum (2002) (diamond) and Alvarez and Lucas (2007) (circle).
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Figure 4: The effect of the WTO on welfare
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Notes : This figure shows the iso-contours of the estimated effect of the WTO on welfare for
all combinations of the elasticities of substitution and the share of labor in the production
function. The yellow star indicates where the R-squared is maximized; also indicated are
the estimated gains from the WTO using parameter values from Eaton and Kortum (2002)
(diamond) and Alvarez and Lucas (2007) (circle). The top panel reports the average change
in welfare for all countries who joined the WTO between 1995 and 2005; the middle panel
reports the average change in welfare for all countries already in the WTO in 1995; and the
bottom panel reports the average change in welfare for all non-WTO members.
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Figure 5: Optimal unilateral trade friction reduction for the U.S.
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No data

Notes : This figure shows the set of unilateral reductions in import trade frictions for the
United States that maximize its change in welfare subject to the norm of the total reductions
remaining constant. Countries are sorted by deciles; red indicates a greater reduction in trade
frictions while blue indicates a smaller reduction in trade frictions.

Figure 6: Potential welfare gains from unilateral trade friction reductions
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No data

Notes : This figure shows the elasticity of each country’s welfare to increasing the amount
of unilateral trade friction reductions in the optimal way (i.e. the Lagrange multiplier of
equation (25)). Countries are sorted by deciles; red indicates a greater potential welfare gain
while blue indicates a smaller potential welfare gain.
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Figure 7: World optimal multilateral trade friction reduction

World welfare maximizing
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(6.8e−02,.46]
(2.0e−02,6.8e−02]
(6.3e−03,2.0e−02]
(2.4e−03,6.3e−03]
(1.2e−03,2.4e−03]
(5.8e−04,1.2e−03]
(3.3e−04,5.8e−04]
(1.1e−04,3.3e−04]
(2.5e−05,1.1e−04]
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No data

Notes : This figure shows the set of non-discriminatory country reductions in trade frictions
that maximizes the world welfare (where the country Pareto weights are those imposed by the
competitive equilibrium). Countries are sorted by deciles; red indicates a greater reduction
in trade frictions while blue indicates a smaller reduction (or even increase) in trade frictions.

Figure 8: Welfare gains from world optimal multilateral trade friction reduction

Welfare gain from optimal world tariff
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Notes : This figure shows distribution of welfare gains from an optimal non-discriminatory
multilateral trade friction reduction. In particular, we report the welfare gain each country
would achieve if all countries in the world were to alter their trade frictions in order to maxi-
mize world welfare (where the country Pareto weights are those imposed by the competitive
equilibrium. Countries are sorted by deciles; red indicates a greater increase in welfare while
blue indicates a smaller increase in welfare.
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A Proofs

A.1 Proof of Theorem 1

We analyze a transformed system by defining xi ≡ Biγ
α−1
i δβi and yi ≡ Biγ

α
i δ

β−1
i . Then it

can be shown that δi = x
α

β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i and γi = x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i so that for any

set of {Bi} ∈ RN
++, {Kij} ∈ RN×N

++ , {α, β} ∈ {(α, β) ∈ R2|α + β 6= 1}, the equilibrium of a

general equilibrium gravity model can be written using

xi =
∑
j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j , (31)

and

yi =
∑
j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j , (32)

and the world income is taken to be 1 as numeraire,

1 =
∑
i

B
1

1−α−β
i x

α
β+α−1

i y
β

β+α−1

i . (33)

The proof of Theorem 1 proceeds in four parts. In the first part, we consider a general

mathematical structure, for which the general equilibrium gravity model is a special case,

and show existence for the general mathematical structure. Namely we show that for any

positive F and H, and a, b, c, and d, there exits a solution to

xi =

∑
j Fi,jx

a
jy

b
j∑

i,j Fi,jx
a
jy

b
j

(34)

yi =

∑
j Hijx

c
jy
d
j∑

i,j Hijxcjy
d
j

. (35)

Note that their structure is different from the general equilibrium trade model in two ways.

First, in the general equilibrium trade model, the denominators of the right-hand-side should

be 1. Second, the general equilibrium trade model should also satisfy (33). We take care of

these differences in the second part. We prove lemmas that will allow us to convert the

existence result of the general mathematical result to the existence of the particular case of

the gravity trade model. In the third and fourth parts, we use the system of the second

part to prove existence and uniqueness for the general equilibrium trade models, respectively.
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A.1.1 Part 1 : the general case

We start with the result for the general mathematical system, stated as the following lemma.

For the proof, we use a version of Schauder’s fixed point theorem (FPT for short). The

original statement is found in Aliprantis and Border (2006).

Theorem 3. (Schauder’s FPT) Suppose that D ⊂ RN , where D is a convex and compact

set. If a continuous function f : D → D satisfies the condition that f (D) is a compact

subset of D, then there exists x ∈ D such that f (x) = x.

Lemma 1. Consider the system the equation (34) and (35). Then the system has a positive

solution x, y ∈ RS
+ and all its possible solutions are positive.

Proof. To apply the Schauder’s FPT, we set up a subset D of R2S such that D satisfies the

conditions in Schauder’s FPT.

Now consider the system (34)-(35). We define the set Γ as

Γ ≡
{

(x, y) ∈ ∆
(
RS
)
×∆

(
RS
)

;mx ≤ xi ≤Mx, my ≤ yi ≤My for all i
}
,

and the following constants

Mx ≡ max
i,j

Fi,j∑
i Fi,j

mx ≡ min
i,j

Fi,j∑
i Fi,j

My ≡ max
i,j

Hi,j∑
iHi,j

my ≡ min
i,j

Hi,j∑
iHi,j

.

Γ is convex and compact subset of R2S.

We define the following operator for d = (x, y) ∈ Γ.

Td = T (x, y)

= ((T x (x, y)) , (T y (x, y))) ,

where

T xi (x, y) =

∑
j Fi,jx

a
jy

b
j∑

i

∑
j Fi,jx

a
jy

b
j

T yi (x, y) =

∑
j Hi,jx

c
jy
d
j∑

i

∑
j Hi,jxcjy

d
j

.
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It is easy to show that

mx ≤ T xi (x, y) ≤Mx,my ≤ T xi (x, y) ≤My

so that the operator T is from Γ to Γ.

To show that T is continuous, it suffices to show that T xi and T yi are continuous for all i.

Since the range is compact, these functions are trivially continuous.

Since Schauder’s FPT is applied for T, then there exists a solution to the system. Also

by construction, any fixed points satisfy for all i,

0 < mx ≤ xi

0 < my ≤ yi.

A.1.2 Part 2 : from the general mathematical system to GE trade model

Second, we prove a result that will allow us to map the general equilibrium gravity model

to the general mathematical system. This subsection consists of several lemmas. In Lemma

2, in the general equilibrium trade models, the double-sum terms in (34) and (35) should

coincide i.e. ∑
i

∑
j

Fi,jx
a
jy

b
j =

∑
i

∑
j

Hi,jx
c
jy
d
j .

Next, in Lemma 3, we show that a simple transformation of (x, y) that solves equations (34)

and (35) also solves (31) and (32). To show the existence of the general equilibrium trade

model, we still need to show that the normalization equation (33) is satisfied. Lemma 4

takes care of this issue.

The following lemma shows that the double-sum terms should coincide with each other.

Lemma 2. Suppose that (x, y) satisfies (34) and (35) with

a =
α

1− α− β
, b =

1− α
α + β − 1

c =
1− β

α + β − 1
, d =

β

α + β − 1

Fi,j = KijB
1

1−α−β
j , Hi,j = KjiB

1
1−α−β
j .
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Then we have ∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j =
∑
i,j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j .

Proof. Note that

xi = λx
∑
j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j ,

where

λx =
∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j .

Multiply both sides by x
1−β

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i , which yields:

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λx

∑
j

Kij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)
.

Now sum over all i and rearrange to solve for λx:

∑
i

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λx

∑
i

∑
j

Kij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)
⇐⇒

λx =

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

∑
jKij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)

=

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

[∑
jKij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)]
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

) .
Now let us consider the second equilibrium condition:

yi = λy
∑
j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

where

λy =
∑
i,j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j .

47



Multiply both sides by x
α

β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i :

yi ×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)
= λy

∑
j

Kji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)
⇐⇒

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λy

∑
j

Kji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)

Now sum over all i and rearrange to solve for λy:

∑
i

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λy

∑
i

∑
j

Kji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)
⇐⇒

λy =

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

∑
jKji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)

=

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

[∑
jKij

(
x

α
β+α−1

j y
1−α

β+α−1

j B
1

1−α−β
j

)]
×
(
B

1
1−α−β
i x

1−β
α+β−1

i y
β

α+β−1

i

) .
Comparing the expressions for λx and λy, we immediately have λx = λy ≡ λ.

The previous lemma tells that there exists (xi, yi) satisfying the following set of the

equations.

xi = λ
∑
j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j (36)

yi = λ
∑
j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j . (37)

In the general equilibrium trade models, (xi, yi) should solve the same system with λ = 1.

The following lemma tells that a simple transformation of (xi, yi) solves (31) and (32).

Lemma 3. There exits s such that (sxi, yi) satisfying (31) and (32), i.e. satisfying (36) and

(37) with λ = 1.

Proof. Now take s as

s =

(∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

) 1
1− α

α+β−1

.
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To complete the proof of the lemma, we have to show that if (x, y) is a solution to

xi =

∑
jKijB

1
1−α−β
j (xj)

α
α+β−1 y

1−α
α+β−1

j∑
i,jKijB

1
1−α−β
j (xj)

α
α+β−1 y

1−α
α+β−1

j

yi =

∑
jKjiB

1
1−α−β
j (xj)

1−β
α+β−1 y

β
α+β−1

j∑
jKjiB

1
1−α−β
j (xj)

1−β
α+β−1 y

β
α+β−1

j

,

then (sx, y) is a solution to a general equilibrium trade model, and s is given by

s =

(∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

) 1
1− α

α+β−1

.

Namely (x̃, ỹ) = (sx, y) solves

(x̃i) =
∑
j

KijB
1

1−α−β
j (x̃j)

α
α+β−1 ỹ

1−α
α+β−1

j

ỹi =
∑
j

KjiB
1

1−α−β
j (x̃j)

1−β
α+β−1 ỹ

β
α+β−1

j .

To prove this last point, note that

sxi =
s1− α

α+β−1∑
i,jKijB

1
1−α−β
j (xj)

α
α+β−1 y

1−α
α+β−1

j︸ ︷︷ ︸
=1

∑
j

KijB
1

1−α−β
j (sxj)

α
α+β−1 y

1−α
α+β−1

j

=
∑
j

KijB
1

1−α−β
j (sxj)

α
α+β−1 y

1−α
α+β−1

j .

The equality holds by construction of s. Thus first equation that x̃i =
∑

jKijB
1

1−α−β
j (x̃j)

α
α+β−1 ỹ

1−α
α+β−1

j

is satisfied. To show the second equation, it suffices to show

∑
i,j

KjiB
1

1−α−β
j (x̃j)

1−β
α+β−1 ỹ

β
α+β−1

j = 1.
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This holds since25

∑
i,j

KjiB
1

1−α−β
j (sxj)

1−β
α+β−1 y

β
α+β−1

j = t
1−β

α+β−1

∑
i,j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

=

∑
i,jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j∑
i,jKjiB

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

= 1.

The last equality holds from the previous lemma.

Previous two lemmas imply that there exists (xi, yi) satisfying equations (31) and (32).

The final touch is needed to ensure that there exists (xi, yi) satisfying (31), (32), and 33.

Lemma 4. There exists (xi, yi) satisfying (31) (32), and (33).

Proof. From Lemma 3, there exists (xi, yi) satisfying ((31)) and ((32)).

Now consider (x̃i, ỹi) =
(
t
α−1
1−β xi, tyi

)
, where

t =

[∑
i

B
1

1−α−β
i (xi)

α
β+α−1 (yi)

β
β+α−1

]− 1−β
α−β

.

It is easy to show

x̃i = t−
1−α
1−β xi = t−

1−α
1−β
∑
j

KijB
1

1−α−β
j (xj)

α
α+β−1 (yj)

1−α
α+β−1

=
∑
j

KijB
1

1−α−β
j

(
t−

1−α
1−β xj

) α
α+β−1

(tyj)
1−α

α+β−1

=
∑
j

KijB
1

1−α−β
j (x̃j)

α
α+β−1 (ỹj)

1−α
α+β−1

ỹi = t
∑
j

KjiB
1

1−α−β
j (xj)

1−β
α+β−1 (yj)

β
α+β−1

=
∑
j

KjiB
1

1−α−β
j (x̃j)

1−β
α+β−1 (ỹj)

β
α+β−1 .

Thus (x̃i, ỹi) still solves (31) and (32).

25If β = 1, then this last line is not true, since the equation for y is no longer dependent on x. In this case,
however, existence and uniqueness follows immediately from Theorem 1 of Karlin and Nirenberg (1967), as
the two integral equations can be treated as distinct from each other.
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The world income induced by (x̃i, ỹi) =
(
t
α−1
1−β xi, tyi

)
is

∑
i

B
1

1−α−β
i

(
t
α−1
1−β xi

) α
β+α−1

(tyi)
β

β+α−1 =
∑
i

B
1

1−α−β
i

(
t
α−1
1−β xi

) α
β+α−1

(tyi)
β

β+α−1

= t
(α−β)
1−β

∑
i

B
1

1−α−β
i (xi)

α
β+α−1 (yi)

β
β+α−1 = 1.

The last equality holds by the construction of t.

A.1.3 Part 3: Existence for trade models

We next consider the existence of a strictly positive solution to the general equilibrium

gravity model defined by equations (31), (32), and 33.

Proof. It directly follows from Proposition 4.

A.1.4 Part 4: Uniqueness for trade models

We now consider the uniqueness of the general equilibrium gravity model. We prove unique-

ness by contradiction.

Proof. Suppose that there are two solutions (x, y) , (x̃, ỹ) satisfying ((31)), ((32)), and (33).

Then there are no constants t such that26

x = tx̃. (38)

Without loss of generality, we can assume that for all i,∑
j

Fi,j =
∑
j

Hi,j = 1.

Also we can take (x̃, ỹ) = (1, 1) since

1 =
∑
j

Fi,j1
a1b

1 =
∑
j

Hi,j1
c1d.

26Such t exists when (x, y) and (x′, y′) gives the same real variables and the only difference comes from
the price level.
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Define

mx ≡ min
i
xi, Mx ≡ max

i
xi, my ≡ min

i
yi, My ≡ max

i
yi.

From (38), mx (my) is strictly less than Mx (My) respectively.

Given the relationship above between a, b, c and d and the gravity constants α and β, it

is easy to show that the following inequalities hold:

c < 0 < a

b < 0 < d.

Given that we have that

maxxi = Mx = max
∑
j

Fi,jx
a
jy

b
j ≤Ma

xm
b
y

max yi = My = max
∑
j

Hi,jx
c
jy
d
j ≤ mc

xM
d
y

mx = minxi = min
∑
j

Fi,jx
a
jy

b
j ≥ ma

xM
b
y

my = min yi = min
∑
j

Hi,jx
c
jy
d
j ≥M c

xm
d
y.

It is easy to show27

(
Mx

mx

)1−a(
My

my

)b
< 1,

(
Mx

mx

)c(
My

my

)1−d

< 1.

27To obtain first equation, multiply first and third equation.

Mx

(
mb
xM

b
y

)
≤ mx

(
Ma
xm

b
y

)
,

which is equivalent to (
Mx

mx

)1−a(
My

my

)b
< 1.

For second equation, multiply second and fourth equation.

(My)M c
xm

d
y ≤

(
mc
xM

d
y

)
my,

which implies (
Mx

mx

)c(
My

my

)1−d

≤ 1
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Since c = a− 1, and d = b+ 1,(
Mx

mx

)1−a(
My

my

)b
< 1,

(
Mx

mx

)a−1(
My

my

)−b
< 1.

Therefore the following holds.(
Mx

mx

)1−a(
My

my

)b
< 1 <

(
Mx

mx

)1−a(
My

my

)b
,

which is a contradiction.

A.2 Proof of Theorem 2

Proof. Part i) This relation comes from conditions C.2 and C.3
∑

iXi,j =
∑

iXj,i, which,

given C.1, is equivalent to:

KA
i γi

KB
i δi

=
∑
j K̃i,jK

A
j γj∑

j K̃i,jK
B
j δj

=
∑
j

K̃i,jK
B
j δj∑

j

(
K̃i,jKB

j δj

) × KA
j γj

KB
j δj

.

It is easy to show that
KA
i γi

KB
i δi

= 1,

is a solution to the problem. From the Perron-Frobenius theorem, this solution is unique up

to scale. Therefore for some κ, we have

γiK
A
i = κδiK

B
i . (39)

Part ii) The relation (39) implies

yi =
γi
δi
xi = κ

KB
i

KA
i

xi.

Substituting this expression into (31), we get

xi = κ
1−α

α+β−1

∑
j

K̃i,jK
A
i K

B
j B

1
1−α−β
j

(
KB
i

KA
i

) 1−α
α+β−1

x
1

α+β−1

j . (40)

Also, if we substitute the same expression into (32), we get the exact same expression.

Therefore one of the two equations is trivially satisfied. From Theorem 1 of Karlin and
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Nirenberg (1967), the system has an unique solution if
∣∣∣ 1
α+β−1

∣∣∣ ≤ 1, which is equivalent to

the condition given in the statement of the theorem.

A.3 Proof of Proposition 1

A.3.1 Part (i): The trade equilibrium solves the world income maximization

problem.

Proof. To show that the trade equilibrium maximizes the world income, we show that the

FONCs for the maximization problem coincide with the equilibrium conditions for the trade

model. Mathematically we show that any solutions to the world income maximization satisfy

the trade equilibrium conditions.

The associated Lagrangian of the maximization problem is:

L :
∑
i∈S

∑
j∈S

Kijγiδj −
∑
i∈S

κi

(∑
j

Kijγiδj −
∑
j

Kjiγjδi

)
− λ

(∑
i∈S

∑
j∈S

Kijγiδj −
∑
i∈S

Biγ
α
i δ

β
i

)
⇐⇒

L : (1− λ)
∑
i∈S

∑
j∈S

Kijγiδj −
∑
i∈S

κi

(∑
j

Kijγiδj −
∑
j

Kjiγjδi

)
+ λ

∑
i∈S

Biγ
α
i δ

β
i ,

where {κi} are the Lagrange multipliers on the balanced trade constraint and λ is the La-

grange multiplier on the aggregate factor market clearing.

First order conditions with respect to γi are:

(1− λ− κi)
∑
j

Kijγiδj +
∑
j

Kijγiδjκj + αλBiγ
α
i δ

β
i = 0 (41)

First order conditions with respect to δi are:

(1− λ+ κi)
∑
j

Kjiγjδi −
∑
j

Kjiγjδiκj + βλBiγ
α
i δ

β
i = 0 (42)

We first solve for the λ. Add the two FOC together and sum over all i ∈ S:

2 (1− λ)
∑
i

∑
j

Kijγiδj +
∑
i

∑
j

(Kijγiδj −Kjiγjδi)κj + (α + β)λ
∑
i

Biγ
α
i δ

β
i = 0,

which implies

λ =
2

2− α− β
. (43)
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The FONCs for γi and δi become:

Biγ
α
i δ

β
i =

(
α + β

2α
+

2− α− β
2α

κi

)∑
j

Kijγiδj −
2− α− β

2α

∑
j

Kijγiδjκj (44)

Biγ
α
i δ

β
i =

(
α + β

2β
− 2− α− β

2β
κi

)∑
j

Kjiγjδi +
2− α− β

2β

∑
j

Kjiγjδiκj (45)

We now try to solve for the κ. Equating the two FOC yields:

β − α
2− α− β

+ κi =

∑
j

(
α

α+β
Kjiγjδi + β

α+β
Kijγiδj

)
κj∑

jKijγiδj
. (46)

Substituting (46) back into the FOC for γi yields:

Biγ
α
i δ

β
i =

∑
j

Kijγiδj +
2− α− β
α + β

∑
j

(
Kjiγjδi −Kijγiδj

2

)
κj (47)

Substituting (46) back into the FOC for δi yields:

Biγ
α
i δ

β
i =

∑
j

Kjiγjδi +
2− α− β
α + β

∑
j

(
Kijγiδj −Kjiγjδi

2

)
κj (48)

Note that equating the two FOC yields:∑
j

Kjiγjδiκj =
∑
j

Kijγiδjκj,

where the second to last line imposed balanced trade. Hence the first order conditions

become:

Biγ
α
i δ

β
i =

∑
j

Kijγiδj

Biγ
α
i δ

β
i =

∑
j

Kjiγjδi.

Therefore the solution to the problem is unique and coincides with the allocation of the

general equilibrium gravity model.
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A.3.2 Part (ii) : The trade equilibrium solves the world welfare maximization

problem.

Proof. With the assumption we made that the utility for country i is expressed in the fol-

lowing form

ui =
(
Bi (γi)

α−1 (δi)
β−1
)1/ρ

,

the welfare maximization problem is to maximize the weighted sum of {ui}i subject to the

same constraints. To show that the competitive allocation is Pareto efficient, we show that

under a particular choice of (θi) , the competitive allocation
(
γCEi , δCEi

)
i

solves the planning

problem.

Set the Pareto weights (ωi)i as follows.

(ωi) =
∑
k

(Bk)
1/ρ (γCEk )(α−1)/ρ (

δCEk
)ρ(β−1)/ρ

(Bi)
1/ρ (γCEi )

(α−1)/ρ
(δCEi )

(β−1)/ρ
∑
j(Bi)

1/ρ(γCEi )
α
(δCEi )

β∑
j Kj,iγ

CE
j δCEi

(ωk) .

From Karlin and Nirenberg (1967), we know there is a solution to the system.

The associated Lagrangian is

L =
∑
i

ωiB
1/ρ
i γ

(α−1)/ρ
i δ

(β−1)/ρ
i − λ

(∑
i

∑
j

Kijγiδj −
∑
i

Biγ
α
i δ

β
i

)
.

Taking the FONCs w.r.t. γi and δi, we get

ρ−1 (α− 1)ωiB
1/ρ
i γ

(α−1)/ρ
i δ

(β−1)/ρ
i = λ

∑
j

Kijγiδj − αλBiγ
α
i δ

β
i

ρ−1 (β − 1)ωiB
1/ρ
i γ

(α−1)/ρ
i δ

(β−1)/ρ
i = λ

∑
j

Kjiγjδi − λβBiγ
α
i δ

β
i .

Adding the two equations, and solving for λ, we have

λ =
1

ρ

W

Y
.

Substitute this expression into the FONCs.(
α− 1

α

)(
ωiB

1/ρ
i γ

(α−1)/ρ
i δ

(β−1)/ρ
i

W
Y W −

∑
j

Kijγiδj

)
+
∑
j

Kijγiδj = Biγ
α
i δ

β
i(

β − 1

β

)(
ωiB

1/ρ
i γ

(α−1)/ρ
i δ

(β−1)/ρ
i

W
Y W −

∑
j

Kjiγjδi

)
+
∑
j

Kjiγjδi = Biγ
α
i δ

β
i .
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From the construction of ωi, the bracket term is zero if we evaluate the system at
(
γCEi , δCEi

)
i
.

(
ωiB

1/ρ
i

(
γCEi

)(α−1)/ρ (
δCEi

)(β−1)/ρ

∑
j Bj

(
γCEj

)α (
δCEj

)β∑
j ωiB

1/ρ
i (γCEi )

(α−1)/ρ
(δCEi )

(β−1)/ρ
−
∑
j

Kijγ
CE
i δCEj

)
= 0.

Then the second equation is solved at
(
γCEi , δCEi

)
i

since∑
j

Kjiγ
CE
j δCEi = Bi

(
γCEi

)α
i

(
δCEi

)β
.

A.4 Proof of Proposition 2

Proof. We need to show that there exist a unique set of {Kij}i 6=j such that observed trade

flows satisfy the model equilibrium conditions, i.e.:

Kijγiδj = Xij (49)

Biγ
α
i δ

β
i =

∑
j

Xij (50)

Biγ
α
i δ

β
i + D̄i =

∑
j

Xji, (51)

where recall that {Xij} are observed and {Bi},{Kii}, α, and β are chosen.

We proceed by construction. Choose D̄i ≡
∑

j Xji−
∑

j Xij, Yi ≡
∑

j Xij γi ≡
(
Xii
Kii

)− β
α−β
(
Bi
Yi

)− 1
α−β

δi ≡
(
Xii
Kii

) α
α−β
(
Bi
Yi

) 1
α−β

, and Kij ≡ Xij
γiδj

. We verify that these definitions satisfy equilibrium

conditions given observed trade flows. First, note that (49) is satisfied by the construction

of Kij.

Second, note that:

Biγ
α
i δ

β
i = Bi

((
Xii

Kii

)− β
α−β
(
Bi

Yi

)− 1
α−β
)α((

Xii

Kii

) α
α−β
(
Bi

Yi

) 1
α−β
)β

⇐⇒

Biγ
α
i δ

β
i = Bi

(
Bi

Yi

)β−α
α−β

⇐⇒

Biγ
α
i δ

β
i =

∑
j

Xij,

so that equilibrium condition (50) is satisfied.
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Finally, note that:

Biγ
α
i δ

β
i + D̄iBiγ

α
i δ

β
i + D̄i =

∑
j

Xij +
∑
j

Xji −
∑
j

Xij ⇐⇒ =
∑
j

Xji,

so that equilibrium condition (51) is satisfied.

A.5 Proof of Proposition 3

Part (i) We start by proving the first part with an application of the implicit function

theorem.

Proof. Some notation is necessary. Define yi ≡ ln γi, zi ≡ ln δi, kij ≡ lnKij. Let ~y ≡ {yi}
and ~z ≡ {zi} both be N × 1 vectors and let ~x ≡ {~y; ~z} be a 2N × 1 vector. Let ~k ≡ {kij} be

a N2 × 1 vector. Now consider the function f
(
~x;~k
)

: R2N ×RN2 → R2N given by:

f
(
~x;~k
)

=


[
Bi (exp {yi})α (exp {zi})β −

∑
j exp {ki,j} (exp {yi}) (exp {zj})

]
i

...[
Bi (exp {yi})α (exp {zi})β −

∑
j exp {kj,i} (exp {yj}) (exp {zi})

]
i

 .
In the general equilibrium trade model, we have:

f
(
~x;~k
)

= 0.

Full differentiation of the function hence yields:

f~xD~k~x+ f~k = 0, (52)

where f~x is the 2N × 2N matrix:

f~x

(
~x;~k
)

=

(
(α− 1)Y βY −X
αY −XT (β − 1)Y

)
,

where Y is a N ×N diagonal matrix whose ith diagonal is equal to Yi and X is the N ×N
trade matrix.
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Similarly, f~k is a 2N ×N2 matrix that depends only on trade flows:

f~k

(
~x,~k
)

= −



X11 · · · X1N 0 · · · 0 · · · 0 · · · 0

0 · · · 0 X21 · · · X2N · · · ...
. . .

...
...

...
...

...
...

...
. . . XN1 · · · XNN

X11 · · · 0 X21 · · · 0 · · · XN1 · · · 0

0
. . .

... 0
. . .

... · · · 0
. . .

...

0 · · · X1N 0 · · · X2N · · · 0 · · · XNN


If f~x was of full rank, we could immediately invert equation (52) (i.e. apply the implicit

function theorem) to immediately yield:

D~k~x = − (f~x)
−1 f~k.

However, because Walras Law holds and we can without loss of generality apply a normal-

ization to {γi} and {δi}, we effectively have N − 1 equations and N − 1 unknowns. Hence,

there exists an infinite number of solutions to equation (52), each corresponding to a different

normalization. To find the solution that corresponds to our choice of world income as the

numeraire, note that from equation (1): ∑
l

Blγ
α
l δ

β
l = Y W =⇒

∑
l

Yl

(
α
∂ ln γl
∂ lnKij

+ β
∂ ln δl
∂ lnKij

)
= 0. (53)

We claim that if ∂ ln γl
∂ lnKij

= Xij × (Al,i + AN+l,j) − c and ∂ ln δl
∂ lnKij

= Xij × (AN+l,i + Al,j) − c,
where c ≡ 1

YW (α+β)
Xij

∑
l Yl (α (Al,i + AN+l,j) + β (AN+l,i + Al,j)), then ∂ ln γl

∂ lnKij
and ∂ ln δl

∂ lnKij

solve equations (52) and (53). It is straightforward to see that our assumed solution ensures

equation (52) holds, as the generalized inverse is a means of choosing from one of the infinitely

many solutions; see James (1978). It remains to scale the set of elasticities appropriately

to ensure that our normalization holds as well. Given our definition of the scalar c, it is
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straightforward to verify that equation (53) holds:

∑
l

Yl

(
α
∂ ln γl
∂ lnKij

+ β
∂ ln δl
∂ lnKij

)
=

∑
l Yl(α (Xij × (Al,i + AN+l,j)− c) +

+β (Xij × (AN+l,i + Al,j)− c))

=
Xij

∑
l Yl (α (Xij × (Al,i + AN+l,j)) + β (Xij × (AN+l,i + Al,j)))

−c (α + β)
∑

l Yl

=
Xij

∑
l Yl (α (Xij × (Al,i + AN+l,j)) + β (Xij × (AN+l,i + Al,j)))−(

1
YW (α+β)

Xij

∑
l Yl (α (Al,i + AN+l,j) + β (AN+l,i + Al,j))

)
(α + β)Y W

= 0,

i.e. equation (53) also holds. More generally, different choices of c correspond to different

normalizations. A particularly simple example is if we choose the normalization γ1 = 1.

Since this implies that ∂ ln γ1

∂ lnKij
= 0, c = Xij × (A1,i + AN+1,j). In this case, however, an

alternative procedure is even simpler: the elasticities for all i > 1 can be calculated directly

by inverting the (2N − 1) × (2N − 1) matrix generated by removing the first row and first

column of f~x.

Part (ii). This part has several cases. Before formal proving the theorem, we introduce

two simple lemmas that help to simplify the main proof. The proof of the first lemma is in

Online Appendix B.6 and the proof of the second lemma can be found in Allen, Arkolakis,

and Li (2014).

Lemma 5. A and B are two matrices whose summation of the elements of every row,∑
j aij, and

∑
bij, are two constants ā and b̄. Then āb̄ is AB’s eigenvalue and it is also the

summation of each row in AB.

and

Lemma 6. Suppose A is a N × N positive matrix and λ0 is its positive eigenvalue. Then

the rank of λ0I − A is N − 1.

Now we can proceed with the proof of the second part of the Proposition.

Proof. Part ii-1) Denote B =

(
Y−1 0

0 Y−1

)
. Then

BA =

(
Y−1 0

0 Y−1

)(
(α− 1) Y βY −X

αY −XT (β − 1) Y

)
=

(
(α− 1) I βI−C

αI−D (β − 1) I

)
,
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where we define C ≡ Y−1X, D ≡ Y−1XT , and I to be the N × N identity matrix. It is

easy to verify that the row-summation of C and D are both constant and equal to 1 –i.e.

D−→e = −→e where −→e is the identity vector– when we have trade balance. Since Y is a diagonal

matrix, B is of full rank and the rank of BA is equal to the minimum of the ranks of B and

A i.e. the rank of A. Suppose α− 1 6= 0, implement the Gauss elimination on BA, to get(
(α− 1) I βI−C

αI−D (β − 1) I

)
=

(
(α− 1) I βI−C

0 (α−1)(β−1)I−(αI−D)(βI−C)
(α−1)

)
. (54)

Denote E = (α− 1) (β − 1) I − (αI−D) (βI−C). We now prove the four individual mu-

tually excluding cases.

Let α, β ≤ 0: We have

E = (1− α) (1− β) I− (−αI + D) (−βI + C)

The row summation −αI + D and −βI + C are both positive since 1 − α > 0 and 1 −
β > 0. According to Lemma 5, (1− α) (1− β) is the eigenvalue of the positive matrix

(−αI + D) (−βI + C). According to Lemma 6, the rank of E is N − 1. Thus, the rank of

A is 2N − 1.

Let α, β > 1: The row summation of D is 1 < α. According to Theorem 3 in Allen,

Arkolakis, and Li (2014) αI − D is invertible and the inverse (αI−D)−1 is positive. As

(αI−D)−→e = (α− 1)−→e , since the (αI−D)−1−→e = 1
(α−1)

−→e ,. Thus, (α− 1)−1 is the unique

positive eigenvalue of positive matrix (αI−D)−1. Similarly, (β − 1)−1 is the unique positive

eigenvalue of positive matrix (βI− C)−1. Notice that

E = (αI−D) [F− I] (βI− C) ,

where F = (α− 1) (αI−D)−1 (β − 1) (βI−C)−1. F is a positive matrix and F−→e = −→e
which means 1 is the eigenvalue of F. Thus, according to above Lemma 6, the rank of F− I

is N − 1. So again the rank of E is N − 1, so that the A is 2N − 1.

Let |α| > 1 , β = 1 or α = 1, |β| > 1: Without loss of generality, we only consider the

case β = 1. Then implementing the Gaussian elimination on BA, equation 54, we get(
(α− 1) I I− C

0 −(αI−D)(I−C)
(α−1)

)
,

where from lemma 6, the rank of I−C is N − 1. As the for any eigenvalue λ of D, it must

be that |λ| < α. αI−D is invertible which means (αI−D) (I−C) is of rank n− 1. Thus,
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the rank of A is 2N − 1.

Part ii-2) In this case there is a linear restriction as from the results of Theorem 2 we

have δi = κγi (we neglect the constants without loss of generality). Then the system becomes

Biγ
α+β
i = κ1−β

∑
Ki,jγiγj.

With normalization C.5 it can be shown that κ1−β = 1.

Following the same notation as before full differentiation yields 52 where f~x is now N×N
matrix:

f~x

(
~x;~k
)

= (α + β − 1)Y −X,

and where Y is a N × N diagonal matrix whose ith diagonal is equal to Yi and X is the

N ×N trade matrix.

As before, if f~x was of full rank, we could immediately invert equation (52) (i.e. apply

the implicit function theorem) to obtain:

D~k~x = − (f~x)
−1 f~k.

Therefore the derivative of γi w.r.t. Kk,l is

∂γi
∂Kk,l

=

−
{[

(f~x)
−1]

i,k
Xk,l +

[
(f~x)

−1]
i,l
Xl,k

}
k 6= l

−
[
(f~x)

−1]
i,kN−k−1

Xk,k k = l
.

It is straightforward to show that the matrix f~x is of full rank whenever α + β ≤ 0 or

α + β > 2 and also that there are a finite number of α,β combinations that is not of full

rank. To see this note that the matrix is not of full rank if there exists a set of {zi} such

that:

((α + β − 1)Y −X) z = 0 ⇐⇒

ziYi (α + β − 1) =
∑
j

Xijzj ⇐⇒

zi (α + β − 1) =
∑
j

Xij

Yi
zj

Consider the related mathematical problem:

ziλ =
∑
j

Xij

Yi
zj s.t. ‖z‖ = 1. (55)
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Since
Xij
Yi

> 0, by the Perron-Frobenius theorem, there exists a unique set of strictly positive

{zi} that solve this equation corresponding to the largest eigenvalue λ. It is immediate to

show that λ = 1 by summing up (55) and the corresponding zi = 1 for all i. Notice that, the

absolute of any eigenvalue has to be strictly smaller, i.e. |α + β − 1| < 1, or equivalently,

α + β ∈ (0, 2). But the original equation that we assumed had a solution has an eigenvalue

of α+ β− 1. Thus, no solution is in the region |α + β − 1| > 1 ⇐⇒ α+ β ≤ 0 or α+ β > 2

and there exists a finite number of combinations of α, β so that there is no solution of the

equation all in the range α+ β ∈ (0, 2) (when α+ β = 2, then Perron-Frobenius guarantees

the existence of a solution so that we know the matrix in non-invertible, and f~x is of full

rank).

A.6 Proof of Proposition 4

Proof. We want to rewrite the equilibrium conditions in changes by defining (x̂i) = x′i/xi.

Starting from (4) we have

γ̂αi δ̂
β
i =

∑
j

K ′ijγ
′
iδ
′
j∑

jKijγiδj
=⇒

γ̂αi δ̂
β
i =

∑
j

πijK̂ij γ̂iδ̂j =⇒

γ̂α−1
i δ̂βi =

∑
j

πijK̂ij δ̂j

where πij = Xij/
∑

j Xij represents the exporting shares. Similarly we can rewrite the second

equilibrium condition, Equation (5), in changes as

γ̂αi δ̂
β
i =

∑
jK

′
jiγ
′
jδ
′
i∑

jKjiγjδi
=⇒

γ̂αi δ̂
β
i =

∑
j

λijK̂jiγ̂j δ̂i =⇒

γ̂αi δ̂
β−1
i =

∑
j

λjiK̂jiγ̂j

where λij = Xij/
∑

iXij represents the import shares. This system of equations in changes

is the same as the system of equations in levels. As long as λij, πij are the same and α,β are

the same all the gravity models give the same changes in γi, δj for a given change in Kij.
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