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Abstract

The paper studies GMM inference for subvector hypotheses in structural models where nui-

sance parameters may not be identified. Such testing problems are often assessed using the

plug-in principle (Stock and Wright, 2000) or the projection method (Dufour and Taamouti,

2005), but it is now well documented that both methods have substantial drawbacks when

the nuisance structural parameters are weakly identified. We show that for the class of lin-

ear GMM models, there exists a mapping that leaves the subset null hypothesis of interest

invariant and eliminates the non-identified components of the nuisance parameters, while

preserving those that are identified. Therefore, identification-robust inference can be drawn

uniformly for the subset testing problem of interest using the conventional plug-in method

once the mapping is applied. We exploit this result to develop the score, Lagrange multi-
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1 Introduction

Subvector inference, like one component of a structural parameter vector, has important

applications because applied researchers are typically interested in such testing problems

rather than tests of a joint hypothesis of the full vector. Research on this topic has grown

considerably in recent years1 due to its complexity, as unrestricted structural parameters

enter the subset testing problem as additional nuisance parameter. Methods such as

the plug-in principle (Stock and Wright, 2000)2 or the projection technique (Dufour

and Jasiak, 2001; Dufour and Taamouti, 2005)3 are often used for assessing subvector

hypotheses, but recent studies show that both methods have substantial drawbacks when

the nuisance structural parameters are weakly identified.

The projection technique has a wide range of advantages, including robustness to

weak identification even in finite-sample with possibly non-Gaussian errors, robustness

to incomplete reduced-formed (misspecification of the first-stage model), and robustness

to some forms of conditional heteroskedasticity; see Dufour and Taamouti (2005, 2007)

and Doko Tchatoka and Dufour (2014). However, the projection technique has often been

criticized for being overly conservative when the number of instruments is large.

The plug-in principle usually consists of replacing the nuisance structural parameters

by an estimator in the expression of an identification-robust statistic– for example, An-

derson and Rubin’s (1949) AR statistic, Kleibergen’s (2002) KLM statistics, or Moreira’s

(2003) CLR statistic. Recent literature documents that the plug-in method can lead to

under- or over-sized tests when the nuisance structural parameters are not identified.

Indeed, Stock and Wright (2000, Theorem 1) show that the subset S-statistic has non-

standard asymptotic distribution when an inconsistent estimator is used as plug-in esti-

mator. In the homoskedastic linear IV regression model for example, weak identification

of the nuisance parameters often shifts the asymptotic distribution of the plug-in subset

S-statistic below its identification-based asymptotic chi-squared representation when the

restricted limited information maximum likelihood (LIML) estimator is used, thus leading

to a uniformly valid but overly conservative test when the usual asymptotic chi-squared

critical values are employed.4 However, when an alternative restricted k-class estimator–

such as 2SLS, bias corrected 2SLS, or Fuller estimator– is used, weak identification of

the nuisance parameters often shifts the asymptotic distribution of this statistic above its

identification-based asymptotic chi-squared representation, thus yielding an over-sized

test when asymptotic chi-squared critical values are utilized [see Doko Tchatoka and

Wang (2018)].

In this paper, we develop a new methodology for building the score, Lagrange multi-

1 e.g., see Stock and Wright (2000), Dufour and Taamouti (2005), Chen and Guggenberger (2011),
Guggenberger et al. (2012), Kleibergen (2015), Zhu (2015), Guggenberger et al. (2017), and Doko Tcha-
toka and Wang (2018).

2See also Kleibergen (2004, 2005), Startz et al. (2006), Chen and Guggenberger (2011), Guggenberger
et al. (2012), Doko Tchatoka (2015), Kleibergen (2015), Guggenberger et al. (2017), and Doko Tchatoka
and Wang (2018).

3 See also Dufour and Taamouti (2007), Chaudhuri and Zivot (2011), and Doko Tchatoka and Dufour
(2014) among others.

4See Guggenberger et al. (2012), Doko Tchatoka (2015), Kleibergen (2015), and Doko Tchatoka and
Wang (2018).
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plier, and conditional likelihood ratio type subset tests for subvector hypotheses in linear

models where nuisance structural parameters may not be identified. The proposed subset

tests have correct asymptotic size, are asymptotically α-similar and unbiased, and further

can easily accommodate conditional heteroskedasticity or serial correlation. To unable

this, we first show that for the class of linear GMM models, there exists a mapping that

leaves the subset null hypothesis of interest invariant and eliminates the non-identified

components of the nuisance parameters, while preserving those that are identified. There-

fore, identification-robust inference can be drawn uniformly for the subset testing problem

of interest using the conventional plug-in method once this mapping is applied. A similar

technique was introduced by Choi and Phillips (1992) and Doko Tchatoka (2015) in the

linear IV regression, and Antoine and Renault (2012) in GMM models under the Andrews

and Cheng’s (2012) semi-strong identification setting.

We provide an analysis of the limiting behavior of the proposed plug-in subset statis-

tics under both the null hypothesis (size) and the alternative hypothesis (power). All

statistics are uniformly asymptotically pivotal under the null hypothesis irrespective

of whether nuisance structural parameters are identified or not. As such, the corre-

sponding tests are identification-robust, i.e., they are uniformly valid no matter whether

both the structural parameters constrained by the subset null hypothesis and the (unre-

stricted)nuisance structural parameters are identified or not. The characterization of the

asymptotic distributions of the statistics under the alternative hypothesis shows clearly

the factors that determine power. In particular, we show that the power function of

the tests is entirely controlled by the identification of the structural parameters under

test (structural parameters constrained by the null hypothesis), therefore they may still

be consistent even when the nuisance (unrestricted) structural parameters are completely

unidentified. Furthermore, all tests are robust to conditional heteroskedasticity and serial

correlation, and can be implemented easily in practice.

In practice, the rotation used to transform the original model is generally unknown and

must be estimated. We show that this rotation spanns the null space of the Jacobian of

the average moment vector of the GMM criterion with respect to the nuisance parameters,

and we establish primitive conditions under which it can be consistently estimated. In

particular, this involves estimating the rank of the (unknown) limit of this Jacobian,

a statistical problem widely studied in the literature.5 To establish uniform validity

of the proposed subset tests, we show that both the estimators of the Jacobian limit

and its rank must be strongly consistent. Standard rank selection procedures such as

Robin and Smith (2000) and Kleibergen and Paap (2006) often fail to produce strongly

consistent estimators of matrix rank, especially when fixed critical values are used in their

implementation. As such, we resort to a threshold (or tolerance level) approach that yield

a supper (strong) consistent estimator of the rank. This approach consists of setting a

threshold (or tolerance level) below which the singular values of an estimator of the matrix

are virtually zero. Therefore, this approach is limited in the sense that its implementation

requires user chosen tuning parameters, and different choices of these tuning parameters

may lead to different estimator, especially in small-sample. Nevertheless, a Monte Carlo

5 e.g., see Anderson et al. (1951), Gill and Lewbel (1992), Cragg and Donald (1996,?), Gourieroux
et al. (1993), Robin and Smith (2000), Ratsimalahelo (2003), and Kleibergen and Paap (2006).
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experiment shows that the method works quite well even with a sample size of T = 100.

The remainder of the paper is organized as follows. Section 2 presents the framework

and the testing problem of interest. Section 3 presents the proposed rotation-based subset

statistics, studies their asymptotic properties, and discuss their practical implementation.

Section 4 studies the finite-sample performance of the tests. Conclusions are drawn in

Section 5. The auxiliary lemmas and proofs are provided in the appendix.

Throughout the paper, Iq stands for the identity matrix of order q. For any full-column

rank n×m matrix A, PA = A(A′A)−1A′ is the projection matrix on the space of A, and

MA = In − PA. The notation vec(A) is the nm × 1 dimensional column vectorization of

A. B > 0 for a m×m squared matrix B means that B is positive definite. Convergence

almost surely is symbolized by “a.s.” , “
p→” stands for convergence in probability, “

d→”

means convergence in distribution, while “=⇒” symbolizes weak convergence. The usual

orders of magnitude are denoted by Op(.), op(.), O(.), and o(.). ‖U‖ denotes the usual

Euclidean or Frobenius norm for a matrix U. For any set B, ∂B is the boundary of B

and (∂B)ε is the ε-neighborhood of B. We denote by O(n) = {R ∈M(n,n)(R) : R′R =

RR′ = In} the orthogonal group of n× n real matrices where M(n,n)(R) is the set of all

real squared matrices of order n, and M(n,m)(R) is the set of all n × m real matrices.

Finally, sup
ω∈Ω
|f(ω)| is the supremum norm on the space of bounded continuous real

functions, with topological space Ω.

2 Setup

We first introduce the testing problem of interest in Section 2.1. Specific Models are

illustrated in Section 2.2.

2.1 Model and assumptions

Let {Yt : 1 ≤ t ≤ T} be a stochastic process defined on
(
Ω,B,P), where Yt has support

Vy ⊆ RG, B is a σ-algebra on Ω, and P is the class of distributions under consideration.

P ≡ Pθ depends on an underlying parameter vector θ ∈ Θ ⊂ Rp, and we are interested

in inference on subvectors of θ. For this, let θ = (θ′1, θ
′
2)′ with dim(θ1) = p1 ≥ 1 and

dim(θ2) = p2 ≥ 0; (θ1, θ2) ∈ Θ1 × Θ2 ≡ Θ, and Θj ⊆ Rpj for j = 1, 2. By convention a

vector (or matrix) is simply not present if its number of rows (or columns) is equal to

zero– e.g., θ2 does not appear in the above partition of θ if p2 = 0. The true value of θ,

θ0 := (θ′
01
, θ′

02
)′, is such that θ02 ∈ int(Θ2). For convenience, functions of θ = (θ′1, θ

′
2)′ will

at times be written interchangeably as functions of θ1 and θ2– e.g., g(Yt, θ) and g(Yt, θ1, θ2)

define the same object for some g : Vy ×Θ→ Rq (q ≥ 1).

The object of inferential interest is θ01 . To be specific, we are interested in testing

H0 : θ1 = θ01 vs. H1 : θ1 6= θ01 . (2.1)

To enable this, we consider the following assumption on the model.

Assumption A. There is a sh-dimensional function h : Vy ×Θ→ Rsh satisfying:
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(i) h(Yt, θ) is finite for finite values of θ;

(ii) h(Yt, θ) = f0(Yt) + f(Yt)θ (linearity in θ), where f0(·) : sh × 1, f(·) : sh × p, and

both are continuous functions in Yt and Borel measurable;

(iii) the true parameter value θ01 satisfies the sh conditional moment restrictions

EP
[
h(Yt, θ01 , θ2)|F t

]
= 0 for some (θ2, P ) ∈ Θ2 × P , (2.2)

where Ft is the set of available information at time t.

Assumptions A-(i) and (iii) are fairly standard in the GMM literature, with the im-

portant exception that (2.2) may hold for many values of θ2, i.e., the usual identifying

restriction that (2.2) holds at a unique value θ2 = θ02
6 is relaxed. Assumption A-(ii)

at first appears restrictive. However, it is satisfied by many interesting economic mod-

els such as the classical linear IV model, the forward looking models (in particular the

New Keynesian Phillips Curve), and the (structural)vector autoregressive (S)VAR mod-

els. Furthermore, nonlinear models for which a first-order linear approximation or a

log-linearization is possible7 can be accommodated by Assumption A-(ii).

Now, let Zt be a vector of sz instruments in Ft and define φt(θ1, θ2) = h(Yt, θ1, θ2)⊗Zt :

s× 1 (s = shsz ≥ p), where ⊗ is the tensor product. Then (2.2) implies that

EP [φt(θ01 , θ2)] = 0 for some (θ2, P ) ∈ Θ2 × P . (2.3)

Given the data
{

(Yt, Zt) : t ≤ T
}
, the restricted GMM estimator θ̂

2T
(θ01) ≡ θ̂

2T
under

H0 [see Stock and Wright (2000)] minimizes the objective function

QT (θ01 , θ2) := T φ̄T (θ01 , θ2)′ŴT φ̄T (θ01 , θ2), (2.4)

where φ̄T (θ) = 1
T

∑T
t=1 φt(θ) and ŴT ≡ ŴT (θ) is an estimator of the inverse of Ω11(θ) =

lim
T→∞

var
[√
T φ̄T (θ)

]
. Stock and Wright (2000) study the case where θ2 is identified, i.e.,

(2.3) holds under H0 if and only if θ2 = θ02 . Here, (2.3) may hold for some θ∗2 6= θ02 in Θ2.

This may even be the case for all θ2 ∈ Θ2, i.e., (2.3) is completely uninformative about

the location of θ02 since all values in Θ2 are observationally equivalent.

We make the following assumptions on the model variables and parameters.

Assumption B.

(i)
{

(Y ′t , Z
′
t)
′ : 1 ≤ t ≤ T

}
is stationary ergodic;

(ii) The supports Vy of Y and Vz of Z are compact subsets of RG and Rsz respectively.

Assumption C. lim
T→∞

EP
[
∇θ2φ̄T

(
θ01 , θ2

)]
= M2 with ρ[M2] = m2 ≤ p2, where φ̄T (θ) =

1
T

∑T
t=1 φt(θ), ∇θ2φ̄T (·) = ∂φ̄T (·)/∂θ′2, and ρ[A] is the rank of the matrix A.

6See Stock and Wright (2000).
7Such as the DSGE models; e.g, see Canova (2011, Sections 2.2.3 & 4.7).
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Assumption B is fairly standard in the GMM literature– e.g., see Hansen (1982),

Stock and Wright (2000), and Kleibergen (2005). Assumption C generalizes Stock and

Wright (2000) to the case of weak identification of the nuisance structural parameter

vector θ2. More precisely, each of the following three identification levels of θ2 may occur

under Assumption C: (a) ρ[M2] := m2 = p2 (complete identification of θ2); (b) 0 <

ρ[M2] := m2 < p2 (partial identification of θ2); and (c) ρ[M2] := m2 = 0 (complete

non-identification of θ2). As such, we refer to ρ[M2] = m2 hereinafter as the degree of

identification of θ2 because it represents the number of identified linear combinations of

the elements of θ2.
8

If ρ[M2] := m2 = p2, then θ̂
2T

is
√
T -consistent under H0 [Stock and Wright (2000,

Lemma A1)] and the subset S-statistic ST (θ01) := QT

(
θ01 , θ̂2T

)
is asymptotically dis-

tributed uniformly in θ2 ∈ Θ2 as χ2(s − p2); see Stock and Wright (2000, Theorem 3).

However, the limiting behavior of ST (θ01) can depart drastically from its identification-

based chi-squared asymptotic distribution if θ2 is weakly identified– e.g., see Guggen-

berger et al. (2012), Kleibergen (2015), and Doko Tchatoka and Wang (2018). Indeed,

when θ2 is not identified, θ̂
2T

is Op(1) under H0 and the sample moment φ̄T
(
θ01 , θ̂2T

)
=

1
T

∑T
t=1 φt

(
θ01 , θ̂2T

)
is no longer evaluated within an ε-neighborhood of θ02 even when T

is large. Similarly, the probability limit of ŴT ≡ ŴT (θ01 , θ̂2T
) is a random matrix, as

opposed to a fixed matrix in the case of identification of θ2. Therefore, replacing θ2 with

θ̂
2T

in the GMM criterion QT (θ01 , θ2) can distort the limiting distribution of the resulting

S-statistic very far from its identification-based chi-squared asymptotic representation, as

shown in Stock and Wright (2000, Theorem 1). Note however that whether a test with

QT

(
θ01 , θ̂2T

)
is over- or under-sized depends on the type of restricted GMM estimator of

θ2 utilized in the plug-in principle. For example, some restricted GMM estimators can

distort the limiting representations of φ̄T
(
θ01 , θ̂2T

)
and ŴT in opposite directions so that

the net effect of weak identification on QT

(
θ01 , θ̂2T

)
leads to a valid but conservative test,

or the other way around. In the homoskedastic linear IV regression model for example,

the net effect of weak identification of θ2 shifts the cdf of the asymptotic distribution of

QT

(
θ01 , θ̂2T

)
below its identification-based asymptotic chi-squared representation when

the CUE (LIML estimator) is used, thus leading to a uniformly valid but overly conser-

vative test if asymptotic chi-squared critical values are employed; see Guggenberger et al.

(2012), Kleibergen (2015), Guggenberger et al. (2017), and Doko Tchatoka and Wang

(2018). However, when an alternative restricted k-class estimator– such as 2SLS, bias

corrected 2SLS, or Fuller estimator– is used, the net impact of weak identification of θ2

often shifts the cdf of the asymptotic distribution of QT

(
θ01 , θ̂2T

)
above its identification-

based asymptotic chi-squared representation, thus leading to an over-sized test when

asymptotic chi-squared critical values are used; Doko Tchatoka and Wang (2018).

Our main objective is to develop subset tests with correct asymptotic size irrespective

of: (i) the type of restricted GMM estimator of θ2 employed; (ii) whether both θ1 and

θ2 are identified or not; and (iii) whether the data generating process is heteroskedastic,

weakly dependent, or not.

8 Note that p2 −m2 is the number of non-identified linear combinations of the elements of θ2 in this
setting.
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Deem the linearity of h(Yt, θ) in θ [Assumption A-(ii)], we can write φt(θ) as:

φt(θ) = f0(Yt)⊗ Zt +
[
f1(Yt)⊗ Zt

]
θ1 +

[
f2(Yt)⊗ Zt

]
θ2, (2.5)

where f1(Yt) : sh × p1 and f2(Yt) : sh × p2. As EP [φt(θ0)] = 0 under (2.3), we have

EP [φt(θ)] = EP [φt(θ)]−EP [φt(θ0)] = EP [φt(θ)−φt(θ0)] so that the expected value of the

average moment vector φ̄T (θ) can expressed using (2.5) as:

EP
[
φ̄T (θ)

]
= ρ1T (θ1) + ρ2T (θ2); ρjT (θj) =

( 1

T

T∑
t=1

EP [fj(Yt)⊗ Zt]
)

(θj − θ0j
), (2.6)

with ρjT (θ
0j

) = 0 for all j = 1, 2. Therefore, EP
[
∇θ2φ̄T

(
θ01 , θ2

)]
= EP

[∂ρ2T (θ01 ,θ2)

∂θ′2

]
=

1
T

∑T
t=1 EP [f2(Yt)⊗Zt] so thatM2 in Assumption C is given byM2 = p lim

T→∞

1
T

∑T
t=1EP [f2(Yt)⊗

Zt], provided that the limit is well defined. It is therefore straightforward to see that M2

is independent of the structural parameter of θ under the linearity Assumption A-(ii). In

nonlinear GMM models, M2 generally depends on θ– e.g., see Stock and Wright (2000,

Assumption C-(ii)).

As in Stock and Wright (2000, Assumption C-(ii)), Assumption C relates the iden-

tification of θ2 to the rank of the limit matrix M2. Therefore, the identification of θ2

can be assessed by checking the rank of M2. Note however that the rank of M2 will in

general be different to that of 1
T

∑T
t=1EP [f2(Yt) ⊗ Zt] due to the possible dependence

on T by the latter while the former is independent of T. To see it, consider the clas-

sical linear IV model. Under the Staiger and Stock’s (1997) weak instrument asymp-

totics, 1
T

∑T
t=1EP [f2(Yt) ⊗ Zt] often depends on T and can be of full-column rank for

a given T , while its limit can be zero (thus is rank deficient). Therefore, the identifi-

cation of θ2 is equivalent to 1
T

∑T
t=1 EP [f2(Yt) ⊗ Zt] having full-column as T → ∞, not

1
T

∑T
t=1 EP [f2(Yt)⊗ Zt] itself. Clearly, our methodology lies on estimating uniformly the

rank of M2, not that of 1
T

∑T
t=1EP [f2(Yt) ⊗ Zt]. We discuss how this can be tackled in

Section 3.2.2 under fairly standard assumptions on the model variables and parameters.

It is well documented in Stock and Wright (2000) and Kleibergen (2005) that the

subset plug-in principle works fine if m2 := ρ[M2] = p2 (i.e., complete identification

of θ2), but the method yields tests with nonstandard asymptotic distributions when

m2 := ρ[M2] < p2 (weak identification of θ2). Our goal is to provide a unified framework

that allows for valid inference irrespective of whether m2 := ρ[M2] = p2 (identification of

θ2) or m2 := ρ[M2] < p2 (weak identification of θ2).

To enable this, let R ∈ O(p2)9 and partition R as:

R :=
[
R1

... R2

]
, (2.7)

where R2 : p2 × (p2 −m) and R1 : p2 ×m for some 0 ≤ m ≤ p2. If m = p2, R2 is not

present in (2.7) and R ≡ R1. Similarly R ≡ R2 if m = 0. Lemma 2.1 establishes the

existence of a mapping that: (1) evacuates the non-identified linear combinations of the

9 O(p2) is the group of p2 × p2 orthogonal real matrices.
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elements of θ2 from the model, while preserving the identified ones; (2) leaves the subset

null hypothesis H0 invariant. Therefore, uniform inference can be drawn for H0 using

the usual plug-in principle after applying this mapping.

Lemma 2.1. If Assumptions A -C hold with M2 = EP [f2(Yt)⊗ Zt], then we have:

(a) ∀ R :=
[
R1

... R2

]
∈ O(p2), ∃ φR : Vy × Vz ×ΘR → Rs such that

φt(θ1, θ2) = φR,t(θ1, η1) + λt(η2) ∀ t ≤ T, (2.8)

where φR,t(θ1, η1) ≡ φR(Yt, Zt, θ1, η1), φt(·) is the original moment vector in (2.3),

η1 = R′1θ2 : m × 1, η2 = R′2θ2 : (p2 − m) × 1, λt(η2) := [(f2(Yt) ⊗ Zt)R2]η2,

ΘR = Θ1 ×Θ2R with Θ2R ≡ R1Θ2;

(b) ∃ R :=
[
R1

... R2

]
∈ O(p2) satisfying M2R2 = 0 such that

EP [φt(θ1, θ2)] = 0 ⇔ EP [φR,t(θ1, η1)] = 0 ∀ t ≤ T. (2.9)

Remarks.

1. Lemma 2.1-(a) follows easily from (2.5) and an analytical expression of φR,t(θ1, η1)

in (2.8) is given (see the proof in Appendix A.3) by:

φR,t(θ1, η1) := f0(Yt)⊗ Zt +
[
f1(Yt)⊗ Zt

]
θ1 +

[
(f2(Yt)⊗ Zt)R1

]
η1. (2.10)

2. For any m := ρ[M2] ≤ p2, there always exists a rotation R :=
[
R1

... R2

]
∈ O(p2)

such that M2R2 = 0 with m ≡ m2. Indeed, if m2 = p2, i.e., if θ2 is identified, set

R ≡ R1 = Ip2 in (2.5) and R2 vanishes. If m2 = 0, i.e., if θ2 is completely unidentified,

set R ≡ R2 in (2.5) and R1 vanishes, where R2 spans the null space of M2 = 0. Finally,

if 0 < m2 < p2, we can choose R in (2.5) such that R2 spans the null space of M2 and R1

is free (unrestricted).

3. R in Lemma 2.1-(b) clearly separates θ2 into identified linear combinations (i.e.,

η1) and non-identified linear combinations (i.e., η2).10 More importantly, the subset null

hypothesis H0 is invariant to it and (2.9) demonstrates clearly that both the original and

transformed models carry out the same amount of information about θ01 .

4. If m2 = 0, η1 does not appear in (3.1) because the rotation completely evacuates

the entire vector θ2 from the transformed model since it is completely unidentified. In

this case, testing (2.1) in the transformed model is reduced to the standard problem

studied earlier by Kleibergen (2005) in the GMM framework. As such, uniform inference

on θ01 can easily be drawn [similar to Kleibergen (2005)], even when θ2 is completely

non-identified. Clearly, Lemma 2.1 implies that uniform inference on θ01 can be achieved

irrespective of the degree of identification of the nuisance structural parameters θ2.

Before moving on to the construction of test statistics, it will be illuminating to

illustrate Lemma 2.1 with specific GMM models widely studied in empirical applications.

10 From the best of our knowledge, this parametrization was first suggested by Choi and Phillips (1992)
in the classical linear IV model [also, see Doko Tchatoka (2015)]. As RR′ = Ip2 , the original vector θ2

can be recovered as: θ2 = R1η1 + R2η2.
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2.2 Specific GMM models

We illustrate how the subset testing problem of Section 2.1 and the results of Lemma 2.1

can be applied to the classical Linear IV regression, the multiple-equation linear model,

and the structural vector autoregressive (SVAR) model.

Example 2.1. (Linear IV regression). The model consists of observations on an out-

come variable yt ∈ R, two sets of endogenous regressors Y1t ∈ Rp1 and Y2t ∈ Rp2 , and a

vector of instruments Zt ∈ Rsz , t = 1, . . . , T. The structural equation of interest and the

equations relating Zt to Y1t and Y2t are:

yt = Y ′1tθ1 + Y ′2tθ2 + ut, (2.11)

Y1t = Π′1Zt + V1t, Y2t = Π′2Zt + V2t (2.12)

respectively, where Π1 ∈ Rsz×p1 and Π2 ∈ Rsz×p2 are unknown reduced-form coefficient

matrices.11 The subset hypothesis of inferential interest is H0 : θ1 = θ01, so θ2 is a

nuisance structural parameter vector under H0. By mimicking the notations of Section

2.1, we have Yt = (yt, Y
′

1t, Y
′

2t)
′, θ = (θ′1, θ

′
2)′, h(Yt, θ) = yt − Y ′1tθ1 − Y ′2tθ2 (hence sh = 1),

and φt(θ) := Zt(yt − Y ′1tθ1 − Y ′2tθ2) ∈ Rsz (i.e., s = szsh = sz). By replacing Y1t and Y2t

with their expressions from (2.12) into φt(θ), we can write (2.5) as:

φt(θ) = Ztyt − ZtZ ′tΠ1θ1 − ZtZ ′tΠ2θ2 + κt(θ) (2.13)

where κt(θ) = −Zt(V ′1tθ1 + V ′2tθ2). Similarly, (2.6) can be written as:

EP
[
φ̄T (θ)

]
) = ρ1T (θ1) + ρ2T (θ2); ρjT (θj) =

( 1

T

T∑
t=1

EP [ZtZ
′
t]
)

Πj(θ0j
− θj) (2.14)

for j = 1, 2. Therefore, if without any loss of generality we assume Π2 fixed,12 then

Assumption C holds with M2 := QZZΠ2 where QZZ = p lim
T→∞

(
1
T

∑T
t=1 EP [ZtZ

′
t]
)
. As long

as Z has full-column rank w.p.1, QZZ is p.d. and the rank condition in Assumption C is

equivalent to

m2 = ρ[Π2] ≤ p2. (2.15)

Therefore in the system (2.11)–(2.12), the following 3 cases can be distinguished for

identification of θ2 [similar to Dufour (2003)]: (i) θ2 is completely non-identified if m2 =

ρ[Π2] = 0 (i.e., if Π2 = 0), (ii) θ2 is partially identified if 0 < m2 = ρ[Π2] < p2, and (iii)

θ2 is strongly identified if m2 = ρ[Π2] = p2.

Now, let R =
[
R1

... R2

]
be the rotation such that R2 : p2 × (p2 −m2) spans the null

space of Π2 and R1 : p2 ×m2 is free. As Π2R2 = 0, we can re-parameterize the original

11For simplicity, we do not included exogenous variables in both (2.11) and (2.12) but the findings do
not change if such exogenous instruments were accounted for.

12If Π2 ≡ Π2T depends on T , we simply replace it by Π2,∞ = lim
T→∞

(Π2T ).
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model (2.11)–(2.12) as:

yt = Y ′1tθ1 + Y ′2tRR′θ2 + ut = Y ′1tθ1 +X ′2tη1 + εt (2.16)

Y1t = Π′1Zt + V1t, X2t = Π′2rZt + Vxt, (2.17)

where εt ≡ εt(R2, η2) = ut + V ′2tR2η2, Vxt = R′1V2t, X2t = R′1Y2t, η1 = R′1θ2, η2 = R′2θ2,

and Π2r = Π2R1. It is then easy to see that H0 : θ1 = θ01 holds in (2.16)–(2.17) if and

only if EP [Zt(yt − Y ′1tθ01 − X ′2tη1)] = 0 for some η1 ∈ Θ2R and some P ∈ P(θ01 , η1).

Furthermore, Lemma 2.1 holds with φR,t(θ1, η1) = Zt(yt − Y ′1tθ1 −X ′2tη1).

Example 2.2. (SVAR model). A SVAR with q lags can be written as

B(L)Yt = ΦDt + εt, t ≤ T, (2.18)

where B(L) =
∑q

j=0 Bj, L is the lag operator, Yt contains n endogenous variables, Bj :

n × n for all j are non-stochastic matrices of parameters, Φ : n × n is a matrix of

coefficients on Deterministic terms Dt : n × 1, EP
[
εt|Yt−1, Yt−1, . . .

]
= 0. The diagonal

element of B0 are normalised to 1 and EP [εtε
′
t] : n×n is diagonal. Partition Yt and εt as

Yt = (y1t, Ỹ
′
t )
′ and εt = (ε1t, ξ

′
t)
′, where y1t and ε1t are scalars. Under the assumption that

ε1t has a permanent effect on y1t, and the long-run restriction that ξt has no permanent

effect on y1t, (2.18) can be expressed as:

∆y1t = b′12∆Ỹt + γ′1X1t + ε1t (2.19)

∆Ỹt = δỸt−1 + γ′2X2t + ut, (2.20)

where ∆ is the first difference operator, X1t, X2t contain lags of ∆Yt and Dt, γ1, γ2 are

coefficients on those exogenous variables, δ : (n− 1)× (n− 1) is a matrix of reduced-form

coefficients, ut = d1ε1t + vt is the reduced-form error in the equation of Ỹt and vt is the

residual of the projection of ut on ε1t. As the variables Ỹt−1 are excluded from (2.19), they

can be used as instruments for ∆Ỹt since they are uncorrelated with ε1t by construction

of the SVAR. If the instruments Ỹt−1 are strong, the above setup suffices to identified ε1t

and hence trace out the entire impulse response function (IRF) with respect to ε1t, i.e.

IRFj = ∂Yt+j/∂ε1t , j = 0, 1, . . . (2.21)

However, the instruments Ỹt−1 are often weak in many empirical applications; Pagan and

Robertson (1998). In this case, the structural parameter vector b12 is weakly identified

and standard filtering method cannot be apply to trace out the IRFs in (2.21). As such,

developing confidence sets robust to weak identification for the components of b12 is useful

to obtain identification-robust confidence sets for the IRFs in (2.21). With the exception

of Chevillon et al. (2016), this area of research is yet to be fully explored in the GMM

framework and our methodology can be used for this purpose.

To see how this SVAR model can be accommodated into the setup of Section 2.1,

9



partition Ỹt and b12 as Ỹt = (Y ′1t, Y
′

2t)
′, and b12 = (θ′1, θ

′
2)′ ≡ θ, where Y1t : (n− 1− p2)× 1,

Y2t : p2 × 1, θ1 : (n − 1 − p2) × 1, and θ2 : p2 × 1. Also, let Z1 = [X1
... Ỹ ] and define

Z = MX1Ỹ , where MX1 = I −X1(X ′1X1)−1X ′1. We can write (2.19) as:

∆y1t = ∆Y ′1tθ1 + ∆Y ′2tθ2 + γ′1X1t + ε1t, (2.22)

which along with the orthogonality between Zt and ε1t imply that EP
[
h(Yt, θ1, θ2)|Zt

]
= 0

for some θ, where h(Yt, θ1, θ2) = ∆y1t − θ′1∆Y1t − θ′2∆Y2t. Thus we have EP
[
Zt(∆y1t −

θ′1∆Y1t − θ′2∆Y2t)
]

=: EP
[
φt(θ1, θ2)

]
= 0 for some θ. Suppose that we are interested in

inference on θ1, i.e., H0 : θ1 = θ01 and θ2 is a nuisance parameter. It is easy to see

that this parametrization fits into the setting of linear IV regression, hence similar results

hold as in Example 2.1. In particular, if we partition δ = [δ1
... δ2] conformably to the

partition of Ỹt in (2.22) where δ1 : (n− 1)× (n− 1− p2) and δ2 : (n− 1)× p2, then the

rank condition in Assumption C becomes

m2 = ρ[δ2] ≤ p2 (2.23)

provided that p lim
T→∞

(
1
T

∑T
t=1 EP [Zt∆Y

′
2t]
)

is well defined and the limit matrix has full-

column rank. Let R =
[
R1

... R2

]
be the rotation such that R2 : p2 × (p2 −m2) spans the

null space of δ2 and R1 : p2 ×m2 is free. Then, Lemma 2.1 holds with

φR,t(θ1, η1) = Zt(∆y1t −∆Y ′1tθ1 −∆Y ′rtη1) (2.24)

where ∆Yrt = R′1∆Y2t and η1 = R′1θ2. So, H0 can then be assessed using the unconditional

moment restriction EP
[
Zt(∆y1t −∆Y ′1tθ01 −∆Y ′rtη1)

]
= 0 for some η1 ∈ Θ2R.

3 Subset tests based on model rotation

We discuss how tests of the subset null hypothesis H0 : θ1 = θ01 can be constructed using

the result of Lemma 2.1. As argued in previous sections, an important and crucial step of

our methodology is how to find the mapping R satisfying Lemma 2.1-(b) in practice. We

showed in Lemma 2.1-(b) that such a rotation always exists but whether it is known or

not plays an important role in test statistics construction. As such, it will be illuminating

to emphasize the two cases separately. For clarity, we begin with the case where R is

known. Although assuming R known may appear unrealistic, we believe dealing with it

will facilitate the transition to the more complex case where R is unknown.

3.1 Inference when R is known

Suppose that we know the rotation R of Lemma 2.1-(b), and consider the unconditional

moment restrictions that result from (2.9) under H0 : θ1 = θ01 , i.e.

EP [φR,t(θ01 , η1)] = 0 ∀ t ≤ T. (3.1)
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Therefore, one can build tests for assessing H0 and the related confidence regions for θ01

using (3.1). As η1 does not appear in (3.1) if m2 := ρ[M2] = 0 (complete non-identification

of θ2), testing H0 from (3.1) when m2 := ρ[M2] = 0 is equivalent to the problem studied

earlier by Kleibergen (2004, 2005). As such, without any loss of generality, we mainly

focus in the remainder of the section on explaining the intuition of the construction of

test statistics when m2 := ρ[M2] > 0.

Suppose that (3.1) holds and m2 := ρ[M2] > 0 (i.e., at least one component of θ2 is

identified). The restricted GMM estimator of η1 under H0, η̂
1T

(θ01 ,R) ≡ η̂
1T
, minimizes

the objective function

QrT (θ01 , η1) := T φ̄rT (θ01 , η1)′ŴrT φ̄rT (θ01 , η1), (3.2)

where φ̄rT (θ1, η1) = 1
T

∑T
t=1 φR,t(θ1, η1) and ŴrT ≡ ŴT (θ1, η1) : s × s is an estimator

of the inverse of the asymptotic variance Σ11(θ1, η1) = lim
T→∞

var
[√
T φ̄rT (θ1, η1)

]
.13 Since

(3.1) depends only on R1 (not R2), (3.2) does not involve directly R2, which facilitates

the construction of test statistics when R is unknown, as discussed in Section 3.2.

Now, let θr = (θ′1, η
′
1)′ and θ0r = (θ′

01
, η′

01
)′. From Lemma 2.1 and (2.10), we can write

the expected value of φ̄rT (θr) as:

EP [φ̄rT (θr)] = ρ1T (θ1) + ρ2r·T (η1), (3.3)

where ρ1T (θ1) is given in (2.6) and ρ2r·T (η1) =
(

1
T

∑T
t=1EP [(f2(Yt) ⊗ Zt)R1(η1 − η01)]

)
,

η01 = R1θ02 is the true value of η1. It is clear that ρ1T (θ01) = 0 and ρ2r·T (η01) = 0 in (3.3).

We make the following assumption.

Assumption D. For any R satisfying Lemma 2.1-(b) :

(i) ΘR = Θ1 ×Θ2R is a compact subset of Rp1 × Rm2 and ρ2r·T (η1) = 0⇔ η1 = η01 ;

(ii) supη1∈Θ2R

√
T
∥∥φ̄rT (θ01 , η1)− EP [φR,t(θ01 , η1)]

∥∥ = Op(1).

Remarks.

1. Assumption D-(i) is standard in the GMM literature. The condition ρ2r·T (η1) =

0 ⇔ η1 = η01 implies that the transformed model globally identifies η1 under H0, al-

though θ2 may be weakly identified in the original model. Assumption D-(ii) entails that

φ̄rT (θ01 , η1) − EP [φR,t(θ01 , η1)] = Op

(
T−

1
2

)
uniformly over Θ2R under H0, which is the

usual rate of convergence of GMM average moment vectors under strong identification.

2. If m2 := ρ[M2] = 0, Assumption D-(i) collapses to Θ1 being is a compact subset of

Rp1 , while Assumption D-(ii) simplifies to the simple bound
√
T
∥∥φ̄rT (θ01)− EP [φR,t(θ01)]

∥∥ =

Op(1), as no nuisance structural parameter is involved in the transformed model. So, As-

sumption D holds irrespective of whether m2 := ρ[M2] > 0 or not.

We can now establish the following result.

Lemma 3.1. Suppose Assumptions A -D and H0 hold. If further m2 = ρ[M2] > 0, then

we have ρ2r·T (η̂
1T

) = Op

(
T−

1
2

)
and η̂

1T
− η01 = Op

(
T−

1
2

)
; ρ2r·T (·) is given in (3.3).

13 The indexation by ‘r ’ on various statistics in (3.2) highlights their dependence on R.
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Lemma 3.1 shows that if at least on component of the nuisance structural parameter

vector θ2 is identified, then the restricted GMM estimator of the identified linear combi-

nations of θ2 is root-T consistent, thus generalizing Stock and Wright (2000, Lemma A1)

to partially identified nuisance structural parameters setting. To establish this result, we

exploit the fact that ρ2r·T (η̂
1T

) = Op

(
T−

1
2

)
, which simplifies considerably the steps of the

proof compared to that of Stock and Wright (2000, Lemma A1).
To simplify the notations, define

ΨrT (θr) =
√
T
(
φ̄rT (θr)− EP [φR,t(θr)]

)
, (3.4)

ΥrT =
√
Tvec

(
∇θr φ̄rT (θr)− EP [∇θrφR,t(θr)]

)
, (3.5)

Σ(θr) = lim
T→∞

var

[(
ΨrT (θr)

ΥrT

)]
=

[
Σ11(θr) Σ12(θr)

Σ21(θr) Σ22

]
> 0, (3.6)

where ∇θrφR,t(θr) := ∂φR,t(θr)/∂θ
′
r, Σ(θr) : s(p1 +m2 + 1)× s(p1 +m2 + 1), Σ11(θr) :

s×s, Σ22 : s(p1+m2)×s(p1+m2), and Σ12(θr) = Σ′
21

(θr) : s×s(p1+m2). As∇θrφR,t(θr) =

[f1(Yt) ⊗ Zt
... (f2(Yt) ⊗ Zt)R1] does not depend on θr from from (2.10), its asymptotic

variance Σ22 does not depend on θr either. We make the following assumptions.

Assumption E. supP∈P EP
[
‖Ft‖2+ζ

]
< ∞ for some ζ > 0 and all Ft ∈

{
f0(Yt) ⊗

Zt, f1(Yt)⊗ Zt, f2(Yt)⊗ Zt
}
.

Assumption F.

(i) ŴrT (θr) is continuous at θr and converges in probability to Σ−1
11 (θr) uniformly in θr

where Σ11(θr) is defined in (3.6), and Σ−1
11 (θr) is continuous at θr;

(ii) 0 < inf
θr∈Θ1×Θ2R

λmin
[
Σ−1

11 (θr)
]
≤ sup

θr∈Θ1×Θ2R

λmin
[
Σ−1

11 (θr)
]
< ∞, where λmin[A] is the

minimum eigenvalue of the square matrix A;

(iii)
(
Ψ
rT

(θr)
′ ... Υ′

rT

)′ d→ Ξr(θr) :=
(
Ψr(θr)

′ ... Υ′r
)′

where Ψr(θ) : s×1, Υ : s(p1 +m2)×1,

Ξr(θr) ∼ N
[
0, Σ(θr)

]
with Σ(θr) given by (3.6).

Assumption E along with the compactness of ΘR ≡ Θ1 × Θ2R imply that φR,t(θr) is

totally bounded and Lipschitz on ΘR. It provides the primitive conditions for weak con-

vergence results in Assumption F. In particular, it (Assumption E) implies the sufficient

conditions for equicontinuity in Andrews (1994, Theorems 1-2). The weak convergence

of Ψ
rT

(θ) in Assumption F follows from the convergence of the finite dimensional dis-

tributions of Ψ
rT

(θ), stochastic equicontinuity, and the compactness of ΘR. The weak

convergence of the vectorized derivative of average moment function, Υ
rT
, in Assumption

F enable the derivation of the asymptotic distributions of the subset KLM and MQLR

subset statistics of Kleibergen (2005).

Under H0, the parameter space of the transformed model is then given by:

F0 =

{
π = (η1, P ) ∈ Θ2R × P(θ01 ,η1) : EP [φR,t(θ01 , η1)] = 0 (3.7)

and Assumptions A–F hold

}
.
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As shown by Andrews and Guggenberger (2017), any meaningful definition of the pa-

rameter space, such as F0 in (3.7), must incorporate Assumption E on the existence

high-order moments of both φR,t(θr) and its first derivatives ∇θrφR,t(θr). This is impor-

tant for the asymptotic size results, especially for Kleibergen’s (2005) type-subset KLM

and MQLR statistics.

Let Jr = EP

[
lim
T→∞
∇θr φ̄rT (θr)

]
≡ EP

[
lim
T→∞

1
T

∑T
t=1

[
f1(Yt) ⊗ Zt

... (f2(Yt) ⊗ Zt)R1

]]
=[

J1
... M2R1

]
. Following Kleibergen (2005), an estimator of Jr under H0, given R1, is

D̂rT (θ01 , η̂1T
) ≡ D̂rT :

D̂rT =
[
q̂

1T
− Σ̂21·1ŴrT (θ01 , η̂1T

)φ̄rT (θ01 , η̂1T
) . . .

q̂
(p1+m2)T

− Σ̂
21·(p1+m2)

ŴrT (θ01 , η̂1T
)φ̄rT (θ01 , η̂1T

)
]

:=
[
D̂

1r,T
(θ01 , η̂1T

)
... D̂

2r,T
(θ01 , η̂1T

)
]
, (3.8)

where for all j = 1, . . . p1 + m2, q̂jT is an estimator under H0 of q̄
jT

defined by q̄
T

=

vec
(
∇θr φ̄rT (θr)

)
≡ (q̄′

1T
, . . . , q̄′

jT
, . . . , q̄′

(p1=m2)T
)′, Σ̂

21·j ≡ Σ̂
21·j(θ01 , η̂1T

) is an estimator un-

der H0 of Σ
21·j(θr) defined by Σ21(θr) = [Σ′

21·1(θr), . . . ,Σ
′
21·j

(θr), . . . ,Σ
′
21·(p1+m2)

(θr)]
′ with

Σ21(θr) given in (3.6). Also, let τr(θ01) denotes the statistic that tests a lower rank value

of Jr,
14 i.e.

τr(θ01) = min
a∈Rp1+m2

T
( 1

a

)′
D̂′rT

[(( 1

a

)
⊗ Is

)′
W̃rT

(( 1

a

)
⊗ Is

)]−1

D̂rT

( 1

a

)
,

D̂rT ≡ D̂rT (θ01 , η̂1T
), W̃rT = Σ̂22 − Σ̂21ŴrT (θ01 , η̂1T

)Σ̂′
21
, (3.9)

Σ̂21 ≡ Σ̂21(θ01 , η̂1T
) = [Σ̂′

21·1 , . . . , Σ̂
′
21·(p1+m2)

]′.

We suggest the following subset statistics for assessing H0 : θ1 = θ01 .

1. The rotation-based subset S-statistic [similar to Stock and Wright (2000)]:

rST (θ01 ; R) = QrT (θ01 , η̂1T
). (3.10)

2. The rotation-based subset KLM-statistic [similar to Kleibergen (2005)]:

rKLMT (θ01 ; R) = T φ̄rT (θ01 , η̂1T
)′Ŵ

1/2

rT PŴ 1/2

rT D̂rT
Ŵ

1/2

rT φ̄rT (θ01 , η̂1T
). (3.11)

3. The rotation-based subset JKLM statistic to test misspecification under H0, i.e.,

HM : EP [φ̄rT (θ01 , η̂1T
)] = 0 :

rJKLMT (θ01 ; R) = rST (θ01 ; R)− rKLMT (θ01 ; R). (3.12)

14See Kleibergen and Mavroeidis (2009, eq.(22)).
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4. The rotation-based subset conditional likelihood ratio statistic [ Moreira (2003)]:

rMQLRT (θ01 ; R) =
1

2
[rST (θ01 ; R)− τr(θ01)] + (3.13)

1

2

√
[rST (θ01 ; R) + τr(θ01)]2 − 4[rST (θ01 ; R)− rKLMT (θ01 ; R)]τr(θ01)].

Remarks. Several observations are of order.

1. Each statistic in (3.10)–(3.13) is a function of the mapping R. If θ2 is identified (i.e.,

if m2 = ρ[M2] = p2), then R ≡ Ip2 and rST (θ01 ; R) is equivalent to the subset S-statistic of

Stock and Wright (2000), while rJKLMT (θ01 ; R), rKLMT (θ01 ; R), and rMQLRT (θ01 ; R)

are equivalent to the statistics of Kleibergen (2005).

2. If at least one component of θ2 is not identified (i.e., if m2 = ρ[M2] < p2), all

statistics in (3.10)–(3.13) are conceptually different from the ones in Stock and Wright

(2000) and Kleibergen (2005). In case no component of θ2 is identified (i.e., when m2 =

ρ[M2] = 0), θ2 vanishes from the transformed model and only θ1 remains. As such, η̂
1T

also vanishes from the expressions of all statistics so that the testing problem breaks

down to the standard one considered in Kleibergen (2005) for full vector of structural

parameters, but this time in the transformed model.

3. In the homoskedastic linear IV model, rST (θ01 ; R) is equivalent to the subset

Anderson and Rubin (1949, AR) statistic in the rotated model. Even in that case, we

adopt the notations presented in (3.10)–(3.13) for uniformity.

4. Finally, an interesting and important feature of the statistics in (3.10)–(3.13) is that

they can accommodate heteroskedastic or weakly dependent data, by using for example,

the HAC estimator [see Andrews (1991), Andrews and Monahan (1992), and Newey and

West (1987)] of the asymptotic variances entering the expressions of the statistics.15

To establish asymptotic results for the subset statistics in (3.10)–(3.13), we first note

their dependence on the quantities φ̄rT (θ01 , η̂1T
), ŴrT (θ01 , η̂1T

), QrT (θ01 , η̂1T
),
√
T (η̂

1T
−

η01), and D̂rT (θ01 , η̂1T
). Then, we examine the asymptotic behavior of these quantities

in the uniform convergence sense. For this, we assume without any loss of general-

ity that m2 = ρ[M2] > 0, i.e., at least one component of θ2 is identified.16 We know

from Lemma 3.1 that η̂
1T

is
√
T -consistent under H0. Therefore, we can characterize

the asymptotic behavior of φ̄rT (θ01 , η̂1T
), ŴrT (θ01 , η̂1T

), QrT (θ01 , η̂1T
),
√
T (η̂

1T
− η01), and

D̂rT (θ01 , η̂1T
) uniformly by studying their limiting behavior under drifting sequences of

parameter (θ1, η01 + δ/
√
T ), as empirical processes in (θ1, δ) ∈ Θ1 ×∆2R, where ∆2R is a

compact subset of Θ2R. Lemma 3.2 presents the results.

Lemma 3.2. Under Assumptions A -F , the following limiting results hold uniformly as

empirical processes in (θ′1, δ
′)′ ∈ Θ1 ×∆2R :

15Kleibergen (2005, eq.(28)) discusses issues related to the selection of the lag length for the HAC-type
estimators of the score vector, but this is not a major problem here because the moment conditions are
linear in the parameters.

16If m2 = ρ[M2] = 0, uniform convergence of the various quantities follows easily from Kleibergen
(2005).
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(a)
√
T φ̄rT

(
θ1, η01 + δ√

T

)
=⇒



Ψr(θ1, η01) +M2R1δ if
√
Tρ1T (θ1)→ 0

Ψr(θ1, η01) +M2R1δ + ρ̄1(θ1) if θ1 6= θ01

and
√
Tρ1T (θ1)→ ρ̄1(θ1) = O(1)

∞ if θ1 6= θ01 and
√
Tρ1T (θ1)→∞;

(b) ŴrT

(
θ1, η01 + δ√

T

) p→ Σ−1
11 (θ1, η01);

(c) QrT

(
θ1, η01 + δ√

T

)
=⇒ Qr

(
θ1, δ; η01

)
, where

Qr
(
θ1, δ; η01

)
=



[
Ψ

r
(θ1, η01

) +M2R1δ
]′

Σ−1
11 (θ1, η01

)
[
Ψ

r
(θ1, η01

) +M2R1δ
]

if
√
Tρ1T (θ1)→ 0

[
Ψr (θ1, η01) +M2R1δ + ρ̄1(θ1)

]′
Σ−1

11 (θ1, η01)
[
Ψr (θ1, η01) +M2R1δ + ρ̄1(θ1)

]
if θ1 6= θ

01
and
√
Tρ1T (θ1)→ ρ̄1(θ1) = O(1)

+∞ if θ1 6= θ
01

and
√
Tρ1T (θ1)→∞;

(d)
√
T (η̂

1T
− η01) =⇒ N

(
0,
[
R′1M

′
2Σ−1

11 (θ0r)M2R1

]−1
)

;

(e)
√
Tvec

(
D̂rT (θ01 , η01 + δ√

T
)−Jr

)
=⇒ Ψ

rD
(θ0r) ≡ Υr−Σ21(θ0r)Σ

−1
11 (θ0r)Ψr(θ0r), where

Ψ
rD

(θ0r) ∼ N
(

0, Σ22 − Σ21(θ0r)Σ
−1
11 (θ0r)Σ

′
21(θ0r)

)
and is independent of Ψr(θ0r).

Remarks.

1. As in Stock and Wright (2000, Assumption C), the limiting behavior of
√
Tρ1T (θ1)

defines the identification of θ1. If
√
Tρ1T (θ1) → ρ̄1(θ1) = O(1) for all θ1 ∈ Θ1, then θ1

is weakly identified, while θ1 is globally identified if
√
Tρ1T (θ1) → ∞ for all θ1 6= θ01 .

Lemma 3.2 accounts for both cases.

2. Lemma 3.2 provides primitive conditions for both asymptotic size control and

test consistency for the subset statistics in (3.10)–(3.13). (d) shows that if at least one

component of θ2 is identified, η̂
1T

is asymptotically normal under H0. This result is more

informative than the
√
T -consistency of Lemma 3.1. The asymptotic normality of η̂

1T

stems from the fact that θ1 is fixed (as H0 holds) when deriving the distribution of the

empirical process η̂
1T

under drifting sequences of parameter (θ′1, η
′
01

+ δ′/
√
T )′. In general,

the limiting distribution of η̂
1T

depends on θ1, thus is nonstandard if θ1 is replaced by an

inconsistent estimator, which happens when θ1 is not identifiable; see Choi and Phillips

(1992) and Stock and Wright (2000). As the goal is to provide valid confidence regions

for θ01 including when it is not identified, we do estimate θ01 . Rather we impose the null

hypothesis H0 and then invert the statistics in (3.10)–(3.13) to get confidence regions for

θ01 . (a)-(c) show that the restricted GMM objective function can be uniformly Op(1)

even under the alternative hypothesis H1. This hints that the rotation-based subset tests

in (3.10)–(3.13) may lack power in a wide range of cases, especially when θ1 is weakly

identified, i.e., when
√
Tρ1T (θ1) → ρ̄1(θ1) = O(1). But if

√
Tρ1T (θ1) → ∞ uniformly in
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θ1, i.e., when θ1 is identified, the restricted GMM objective function is unbounded, which

indicates that the rotation-based tests in (3.10)–(3.13) will be consistent in this case.

3. (e) shows that under H0, the Jacobian estimator D̂rT (θ01 , η̂1T
) is
√
T -consistency,

asymptotically normal, and asymptotically independent of the average moment vector

φ̄rT (θ01 , η̂1T
), whether θ1 is identified or not. Again, note that this asymptotic normal-

ity holds because θ1 is fixed at θ01 , as H0 is imposed in the expression of D̂rT (θ01 , η̂1T
)

rather than replacing θ1 by a possibly inconsistent estimator. (e) is clearly an exten-

sion of Kleibergen (2005), however the proof of the uniform convergence of D̂rT (θ01 , η̂1T
)

presented here is new and requires strong assumptions such as the existence of second

moments of both φR,t(θr) and its derivatives (Assumption E). The pointwise convergence

results in Kleibergen (2005) does not require the existence of second moments of φR,t(θr)

nor its derivatives.

To give asymptotic results for the subset statistics in (3.10)–(3.13), we introduce some

additional definitions and notations. For any a test ϕT that may depends on the sample,

the asymptotic size of ϕT for the parameter space F is given by:

AsySz[ϕT ;F ] := lim sup
T→∞

sup
π ∈ F

EP [ϕT ]. (3.14)

To improve readability, we denote by ϕT (K, cKα ) the test that rejects H0 when K > cKα for

some threshold level cKα which is a function of α ∈ (0, 1), i.e., ϕT (K, cKα ) := 1[K > cKα ],

where K is a given statistic, 1[C] = 1 if condition C holds and 1[C] = 0 otherwise.

Theorem 3.1 gives the asymptotic representations of the statistics under H0, while

Theorem 3.2 states their asymptotic size.

Theorem 3.1. Under H0 and Assumptions A -F , the following results hold uniformly in

η1 ∈ Θ2R :

rST (θ01 ; R)
d→ ψ

rS
∼ χ2(s−m2);

rKLMT (θ01 ; R)
d→ ψ

rKLM
∼ χ2(p1);

rJKLMT (θ01 ; R)
d→ ψ

rJKLM
∼ χ2(s− p1 −m2);

rMQLRT (θ01 ; R) | τr(θ01)
d→ ψ

rMQLR
≡ 1

2
[ψ

rS
− τr(θ01)] +

1

2

√
[ψ

rS
+ τr(θ01)]2 − 4[ψ

rS
− ψ

rKLM
]τr(θ01)],

where ψ
rKLM

and ψ
rJKLM

are independent random variables and ψ
rS

= ψ
rKLM

+ ψ
rJKLM

.

Remarks.

1. Theorem 3.1 holds for any value m2 := ρ[M2] ∈ [0, p2]. The results show clearly that

the three statistics rST (θ01 ; R), rKLMT (θ01 ; R), and rKLMT (θ01 ; R) have asymptotic

chi-square representation uniformly under H0, whether η1 is identified or not. Therefore,

asymptotic χ2 critical values can be used for these statistics. Meanwhile, the limiting

representation of rMQLRT (θ01 ; R) depends on the conditioning statistic τr(θ01), but it

can be simulated given τr(θ01), i.e., its critical values can also be simulated.
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2. The results show the dependence of the limiting representations of rST (θ01 ; R),

rJKLMT (θ01 ; R), and rMQLRT (θ01 ; R) to m2 := ρ[M2] which measures the degree of

the identification of θ2. However, the limiting representation of rKLMT (θ01 ; R) does show

such a dependence, which is probably one of the striking results in this paper.

3. If m2 := ρ[M2] = p2 (strong identification of θ2), the asymptotic distributions of

all are identical to their identification-based representations in Kleibergen and Mavroei-

dis (2009). This is not surprising because R ≡ Ip2 in this case. If m2 = 0 (complete

non-identification of θ2), the null limiting distributions of the subset statistics are similar

to the ones in the model where θ2 does not appear at all. This is because the rota-

tion R has evacuated the entire non-identified nuisance structural parameter θ2 from the

transformed model. If m2 := ρ[M2] < p2 (i.e., at least one component of θ2 is iden-

tification), the degrees of freedom of the χ2 limiting distributions of rST (θ01 ; R) and

rJKLMT (θ01 ; R) increase17 compared to their identification-based representations for

which m2 := ρ[M2] = p2. Therefore, the mapping R shifts the limiting representations of

both statistics below their identification-based representations, thus resulting in a gain of

degrees of freedom. To better understand how the mechanism works, consider the clas-

sical homoskedastic IV regression (see Example 2.1). From Guggenberger et al. (2012)

and Doko Tchatoka and Wang (2018), the Stock and Wright’s (2000) S-statistic without

model rotation uses the LIML estimator of θ2. When θ2 is weakly identified, the re-

sulting test is under-sized, i.e., its limiting representation is shifted below its asymptotic

chi-square identification-based one. Rotating the original model as done here insures

that the limiting distribution of the resulting rotation-based S-statistic still belongs to

the chi-square family, but does not lead to a conservative test. For this to happen,

the rotation must adjust the statistic by gaining in degrees of freedom compared to its

identification-based level. The mechanism works similarly for the JKLM statistic as well.

The surprising result is maybe the limiting behavior of the rotation-based KLM statis-

tic, rKLMT (θ01 ; R), that does not adjust to the lack of identification of θ2 in the space

m2 := ρ[M2] ∈ [0, p2]. We know from Guggenberger et al. (2012) that Kleibergen and

Mavroeidis’s (2009) subset KLM test is size distorted when θ2 is weakly identified, i.e.,

its limiting representation shifts above its asymptotic chi-square identification-based one.

What the mapping R does here is to push it back to its identification level, but the reason

why this shift is invariant to m2 is not obvious. A close examination reveals an interesting

mechanism. As discussed above, when θ2 is not identified, the mapping R shifts the lim-

iting distributions of rST (θ01 ; R) and rJKLMT (θ01 ; R) below their identification-based

representations identically in the space of m2 ∈ [0, p2] (i.e., both have the same gain in

degrees of freedom). Since rKLMT (θ01 ; R) is equal to the difference between the two

statistics, the two effects cancel out and the net effect on rKLMT (θ01 ; R) is zero, thus

leading to its limiting representation being invariant to m2 ∈ [0, p2].

Theorem 3.2 gives the asymptotic size results.

17As m2 < p2, it is clear that s−m2 > s− p2 and s− p1 −m2 > s− p1 − p2.

17



Theorem 3.2. Under the conditions of Theorem 3.1, we have

AsySz
[
ϕT (K; cKα );F0

]
:= lim sup

T→∞
sup
π ∈ F0

EP
[
ϕT (K; cKα )

]
= α

for all K ∈ {rST , rKLMT , rJKLMT , rMQLMT} and some α ∈ (0, 1), where crSα ≡
χ2
s−m2

(α), crKLM
α ≡ χ2

p1
(α), crJKLM

α ≡ χ2
s−p1−m2

(α), and crMQLR
α ≡ c

MQLR
(α) are the

1− α critical values of the limiting distributions of the statistics in Theorem 3.1.

Remarks

1. Theorem 3.2 shows that the asymptotic size of all rotation-based subset tests

is equal to the nominal level α for the parameter space F0. Although asymptotic size

control is important for a good finite-sample performance of a test, it is well known that

controlling the asymptotic size does prevent this test for being conservative. For example,

in the homoskedastic linear IV regression model, the standard plug-in subset Anderson

and Rubin (1949, AR ) test with restricted LIML estimator has correct asymptotic [see

Guggenberger et al. (2012) and Doko Tchatoka and Wang (2018)] but is still under-sized

when nuisance structural parameters entering the testing problem are weakly identified.

One may thus worry that the proposed rotation subset tests could be conservative under

the same conditions. This is fortunately not the case due to uniform convergence results

of Theorem 3.1 that imply that the asymptotic size of the tests is realized for both weak

and strong sequences of structural parameters in the original model.

2. Under Theorem 3.2, uniformly valid confidence regions for θ01 can be obtained by

inverting each statistics in (3.10)–(3.13), i.e., the set

CK(α) =
{
θ01 : K ≤ cKα

}
, (3.15)

has level 1− α asymptotically for all K ∈ {rST , rKLMT , rJKLMT , rMQLMT}, where

cKα is given in Theorem 3.2.
To develop asymptotic results for the statistics under the alternative hypothesis

(i.e., θ1 6= θ01), we first note that in Theorem 3.1, the scaled average moment vector√
T φ̄rT

(
θ1, η01 + δ√

T

)
is Op(1) uniformly in δ under H0 : θ1 = θ01 . This is not always

the case when θ1 6= θ01 . Indeed, for θ1 6= θ01 we can write
√
T φ̄rT

(
θ1, η01 + δ√

T

)
from

(3.3) - (3.4) as:

√
T φ̄rT

(
θ1, η01 +

δ√
T

)
= ΨrT

(
θ1, η01 +

δ√
T

)
+
√
Tρ1T (θ1) +

√
Tρ2r·T

(
η01 +

δ√
T

)
. (3.16)

By Lemma 3.2, both ΨrT

(
θ1, η01 + δ√

T

)
and
√
Tρ2r·T

(
η01 + δ√

T

)
are Op(1) uniformly in

(θ′1, δ
′)′ ∈ Θ1 × ∆2R for some compact set ∆2R. Hence, whether

√
T φ̄rT

(
θ1, η01 + δ√

T

)
is Op(1) or not depends on the behavior of

√
Tρ1T (θ1). Therefore, to fully characterize

of the limiting representations of the subset statistics when θ1 6= θ01 , we must consider

the following two cases: (i)
√
Tρ1T (θ1) → ∞ uniformly in θ1 for all θ1 6= θ01 (strong

identification of θ1), (ii)
√
Tρ1T (θ1)→ ρ̄1(θ1) = O(1) uniformly in θ1 for all θ1 6= θ01 (weak

identification of θ1).18 To simply the exposition of the results, the following notations

18 Note that case (ii) includes the complete non-identification of θ1, i.e., when ρ̄1(θ1) = 0 for all
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and definitions are used:

µ2
rS

:= µ2
rS

(θ1, η01) = ρ̄1(θ1)′Σ
−1/2
11 (θ1, η01)M

Σ
−1/2
11 (θ1,η01 )M2R1

Σ
−1/2
11 (θ1, η01)ρ̄1(θ1)

µ2
rKLM

:= µ2
rKLM

(θ1, η01) = ρ̄1(θ1)′Σ
−1/2
11 (θ1, η01)PM

Σ
−1/2
11 (θ1,η01 )M2R1

J1
Σ
−1/2
11 (θ1, η01)ρ̄1(θ1)

µ2
rJKLM

:= µ2
rJKLM

(θ1, η01) = µ2
rS

(θ1, η01) + µ2
rKLM

(θ1, η01), (3.17)

where MA = I − PA and PA = A(A′A)−1A′ for any full-rank column matrix A.

Theorem 3.3 presents the results.

Theorem 3.3. Under Assumptions A -F are satisfied, the following results hold uni-

formly in (θ′1, δ
′)′ :

(a) if
√
Tρ1T (θ1) → ∞ uniformly in θ1 for all θ1 6= θ01 , then K

d→ +∞ for any

K ∈
{
rST , rKLMT , rKLMT , rMQLRT

}
;

(b) if
√
Tρ1T (θ1)→ ρ̄1(θ1) = O(1) uniformly in θ1 for all θ1 6= θ01 , then

rST (θ01 ; R)
d→ ψ

rS
(µ2

rS
) ∼ χ2(s−m2;µ2

rS
)

rKLMT (θ01 ; R)
d→ ψ

rKLM
(µ2

rKLM
) ∼ χ2(p1;µ2

rKLM
)

rJKLMT (θ01 ; R)
d→ ψ

rJKLM
(µ2

rJKLM
) ∼ χ2(s− p1 −m2;µ2

rJKLM
)

rMQLRT (θ01 ; R) | τr(θ01)
d→ ψ

rMQLR
(µ2

rS
, µ2

rKLM
) ≡ 1

2
[ψ

rS
(µ2

rS
)− τr(θ01)] +

1

2

√
[ψ

rS
(µ2

rS
) + τr(θ01)]2 − 4[ψ

rS
(µ2

rS
)− ψ

rKLM
(µ2

rKLM
)]τr(θ01)],

ψ
rKLM

(µ2
rKLM

) and ψ
rJKLM

(µ2
rJKLM

) are independent, ψ
rS

(µ2
rS

) = ψ
rKLM

(µ2
rKLM

) +

ψ
rJKLM

(µ2
rJKLM

).

Remarks.

1. Theorem 3.3 holds irrespective of whether θ2 is identified or not, hence the power

property of the rotation-based subset tests is entirely controlled by the identification of θ1,

as expected. Theorem 3.3-(a) states the conditions under which test consistency holds,

while Theorem 3.3-(b) shows that these conditions may fail, in which case the tests may

have low power. This is the case in particular when the noncentrality parameters of the

χ2 limiting distributions in Theorem 3.3-(b) are small or equal to zero. For example, if

ρ̄1(θ1) = 0 (very weak identification or complete non-identification of θ1), all noncentrality

parameters are equal to zero and the limiting distributions of all subset statistics are

identical to their limiting distributions under H0 (see Theorem 3.1) for all θ1 ∈ Θ1. As

such, the power functions of the corresponding tests are flat and test power cannot exceed

the nominal level α. However, the tests exhibit power as long as ρ̄1(θ1) 6= 0, i.e., when

the identification of θ1 is not very poor.

2. All rotation-based subset tests are asymptotically unbiased. Indeed, we know from

Theorem 3.1 that all subset tests are asymptotically α-similar and their asymptotic size

θ1 ∈ Θ1.
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is realized under both weak and strong sequences of model parameters. Now, considering

the results in Theorem 3.3, it is easy to see that the lower bounds on the asymptotic

power functions of the tests is realized under the conditions in Theorem 3.3-(b). As

the asymptotic distributions of the tests in this case are non-central chi-squares or their

functional, it is clear that their asymptotic power functions increase with the noncentrality

parameters. Therefore, the worst case power in Theorem 3.3-(b) arises asymptotically

when all noncentrality parameters are zeros, meaning the asymptotic power of all tests

is at least equal to α.

3.2 Inference when R is unknown

The analysis in Section 3.1 assumes that R is known, which is not the case in practice.

In this section, we show how the tests can be implemented when R is unknown.

3.2.1 Feasible statistics

In practice, the subset statistics in (3.10)-(3.13) are infeasible because R is unknown. In

this section, we provide a two-stage methodology to obtain feasible statistics. In the first-

stage, we estimate M2 and its rank m2 := ρ[M2] from observed data, say M̂2T and m̂2T

respectively. From this result, we obtain an estimate R̂T :=
[
R̂1T

... R̂2T

]
of R following

the steps described in Section 3.2.2, where R̂1T : p2 × m̂2T and R̂2T : p2 × (p2 − m̂2T ).

In the second-stage, we replace R1 by R̂1T in (3.10)-(3.13) and implement the resulting

subset tests with m2 also replaced by m̂2T whenever necessary.

As M2 is independent of the structural parameter vector θ, the first-stage does not

require estimating the nuisance parameter θ2 under H0. To derive an estimator R̂1T of

R1, we must first obtain an estimator m̂2T of m2 := ρ[M2]. The later problem has been

studied extensively in the literature,19 but to preserve the uniform convergence results of

Theorems 3.1 and 3.2, we adopt a methodology that leads to a strong (super) consistent

estimator m̂2T of m2. In that perspective, it is relatively easy to establish primitive

conditions on the estimator M̂2T of M2 under which the resulting rank estimator m̂2T is

strongly consistent. This strong consistency will in general lead to a strong consistent

estimator R̂1T of R1.

Let
{
bT > 0, T ≥ 1

}
be a sequence of pre-specified tuning parameters diverging but

not faster than T ν−1 for any ν > 1, i.e.

bT →∞, T 1−νbT → 0 as T →∞ for some ν > 1. (3.18)

Suppose an estimator R̂T =
[
R̂1T

... R̂2T

]
of R =

[
R1

... R2

]
is available, where R̂jT has the

dimensions of Rj for all j = 1, 2. We consider the following assumption on R̂1T .

Assumption G. For any sequence
{
bT > 0, T ≥ 1

}
satisfying (3.18), we have R̂1T−R1 =

O
(
bT
T ν

)
with probability 1 uniformly over P .

19 e.g., see Anderson et al. (1951), Gill and Lewbel (1992), Cragg and Donald (1996, 1997), Gourieroux
et al. (1993), Robin and Smith (2000), Ratsimalahelo (2003), and Kleibergen and Paap (2006).
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Assumption G implies that there is a scalar a0 > 0 such that sup
P∈P

lim sup
T→∞

P
[
T ν

bT

∥∥R̂1T −

R1

∥∥ ≤ a0

]
= 1. In particular, if bT =

√
2lnlnT and ν = 1.5, the assumption implies that

R̂1T satisfies a strong form of the Law of the Iterated Logarithm (LIL)20 uniformly over P ,
i.e., R̂1T is a strong consistent estimator of R1 uniformly over P . It is worth noting that

Assumption G does not involve the full estimator R̂T since the subset statistics depends

only on R1, i.e., only R̂1T is used in their expressions when R is unknown.

Let QrT (θ1, η1) be the GMM criterion in (3.2) and defined Qr̂T (θ1, η1T
) to be the

criterion obtained by replacing R1 with R̂1T in (3.2), i.e., η
1T

= R̂′1T θ2. The indexation by

“r̂” highlights the dependence of various quantities on the estimated rotation. We have

the following equivalence between Qr̂T (θ1, η1T
) and QrT (θ1, η1).

Lemma 3.3. Under Assumptions A -G and for any sequence
{
bT > 0, T ≥ 1

}
satisfying

(3.18), we have: Qr̂T (θ1, η1T
)−QrT (θ1, η1) = Op

(
bT

T ν−1

)
uniformly over P .

Remark. As op

(
bT
T ν−1

)
≡ op(1) under (3.18), Lemma 3.3 implies Qr̂T (θ1, η1T

) −

QrT (θ1, η1) = op(1) uniformly over P . Therefore, replacing R1 with R̂1T satisfying As-

sumption G in (3.2) does not significantly affect the GMM criterion, i.e., the subset

statistics in (3.10)-(3.13) are asymptotically equivalent to the ones obtained by replacing

R1 with R̂1T . To be more specific, we have the following result.

Theorem 3.4. Under the conditions of Lemma 3.3, we have:

KT (θ01 ; R̂T ) = KT (θ01 ; R) + op(1)

for any statistic KT ∈ {rST , rKLMT , rJKLMT , rMQLMT} defined in (3.10)–(3.13).

Theorem 3.4 shows that the previous findings in Theorems 3.1–3.3 do not alter if R1 is

replaced with R̂1T in the expressions of the statistics in (3.10)–(3.13). The challenge now

is to find an estimator R̂1T of R1 satisfying Assumption G. The next section addresses

this issue extensively.

3.2.2 Estimating m2 := ρ[M2] and R

As discussed in the previous section, to estimate R we must first estimate m2 := ρ[M2].

As formal statistical procedures of matrix rank estimation– such as Kleibergen and Paap

(2006) (henceforth, KP2006)– do not often lead to a strong consistent estimator, we ap-

ply the tolerance level (or threshold) approach. This approach is conceptually simple

and flexible with regards to the choice of the threshold. Its limitation is that its imple-

mentation requires user chosen tuning parameters, and different choices of these tuning

parameters may lead to different results, especially in small-sample.

To proceed, let M̂2T ∈M(s,p2)(R) be an estimator of M2 such that M̂2T = 1
T

∑T
t=1 M̂2t

and EP [M̂2t] = M2 for all t. Let σ1(A) ≥ σ2(A) ≥ . . . ≥ σp2(A) ≥ 0 denote the singular

20See (Cragg and Donald, 1997, Assumption 6) and (Ratsimalahelo, 2003, Assumption C) for further
details on the LIL.
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values of the matrix A, i.e., A has the singular value decomposition (SDV) A = SDU ′,

where S ∈ Os, U ∈ Op2 , and D : s × p2 is rectangular diagonal matrix with elements

σj(A) in decreasing order. Define I = {1, 2, . . . , p2} and let J(A) = {1, 2, . . . , k} be the

subset of I corresponding to the indices associated with the distinct singular values of A,

i.e., d1 > . . . > dj > . . . > dk, so
∑k

j=1 σ(dj) = p2 with σ(dj) denoting the multiplicity of

dj. Let {cT > 0 : T ≥ 1} be a diverging (but not faster than
√
T ) pre-specified sequence

of tuning parameters, i.e., cT → ∞, cT/
√
T → 0 as T → ∞. Consider the following

estimator of m2 := ρ[M2] :

m̂2T (cT ) = card
{
j ∈ J(M̂2T ) : σj(M̂2T ) ≥ cT/

√
T
}
, (3.19)

i.e., m̂2T (cT ) is the number of distinct singular values of M̂2T that are equal or exceed

the threshold cT/
√
T . We make the following assumption on the singular value of M2.

Assumption H. There is a sequence {κT > 0 : T ≥ 1} satisfying κT →∞, κT/
√
T → 0

as T →∞, such that σj(M2) ≥ κT/
√
T for all j ≤ jmax = max

j

{
j ∈ J(M̂2T ) : σj(M̂2T ) ≥

cT/
√
T
}
, where cT is the sequence in (3.19).

Theorem 3.5 gives the conditions on the sequences κT of Assumption H and cT in

(3.19) under which m̂2T (cT ) is a (strong) consistent estimator of m2 := ρ[M2].

Theorem 3.5. Under Assumptions A -C, E & H, we have for any ε > 0 :

(a) lim sup
T→∞

sup
P∈P

P
[
|m̂2T (cT )−m2| > ε

]
= 0 if κT = o(cT );

(b) sup
P∈P

P
[
lim sup
T→∞

|m̂2T (cT )−m2| > ε
]

= 0 if κT = o(cT ) and cT ∈ {(lnT )1/2, (2lnlnT )1/2}.

Remarks.

1. No distributional assumption such as Assumption F-(iii) is required in Theorem

3.5. The proof exploits the Markov and Bernstein inequalities for random matrices (see

the proof in the Appendix). Since the theorem holds for any ε > 0, we can choose

ε ≡ εT = cT/
√
T and (a) entails that

lim sup
T→∞

sup
P∈P

P
[
|m̂2T (cT )−m2| > ε

]
= lim sup

T→∞
sup
P∈P

P
[
|m̂2T (cT )−m2| > cT/

√
T
]

= lim sup
T→∞

sup
P∈P

P
[ |m̂2T (cT )−m2|

cT/
√
T

> 1
]

= 0,

i.e., m̂2T (cT )−m2 = Op

(
cT√
T

)
uniformly over P .

2. Both (a) and (b) require κT = o(cT ), whilst the two sequences grow not faster

than
√
T . Intuitively, estimation induces sampling bias, so in order to obtain a consistent

estimator of the rank, a higher tolerance level (or threshold) should be applied to the

singular values of the rank estimator. Theorem 3.5-(a) states the conditions for uniform

weak consistency of m̂2T (cT ), while Theorem 3.5-(b) is for uniform strong (supper) consis-

tency. The choice of cT = (lnT )1/2, which is based on the Bayesian Information Criterion

(BIC), or that of cT = (2lnlnT )1/2, which is based on the Law of Iterated Logarithm
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(LIL), leads to strong consistency for the estimator of the rank; Cragg and Donald (1997,

Theorem 4). However, LIL [i.e., cT = (2lnlnT )1/2] provides a minimal strong consistent

(MSC) criterion; see Hannan (1980) and Ratsimalahelo (2003, Theorem 7).

3. Since m̂2T (cT ) takes values in a nonnegative integer set (discrete), the strong

consistency result in Theorem 3.5-(b) implies that there exists a finite T0 (possibly a

function of the data and the parameters) such that for T > T0, we have m̂2T (cT ) = m2

with probability 1, which is stronger than the weak convergence result in Theorem 3.5-(a).

4. As the threshold approach in (3.19) requires the knowledge of the tuning sequence

of parameters {cT > 0 : T ≥ 1}, a possible drawback of the method is that different

choices of this sequence in practice may lead to different results, especially if the sample

size is not very large. One may wish to use a formal sequential testing methods proposed

in the literature, such as the the generalized reduced rank approach of KP2006 (see

Appendix A.1). However, using KP2006 framework to estimate m2 := ρ[M2] does not

lead to a strong consistent (as opposed to m̂2T (cT ) in Theorem 3.5-(b)) unless some

adjustments are made to the significance level (or critical values of the statistic)– e.g., see

Ratsimalahelo (2003, Section 5). In particular, to obtain a strong consistent estimator

of m2 with the KP2006 test, we must adjust its significance level, following for example,

the suggestion in Ratsimalahelo (2003, Assumption C). However, doing so also requires a

knowledge of specified sequences of tuning parameters similarly to the threshold approach.

We now illustrate Theorem 3.5 in the classical linear IV model.

Example 2.1 (Continued). Consider the linear IV regression described by (2.11)-

(2.12) and assume that Π2 is fixed. Under Assumptions A-H, we have

M2 := p lim
T→∞

1

T

T∑
t=1

EP [f2(Yt)⊗ Zt] = QZZΠ2

which can be estimated by M̂2T = Q̂ZZΠ̂2T , where Q̂T = Z′Z
T

and Π̂2T =
(
Z′Z
T

)−1(Z′Y2

T

)
is the OLS estimator of Π2 in the first-stage regression (2.12). By substituting Q̂T and

Π̂2T by their expressions above, we get M̂2T = 1
T
Z ′Y2 = 1

T

∑T
t=1 M̂2t, where M̂2t = ZtY

′
2t

satisfies EP [M̂2t] = M2 for all t. Since QZZ is p.d., we have m2 = ρ[M2] = ρ[Π2]. Thus

we can formulate (3.19) equivalently as

m̂2T (cT ) = card
{
j ∈ J(Π̂2T ) : σj(Π̂2T ) ≥ c̃T/

√
T
}
, (3.20)

for some sequence c̃T function of cT . Theorem 3.5 then follows with m̂2T (cT ), m2, and cT
replaced by ρ[Π̂2T ], ρ[Π2], and c̃T respectively.21

We now discuss the estimation of the rotation R = [R1
... R2]. Let M̂2T and m̂2T (cT )

be the estimators of M2 and m2 in (3.19). We can estimate R through the SVD of M̂2T .

Indeed, the SVD of M̂2T is given by:

M̂2T = P̂T D̂T R̂′T , (3.21)

21Similar to Cragg and Donald (1997, Theorems 3 & 4).
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where P̂T : s × s and R̂T : p2 × p2 are orthogonal matrices, D̂T : s × p2 is rectangular
diagonal matrix with decreasing elements (singular values of M̂2T ). Let P̂T , D̂T , and R̂T

be partitioned as:

P̂T =
[
P̂1T

... P̂2T

]
, D̂T =

[
D̂1T 0

0 D̂2T

]
, R̃T =

[
R̂1T

... R̂2T

]
, (3.22)

where P̂1T : s × q, P̂2T : s × (s − q), R̂1T : p2 × q, R̂2T : p2 × (p2 − q), D̂1T : q × q,

and D̂2T : (s − q) × (p2 − q). Clearly, D̂1T contains the q largest singular values of M̂2T

(greater than cT/
√
T ), while D̂2T contains its p2−q smallest singular values (smaller than

cT/
√
T ). In general, q ≥ m̂2T (cT ) by definition of m̂2T (cT ) in (3.19), with equality arising

when all the q largest singular values are distinct. It is worth noting that the p2 − q

smallest singular values may not be exactly zero due sampling error in the estimation of

M̂2T . However, they can be viewed virtually as zeros since they are less than threshold

cT/
√
T → 0. As such, the SVD (3.22) can only be consistent up to permutations because

it is built on the q largest singular values of M̂2T , i.e., any permutation of the p2 − q

smallest (or virtually zero) singular values of M̂2T that leaves the largest singular values

invariant is admissible. Clearly, the conditions under which M̂2T is strongly consistent

to M2 are valid for R̂1T , but not R̂2T because R̂2T only consistently estimate R2 up

to an orthogonal matrix– e.g., see Ratsimalahelo (2003, Proposition 1).22 Zhao et al.

(1986) show that if a matrix estimator follows the LIL, then the corresponding singular

values also follow the LIL. They also provide fairly standard assumptions on the model

under which a matrix estimator follows the LIL. These conditions match quite well the

assumption of our framework or can be adapted easily.

4 Monte Carlo experiment

We use simulation to analyze the finite-sample properties (size and power) of the rotation-

based subset tests. The DGP is described by equations (2.11)–(2.12) with p1 = 1, p2 = 3

and sz = 10 instruments. Two setups are considered for the errors. In the first errors

are homoskedastic such that (ut, V1t, V
′

2t)
′ is i.i.d. Gaussian with unit variance each and

the correlation between ut and each elements of Vt = (V1t, V
′

2t)
′ is ρ0 ∈ {0, 0.5, 0.7} for

all t, the elements of Vt are independent. In the second setup, ut is heteroskedastic such

that ut|ht ∼ N(0, ht), where ht ∼ χ2(1), ut has the same correlation structure with Vt as

in the first setup, and the elements of Vt are i.i.d N(0, 1) for all t. The instruments Zt
are distributed i.i.d. N(0, Isz) and are uncorrelated with (ut, V1t, V

′
2t)
′ for all t. The true

parameter values θ01 and θ02 are set at 1 and (1, 3, 2)′, respectively. The reduced-form

coefficients Π1 and Π2 are chosen such that [Π1
... Π2] =

√
µ2Π0, where Π0 = [c0

... C0], c0

is a sz-dimensional vector with first element equal to 1 and the other elements are 0, C0

is sz × 3 matrix with the last two columns containing zeros and the first column is equal

to the first column of an identity matrix of size sz.

Under the above parametrization, we have m2 := ρ[Π2] ≤ 1 in all cases, i.e., only one

22 We can normalize the SVD decomposition to get a consistent estimator of R2, but since R1 is of
interest, we do not elaborate further on it.
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component of θ2 is identified at most. We vary µ2 in {0, 4, 16, 64}, where µ2 = 0 represents

the case of complete non-identification of both θ1 and θ2, µ
2 = 4 represents very weak

identification of both, µ2 = 16 is for moderately weak identification, while µ2 = 64

designates strong identification of θ1 but only one linear combination of the components

of θ2 is identified (partial identification of θ2). The empirical rejection frequencies are

computed using 1000 replications, and the critical values of the subset statistic rMQLR is

approximated with b = 199 bootstrap pseudo-samples with the conditioning of Kleibergen

(2015, eq.(37)). The nominal level is set at 5% for both the standard and bootstrap

approximation.

4.1 Size properties

Tables 1 presents the empirical rejection frequencies of the rotation-based subset tests

for sample sizes T ∈ {100, 500}. The first column of the table reports the statistics, while

the other columns report, for T ∈ {100, 500} and each ρ0 ∈ {0, 0.5, 0.7}, the rejection

frequencies of the tests for each IV strength µ2 ∈ {0, 4, 16, 64}. The first part of the

table shows the results under homoskedasticity, while the last part presents those under

heteroskedasticity.

The results confirm our theoretical analysis in Theorems 3.1 and 3.2. More precisely,

the null rejection frequencies of the subset tests rS, rKLM, and rJKLM are very close

to 5% for both sample sizes irrespective of whether θ1 and θ2 are identified or not. The

subset rMQLR tends to under-reject with T = 100, due probably to the quality of the

approximation of the conditioning statistic in Kleibergen (2015, eq.(37)). However, the

size property of this test also improves when T = 500. All these results are quite similar

under both homoskedastic and heteroskedastic errors, thus underlying the robustness of

the proposed subset tests to heteroskedasticity.

4.2 Power properties

To simplify the presentation, we only show the results under homoskedastic errors.23

Figure 1 show the empirical power curves of the rotation-based subset tests at nominal

5% level when ρ[Π2] = 1 and µ2 = 64 (θ1 is identified but only one linear combination

of elements of θ2 is identified), while Figure 2 presents the results when both θ1 and θ2

are weakly identified (µ2 = 16). In each case, the Subfigure (a) is for T = 100 while the

Subfigure (b) presents the results with T = 500.

First, we see that when θ1 is identified (Figures 1a &1b), all rotation-based subset

tests have power even when T = 100. In particular, the power of the tests with rS,

rMQLR, and rKLM are close to 1 for large deviation from the null hypothesis even

with T = 100, thus confirming our analysis in Theorem 3.3. The test with rJKLM is

less powerful because it tests misspecification of the restricted GMM model under H0

with η1 replaced by its estimator η̂1T . In addition, although rKLM and rMQLR seems

to dominate rS in term of power in a wide range of cases when θ1 is identified (Figures

23The results with heteroskedastic errors are qualitatively similar to the ones presented here.
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1a &1b), this dominance is not uniform since rS appears more powerful in some cases,

including when T = 500.

Second, when θ1 is weakly identified (Figures 2a &2b), all tests have low power even

with T = 500, as expected. In particular, the rejection frequencies of all tests are quite

close to the nominal 5% level for values of θ1−θ01 around zero, and they never approach 1

for large values of θ1−θ01 . This confirm our theoretical results in Theorem 3.3. Moreover,

it appears clearly that rS can dominate both rKLM and rMQLR in term of power,

especially for large deviations from the null hypothesis and when T = 500. The power of

rJKLM is quite low under weak identification of θ1, irrespective of the sample size.

Figure 1: Identification of θ1 and partial identification of θ2

(a) T = 100 and µ2 = 64 (b) T = 500 and µ2 = 64

Figure 2: Weak identification of both θ1 and θ2

(a) T = 100 and µ2 = 16 (b) T = 500 and µ2 = 16
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5 Conclusions

The paper considers GMM inference for subvector hypotheses in linear models where

structural parameters may not be identified. Previous statistical method often used to

assess these testing problems, such as the subset S-statistic of Stock and Wright (2000)

and the subset KLM and MQLR statistics of Kleibergen and Mavroeidis (2009), can be

arbitrary size distorted if the nuisance structural parameters are weakly identified. We

show that for the class of linear structural models, there exists a rotation that leaves the

subset null hypothesis of interest invariant, eliminates the non-identified linear compo-

nents of the nuisance structural parameters, while preserving those that are identified.

Therefore, uniformly valid inference can be drawn for the subset testing problem of in-

terest in the transformed model by using the conventional plug-in principle.

On exploiting this transformation, we develop the score, Lagrange multiplier, and con-

ditional likelihood ratio type subset tests for the null hypothesis of interest. All proposed

statistics typically depend on this rotation, therefore are referred to as rotation-based sub-

set statistics. We show that tests based on these statistics have correct asymptotic size,

are asymptotically similar and unbiased, and can further accommodate heteroskedasticity

or serial correlation, irrespective of whether identification holds or not. The characteri-

zation of their limiting distributions under the alternative hypothesis shows clearly the

factors that determine power. In particular, we show that all tests are consistent as long

as at least one component of the vector of structural parameters under test is identified.

Test consistency may still hold irrespective of identification nuisance structural parame-

ters, so the power of the test is entirely controlled by the identification of the subset of

structural parameters constrained by the null hypothesis.

A Appendix

A.1 Generalized reduced rank test and estimation of R

As discussed previously, there is a widespread literature on the estimation of the rank of

a matrix.24 Most of this literature formulate the problem of estimating the rank of an

unknown matrix as sequential hypothesis testing. Here, we present here the generalized

reduced rank approach of KP2006 because it generalizes earlier literature on the topic.

Suppose we want to test a reduced rank of M2, i.e., the null hypothesis H0·q : m2 :=

ρ[M2] = q for some q ≤ p2. To construct test statistic for H0·q , KP 2006 suggest to

transform M2 into M∗
2 ,

M∗
2 = GM2F

′ (A.1)

where G : s × s and F : p2 × p2 are nonsingular (normalization matrices). The choice

of G and F is not restricted, but the power properties of the test is improved if we

specify these matrices such that the covariance matrix of vec(M̂∗
2T ) := vec(GM̂2TF

′) =

24 e.g., see Anderson et al. (1951), Gill and Lewbel (1992), Cragg and Donald (1996, 1997), Gourieroux
et al. (1993), Robin and Smith (2000), Ratsimalahelo (2003), and Kleibergen and Paap (2006).
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(F ⊗ G)vec(M̂2T ) is close to an identity matrix. Normalization such as (A.1) is impor-

tant because an appropriate specification of G and F leaves the proposed test-statistic

invariant to any scaling of M2. The reduced rank hypothesis can be formulated as

H0·q : ρ[M∗
2 ] = q, i.e., a test for H0·q can be constructed based on M∗

2 .

Now, decompose M∗
2 [see KP 2006 eq.(1)] as:

M∗
2 = AqBq + Aq,⊥ΛqBq,⊥, (A.2)

with Aq : s×q, Bq : q×p2, Aq,⊥ : s×(s−q), Λq : (s−q)×(p2−q), and Bq,⊥ : (p2−q)×p2,

where A′qAq,⊥ = 0, Bq,⊥B
′
q = 0, A′q,⊥Aq,⊥ = Is−q, and B′q,⊥Bq,⊥ = Ip2−q. We see that if

Λq = 0, then ρ[M∗
2 ] = ρ[AqBq]. Thus ρ[M∗

2 ] = q if both Aq and Bq have full rank. KP

2006 then suggest to build the test of H0·q based on a test of Λq = A′q,⊥M
∗
2B
′
q,⊥ = 0,

where the first equality follows from (A.2).

Aq,⊥ and Bq,⊥ can be identified by the singular value decomposition (SVD) of M∗
2

after an appropriate normalization. Indeed, the SVD of M∗
2 is:

M∗
2 = SD∗U′ =

[
S1

... S2

] [
D∗1 0

0 D∗2

] [
U′1
U′2

]
= S1D

∗
1U′1 + S2D

∗
2U′2, (A.3)

where S : s×s and U : p2×p2 are orthogonal matrices, D∗ : s×p2 is a rectangular diagonal

matrix with decreasing non-negative diagonal elements, S1 : s ×m2, S2 : s × (s −m2),

U1 : p2 ×m2, U2 : p2 × (p2 −m2), D∗1 : m2 ×m2, and D∗2 : (p2 −m2)× (p2 −m2). From

(A.2) and (A.3), we have

AqBq = S1D
∗
1U′1 and Aq,⊥ΛqBq,⊥ = S2D

∗
2U′2. (A.4)

However, (A.4) does not uniquely identify Aq and Bq.
25 Therefore, AqBq must be nor-

malized in order to solve for Aq, Bq, Aq,⊥, Bq,⊥, and Λq uniquely from (A.3). KP 2006

normalize Bq as Bq =
[
Iq

... B2,q

]
, where B2,q : q × (s − q). With this normalization, we

can solve for Aq, and B2,q, Aq,⊥, Bq,⊥, and Λq as:

Aq = S1D
∗
1U′11, B2,q = (U′11)−1U21, Λq = (S22S′22)−1/2S22D

∗
2U′22(U22U′22)−1/2,

Aq,⊥ = S2S−1
22 (S22S′22)1/2, Bq,⊥ = (U22U′22)1/2(U′22)−1U′2, (A.5)

where S1 := [S′11

... S′21]′, S2 := [S′12

... S′22]′, U1 := [U′11

... U′21]′, and U2 := [U′12

... U′22]′.

We can also adapt (A.2) and (A.3) to M̂∗
2T := GM̂2TF

′ to get

M̂∗
2T = ŜT D̂

∗
T Û′T =

[
Ŝ1T

... Ŝ2T

] [
D̂∗1T 0

0 D̂∗2T

] [
Û′1T
Û′2T

]
≡ Ŝ1T D̂

∗
1T Û′1T + Ŝ2T D̂

∗
2T Û′2T , (A.6)

= ÂqT B̂qT + ÂqT,⊥Λ̂qT B̂qT,⊥, (A.7)

25As the number of free elements in Aq and Bq (i.e., sq+qp2) is larger than the number of free elements
of an s× p2 matrix with rank q (i.e., sp2 − q2).

29



which similarly to (A.5) gives a solution of the form

ÂqT = Ŝ1T D̂
∗
1T Û′11,T , B̂2,qT = (Û′11,T )−1Û21,T ,

Λ̂qT = (Ŝ22,T Ŝ′22,T )−1/2Ŝ22,T D̂
∗
2T Û′22,T (Û22,T Û′22,T )−1/2,

ÂqT,⊥ = Ŝ2T Ŝ−1
22,T (Ŝ22,T Ŝ′22,T )1/2, B̂qT,⊥ = (Û22,T Û′22,T )1/2(Û′22,T )−1Û′2, (A.8)

where Ŝ1T := [Ŝ′11,T

... Ŝ′21,T ]′, Ŝ2,T := [Ŝ′12,T

... Ŝ′22,T ]′, Û1T := [Û′11,T

... Û′21,T ]′, and Û2T :=

[Û′12,T

... Û′22,T ]′.

Now, if we define σ̂qT = vec(Λ̂qT ), the we have
√
T σ̂qT

d→ N(0, Ωq) under Assumptions

B-F (KP 2006, Theorem 1), where Ωq := (Bq,⊥ ⊗ A′q,⊥)W(Bq,⊥ ⊗ A′q,⊥)′, W = (F ⊗
G)ΣM(F ⊗ G)′, and ΣM is the sp2 × sp2 lower block of Σ22 given in (3.6). As a result,

KP 2006 statistic for testing Λq = 0 takes the form

rk(q) := T σ̂′qT Ω̂−1
qT σ̂qT , (A.9)

and is distributed asymptotically as χ2
(
(s− q)(p2 − q)

)
random variable under H0·q and

Assumptions B-F, where Ω̂qT is a consistent estimator of Ωq. As G and F are given,

finding a consistent estimator for ΣM is sufficient to obtain a one for Ωq. Since, both

parametric or nonparametric covariance matrix estimators, such as HAC estimators [e.g.,

see Andrews (1991), Newey and West (1987)] apply to ΣM , hence rk(q) can accommodate

heteroskedastic or weakly dependent data.

It is important to note that the asymptotic distribution of rk(q) is derived under

the asymptotic normality of the normalized singular values (diagonal element of Λ̂qT ),

so the asymptotic distribution of any non-normalized singular value (diagonal element of

D̂∗2T ) is involved. The singular values resulting from the SVD (A.6) cannot be negative,

so we cannot assume asymptotic normally for D̂∗2T . Meanwhile, the elements of Λ̂qT

can take negative values due to normalization, so they can be asymptotically normally

distributed; see KP 2006. Note that rk(q) in (A.9) is built under the assumption that M̂∗
2T

is weakly consistency. Therefore, we can only claim weak consistency of the rank estimator

(q ≡ m̂2T (cT )) that results from the testing process with strictly positive nominal level.

An interesting feature of the threshold level approach described in Section 3.2.2 is that it

leads to a rank estimator that is strongly consistent (Theorem 3.5-(b)), provided that an

appropriate choices of the threshold tuning parameters is made.

A.2 Supplemental lemmas

Lemma A.1. Suppose that Assumptions A -G hold. Then the following stochastic dom-

inance holds:

(a)
√
T [φ̄r̂T (θ1, η1T

)− φ̄rT (θ1, η1)] = Op

(
bT

T ν−
1
2

)
;

(b) Ŵr̂T (θ1, η1T
)− ŴrT (θ1, η1) = Op

(
bT
T ν

)
;

Under 3.18, we bT/T
ν = o(1) and bT/T

ν− 1
2 = o(1). So, Lemma A.1 implies that√

T φ̄r̂T (θ1, η1T
) =

√
T φ̄rT (θ1, η1) + op(1) and Ŵr̂T (θ1, η1T

) = ŴrT (θ1, η1) + op(1). The
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latter results are weaker than the ones presented in the Lemma. In particular, Lemma

A.1 exhibits the rate at which
√
T [φ̄r̂T (θ1, η1T

)−φ̄rT (θ1, η1)] and Ŵr̂T (θ1, η1T
)−ŴrT (θ1, η1)

approach zero as T increases.

Lemma A.2. Suppose H0 and Assumptions A -G are satisfied. Let M̂2T := 1
T

∑T
t=1 M̂2T

be an estimator of M2 such that EP [M̂2T ] = M2 for all t. Then we have:

(a) sup
P∈P

EP
[∥∥M̂2T −M2

∥∥] ≤√4d2log(p2+s)
T

+ 2dlog(p2+s)
3T

;

(b) lim sup
T→∞

sup
P∈P

√
TEP

[∥∥M̂2T −M2

∥∥] ≤√4d2log(p2 + s); where d := sup
Vy×Vz

‖M̂2T‖.

Lemma A.3. Suppose H0 and Assumptions A -G. If further the sequence {cT > 0 : T ≥
1} in (3.19) satisfies cT →∞ and cT/

√
T → 0 as T →∞. Then we have:

(a) lim sup
T→∞

sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥ cT√
T

]
= 0;

(b)
∥∥M̂2T −M2

∥∥ = Op

(
cT√
T

)
uniformly over P .

Proof of Lemma A.1. Suppose Assumptions A -G hold and θ1 is fixed.

(a) The Mean Value Expansion of φ̄r̂T (θ1, η1T
) around (θ′1, η

′
1)′ gives:

φ̄r̂T (θ1, η1T
) = φ̄rT (θ1, η1) +

∂φ̄r̂T (θ1, η̄1)

∂η′
1T

(η
1T
− η1)

= φ̄rT (θ1, η1) +
( 1

T

T∑
t=1

[f2(Yt)⊗ Zt]
)

R̂1T (η
1T
− η1) (A.10)

= φ̄rT (θ1, η1) +
( 1

T

T∑
t=1

[f2(Yt)⊗ Zt]
)

R̂1T (R̂′1T − R′1)θ2

for some η̄1 lying in the segments (η1, η̄1). The second equality in (A.10) follows from

(2.10) while the last holds by the fact that η
1T
− η1 = R̂′1T θ2 − R′1θ1 ≡ (R̂′1T − R′1)θ2.

Now, under Assumptions A -G, the order of magnitude of the terms in the right-hand

side of the last equality in (A.10) are: 1
T

∑T
t=1[f2(Yt) ⊗ Zt] = Op(1), (R̂′1T − R′1)θ2 =

O
(
bT
T ν

)
O(1) ≡ O

(
bT
T ν

)
, and R̂′1T = (R̂′1T −R′1)+R′1 = O

(
bT
T ν

)
+O(1) ≡ O(1). Thus, from

the last equality in (A.10), we have:

√
T
[
φ̄r̂T (θ1, η1T

)− φ̄rT (θ1, η1)
]

= O(
√
T )Op(1)O(1)O

( bT
T ν

)
≡ Op

( bT

T
ν− 1

2

)
, (A.11)

which completes the proof of (a).

(b) As in the proof of (a), there is η∗1 lying in the segments (η1, η
∗
1) such that

Ŵr̂T (θ1, η1T
) = ŴrT (θ1, η1) +

∂Ŵr̂T (θ1, η
∗
1)

∂η′
1T

(η
1T
− η1) (A.12)

⇔ Ŵr̂T (θ1, η1T
)− ŴrT (θ1, η1) =

∂Ŵr̂T (θ1, η
∗
1)

∂η′
1T

(R̂′1T − R′1)θ2. (A.13)

31



We know form the proof of (a) that (R̂′1T −R′1)θ2 = O
(
bT
T ν

)
. Now, Ŵr̂T (θ1, η

∗
1) is an esti-

mator of lim
T→∞

var[
√
T φ̄r̂T (θ1, η

∗
1
)] by definition, and the latter is Op(1) under Assumptions

E-F. Therefore, the uniform continuity of ŴrT (θ1, ·) with respect to the second argument

entails that ∂Ŵr̂T (θ1, η
∗
1)/∂η′

1T
= Op(1). So, (A.13) implies that

Ŵr̂T (θ1, η1T
)− ŴrT (θ1, η1) = Op(1)O

(
bT
T ν

)
≡ Op

(
bT
T ν

)
. (A.14)

Proof of Lemma A.2. Let St(T ) = 1
T

[M̂2T−M2] and define S = M̂2T−M2 =
∑T

t=1 St(T ),

vT (S) = max
{∥∥∑T

t=1EP [St(T )St(T )′]
∥∥, ∥∥∑T

t=1EP [St(T )′St(T )]
∥∥}. We will show that∥∥St(T )

∥∥ ≤ KT and vT (S) ≤ K̄T for some sequences KT and K̄T . Then we will use these

results to established Lemma A.2-(a)&(b).
First, it clear that EP [St(T )] = 0 for all t under H0 by construction of the estimator

M̂2T . Now, we have:

∥∥St(T )
∥∥ =

∥∥ 1

T
[M̂2T −M2]

∥∥ ≤ 1

T

∥∥M̂2T

∥∥+
1

T

∥∥M2

∥∥ =
1

T

∥∥M̂2T

∥∥+
1

T

∥∥EP (M̂2T )
∥∥ (A.15)

≤ 1

T

∥∥M̂2T

∥∥+
1

T
EP [

∥∥M̂2T

∥∥] ≤ 2

T
sup

Vy×Vz

∥∥M̂2T

∥∥ =
2d

T
:= KT .

Similarly, we can write St(T )St(T )′ as:

St(T )St(T )′ =
1

T 2
[M̂2T M̂

′
2T − M̂2TM

′
2 −M2M̂

′
2T +M2M

′
2] so that we have

T∑
t=1

∥∥EP [St(T )St(T )′]
∥∥ =

1

T 2

T∑
t=1

∥∥EP [M̂2T M̂
′
2T ]−M2M

′
2

∥∥ ≤ 1

T 2

T∑
t=1

∥∥EP [M̂2T M̂
′
2T ]
∥∥

as M2M
′
2 is p.s.d.

≤ 1

T 2

T∑
t=1

(
sup

Vy×Vz

∥∥M̂2T

∥∥)2 =
d2

T
. (A.16)

By the same way, we have
∑T

t=1

∥∥EP [St(T )′St(T )]
∥∥ ≤ d2/T. Therefore, we have

vT (S) = max
{∥∥ T∑

t=1

EP [St(T )St(T )′]
∥∥, ∥∥ T∑

t=1

EP [St(T )′St(T )]
∥∥} ≤ d2

T
+
d2

T
=

2d2

T
.

We now prove Lemma A.2 using the results in (A.15) and (A.16).
(a) From (A.15)–(A.16), the matrix Bernstein inequality [see (Tropp, 2015, Theorem

1.6.2)] implies that

EP
[
‖S‖

]
:= EP

[
‖M̂2T −M2‖

]
≤
√

4d2log(p2 + s)

T
+

2dlog(p2 + s)

3T
. (A.17)

As the RHS of the inequality in (A.17) does not involve the probability distribution P ,
the result holds for any P ∈ P . Lemma A.2-(a) is obtained by taking the sup over P ∈ P ,
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i.e.

sup
P∈P

EP
[∥∥M̂2T −M2

∥∥] ≤√4d2log(p2 + s)

T
+

2dlog(p2 + s)

3T
. (A.18)

(b) Since d <∞ (as Vy×Vz is bounded), we have
√
T
√

4d2log(p2+s)
T

=
√

4d2log(p2 + s)

and
√
T 2dlog(p2+s)

3T
→ 0 as T →∞. From (A.17)–(A.18), it is clear that

lim sup
T→∞

sup
P∈P

EP [‖S‖]
1/
√
T

:= lim sup
T→∞

sup
P∈P

√
TEP [‖M̂2T −M2‖] ≤

√
4d2log(p2 + s), (A.19)

i.e. sup
P∈P

EP [‖M̂2T −M2‖] = O( 1√
T

) : on average the error of the approximation of M̂2T to

M2 is O
(

1√
T

)
uniformly over P .

A.3 Proofs of main results

Proof of Lemma 2.1. (a) Consider R :=
[
R1

... R2

]
∈ O(p2) with R2 : p2× (p2−m) and

R1 : p2 ×m for some 0 ≤ m ≤ p2. As RR′ = Ip2 , we can write (2.5) as:

φt(θ) = f0(Yt)⊗ Zt +
[
f1(Yt)⊗ Zt

]
θ1 +

[
f2(Yt)⊗ Zt

]
RR′θ2

= f0(Yt)⊗ Zt +
[
f1(Yt)⊗ Zt

]
θ1 +

[
f2(Yt)⊗ Zt

]
[R1

... R2]

(
R′1θ2

R′2θ2

)
(A.20)

= f0(Yt)⊗ Zt +
[
f1(Yt)⊗ Zt

]
θ1 +

[
(f2(Yt)⊗ Zt)R1

]
η1 +

[
(f2(Yt)⊗ Zt)R2

]
η2,

where ηj = R′jθ2, j = 1, 2. Therefore, Lemma 2.1-(a) holds with φR,t(θ1, η1) := f0(Yt) ⊗
Zt +

[
f1(Yt)⊗ Zt

]
θ1 +

[
(f2(Yt)⊗ Zt)R1

]
η1 and λt(η2) := [(f2(Yt)⊗ Zt)R2]η2.

(b) First, note that for any m2 := ρ[M2], there always exists R :=
[
R1

... R2

]
∈ O(p2)

such that M2R2 = 0. Indeed, if m2 := ρ[M2] = p2 (strong identification of θ2), choose

R ≡ R1 = Ip2 and R2 from the partition of R. If m2 := ρ[M2] = 0 (i.e. θ2 is completely

unidentified), choose R ≡ R2 where R2 spans the null space of M2, and R1 vanishes from

the partition of R. Finally, if 0 < m2 := ρ[M2] < p2, we can choose R such that R2 spans

the null space of M2 and R1 is free (unrestricted).

Now, consider such a rotation R. From Lemma 2.1-(a), we have

φR,t(θ1, η1) = φt(θ1, θ2) + λt(η2). (A.21)

It follows that EP [φt(θ1, θ2)] = EP [φR,t(θ1, η1)] + EP [λt(η2)]. Now, we have EP [λt(η2)] =

EP [f2(Yt) ⊗ Zt]R2η2 = [M2R2]η2 under Assumption C with M2 = EP [f2(Yt) ⊗ Zt].

Since M2R2 = 0 by construction of R, it is clear from (A.21) that EP [φt(θ1, θ2)] =

EP [φR,t(θ1, η1)] irrespective of any value of m2 := ρ[M2]. Thus Lemma 2.1-(b) follows

straightforwardly.

33



Proof of Lemma 3.1. By definition, T φ̄(θ01 , η̂1T
)′ŴT φ̄(θ01 , η̂1T

) ≤ T φ̄(θ01 , η01)′ŴT φ̄(θ01 , η01).

Since ŴT
P→ Σ11(θ01 , η01)−1 that p.f. and the function returning the smallest eigenvalue

of square matrices is continuous, the smallest eigenvalue of ŴT converges to that of

Σ11(θ01 , η01)−1 which strictly positive. As a result, there exists λ > 0 such that, with

probability approaching 1, we have

λ‖
√
T φ̄(θ01 , η̂1T

)‖2 ≤ T φ̄(θ01 , η̂1T
)′ŴT φ̄(θ01 , η̂1T

) ≤ ‖ŴT‖‖
√
T φ̄(θ01 , η01)‖2,

where the last inequality follows from the Cauchy-Schwarz inequality. From Assumption

D-(ii),
√
T φ̄(θ01 , η01) = OP (1) and we have

√
T φ̄(θ01 , η̂1T

) = OP (1). Under H0, we have:

√
Tρ2r(θ01 , η̂1T

) =
√
T φ̄rT (θ01 , η̂1T

)−
√
T
(
φ̄rT (θ01 , η̂1T

)− ρ(θ01 , η̂1T
)
)

= OP (1)

where ρ(θ01 , η̂1T
) = ρ1(θ01) + ρ2r(η̂1T

) ≡ ρ2r(η̂1T
) with ρ1(θ01) = 0 and the OP (1) order

of magnitude holds by Assumption D-(ii). Therefore, we have
√
Tρ2r(θ01 , η̂1T

) = OP (1)

as stated. Therefore, ρ2r(θ01 , η̂1T
) converges in probability to 0.

To show that η̂
1T

converges in probability to η01 , we proceed by contradiction. Assume

that η̂
1T

does not converge to η01 in probability. Then, there exist ζ > 0 and τ > 0 and

a subsequence η̂1ωT
of η̂

1T
such that, for all T ,

P
[
‖η̂1ωT

− η01‖ ≥ τ
]
> ζ.

By continuity of ρ2r(·) and compactness of Θ2R, the fact that only η01 sets ρ2r(η1) to 0

ensures that the minimum of ‖ρ2r(η1)‖ over N = {η1 ∈ Θ2R : ‖η1 − η01‖ ≥ τ} is reached

at some η̄1 ∈ N such that: for all η1 ∈ N , ‖ρ2r(η1)‖ ≥ ‖ρ2r(η̄1)‖ = τ̄ > 0. Hence,[
‖η̂1ωT

− η01‖ ≥ τ
]
⇒
[
(‖ρ2r(η̂1ωT

)‖ ≥ τ̄
]
.

Thus, for all T , we have

P
[
‖ρ2r(η̂1ωT

)‖ ≥ τ̄
]
> ζ

contradicting the fact that ρ2r(η̂1ωT
) converges in probability to 0. Therefore, η̂

1T
con-

verges in probability to η01 .

Proof of Lemma 3.2. By Lemma 3.1 it suffices to obtain the limiting representation of

these statistics as empirical processes in (θ′1, δ
′)′ ∈ Θ1 ×∆2R, where ∆2R is compact.

(a) First, we can write
√
T φ̄rT

(
θ1, η01 + δ/

√
T
)

from (3.3) - (3.4) as

√
T φ̄rT

(
θ1, η01 +

δ√
T

)
= ΨrT

(
θ1, η01 +

δ√
T

)
+
√
Tρ1T (θ1) +

√
Tρ2r·T

(
η01 +

δ√
T

)
. (A.22)

Suppose first that H0 : θ1 = θ01 is true. Then we have ρ1T (θ01) = 0 and (A.22) becomes:

√
T φ̄rT

(
θ01 , η01 +

δ√
T

)
= ΨrT

(
θ01 , η01 +

δ√
T

)
+
√
Tρ2r·T

(
η01 +

δ√
T

)
. (A.23)

The first term of the RHS of (A.23) is such that ΨrT

(
θ01 , η01 + δ/

√
T
)

=⇒ Ψr(θ0r) uniformly in
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δ ∈ ∆2R, where θ0r = (θ′
01
, η′

01
)′. For the second term, we have

√
Tρ2r·T

(
η01 + δ/

√
T
)
→M2R1δ

uniformly in δ ∈ ∆2R. Therefore, we have
√
T φ̄rT

(
θ01 , η01 + δ/

√
T
)

=⇒ Ψr(θ0r) + M2R1δ

uniformly in δ ∈ ∆2R, as postulated in (a).

Now, suppose that θ1 6= θ01 is true. Without any loss of generality, it suffices to distinguish

the following two cases: (a1)
√
Tρ1T (θ1) → ρ̄1(θ1) < ∞, and (a2)

√
Tρ1T (θ1) → ∞. For

case (a1), it is straightforward to see from (A.22) –(A.23) that
√
T φ̄rT

(
θ01 , η01 + δ/

√
T
)

=⇒
Ψr(θ0r)+M2R1δ+ ρ̄1(θ1), which reduces to

√
T φ̄rT

(
θ01 , η01 +δ/

√
T
)

=⇒ Ψr(θ0r)+M2R1δ when

ρ̄1(θ1) = 0. In case (a2) it is straightforward to see that
√
T φ̄rT

(
θ01 , η01 + δ/

√
T
)

=⇒ ∞. This

completes the proof of (a).

(b) The result follows easily from Assumption F and the fact that η01+δ/
√
T → η01 uniformly

in δ ∈ ∆2R for any θ1 ∈ Θ1.

(c) The result follows by combining that of (a) and (b), along with the definition ofQrT (θ01 , η1

)
in (3.2).

(d) The result follows from Van Der Vaart and Wellner (1996, Lemma 3.2.1, p.286).26

Indeed, from the continuity of QrT
(
θ01 , η01 + δ/

√
T
)

at δ along with the Maximum Theo-

rem, we have
√
T (η̂1T − η01) =⇒ δ∗(θ0r) = arg min

δ∈∆
Qr
(
θ0r , δ

)
, where Qr

(
θ0r , δ

)
=
[
Ψr(θ0r) +

M2R1δ
]′

Σ−1
11 (θ0r)

[
Ψr(θ0r) + M2R1δ

]
. Given θ0r , the first order condition of the minimization

problem min
δ∈∆

Qr
(
θ0r , δ

)
gives:

R′1M
′
2Σ−1

11 (θ0r)M2R1δ
∗(θ0r) = −R′1M

′
2Σ−1

11 (θ0r)Ψr(θ0r). (A.24)

Since M2R1 has full-column rank m2, we can solve (A.24) for δ∗(θ01) to get

δ∗(θ0r) = −[R′1M
′
2Σ−1

11 (θ0r)M2R1]−1R′1M
′
2Σ−1

11 (θ0r)Ψr(θ0r). (A.25)

Under Assumption F-(iii), we have Ψr(θ0r) ∼ N
[
0, Σ11(θ0r)

]
. From (A.25) it is clear that

δ∗(θ0r) is Gaussian with mean zero and covariance matrix given by

Σδ(θ0r) = [R′1M
′
2Σ−1

11 (θ0r)M2R1]−1R′1M
′
2Σ−1

11 (θ0r)Σ11(θ0r)Σ
−1
11 (θ0r)M2R1[R′1M

′
2Σ−1

11 (θ0r)M2R1]−1

≡ [R′1M
′
2Σ−1

11 (θ0r)M2R1]−1,

which completes the proof of (d).

(e) From (3.8), it is clear under Assumption F that

√
Tvec

(
D̂rT (θ1, η01 +

δ√
T

)− Jr
)

=⇒ Ψ
rD

(θ1, η01), (A.26)

where Ψ
rD

(θ1, η01) ≡ Υr − Σ21(θ1, η01)Σ−1
11 (θ1, η01)Ψr(θ1, η01). under Assumption F-(iii),

Ψ
rD

(θ1, η01) is a Gaussian process with mean zero. After some algebra, we find that

its covariance matrix is given by Σ⊥22 := Σ22 − Σ21(θ1, η01)Σ−1
11 (θ1, η01)Σ′21(θ1, η01). This

completes the proof of (e).

Proof of Theorem 3.1. We will distinguish the following two cases: (a) m2 := ρ[M2] =

0 and (b) m2 := ρ[M2] > 0.

26Also, see the proof of Stock and Wright (2000, Theorem 1, p.1092).
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(a) Suppose first that m2 := ρ[M2] = 0 (i.e., θ2 is completely unidentified) so that η1

does not appear in (3.1). Thus, the rotation-based statistics collapse to the ones in Stock

and Wright (2000, Theorem 2) and Kleibergen (2005), i.e., the asymptotic distribution

is obtained by setting m2 := ρ[M2] = 0 in Theorem 3.1, as stated.

(b) Suppose now that m2 := ρ[M2] > 0. To simplify the proof, we observe that

the statistics rJKLMT (θ01 ; R) and rMQLMT (θ01 ; R) are functions of rST (θ01 ; R) and

rKLMT (θ01 ; R), hence we only provide the proof for the latter two statistics.

Consider the statistic rST (θ01 ; R) first. By definition, we have

rST (θ01 ; R) := QrT (θ01 , η̂1T
) = QrT

(
θ01 , η01 +

δ√
T

)
+ op(1) (A.27)

under H0 for some δ in a compact subset ∆2R ⊆ Θ2, where the second equality holds by
Lemmas 3.1. From Lemma 3.2, we have

QrT
(
θ01 , η01 +

δ√
T

)
⇒
[
Ψr(θ0r) +M2R1δ

∗(θ0r)
]′

Σ−1
11 (θ0r)

[
Ψr(θ0r) +M2R1δ

∗(θ0r)
]

(A.28)

uniformly in (θ′1, δ
′)′ ∈ Θ1×∆2R under H0, where ∆2R is compact and δ∗(θ0r) is defined

from Lemma 3.2-(d) as:

δ∗(θ0r) = arg min
δ∈∆

Qr

(
θ0r , δ

)
≡ −[R′1M

′
2Σ−1

11 (θ0r)M2R1]−1R′1M
′
2Σ−1

11 (θ0r)Ψr(θ0r). (A.29)

Combine (A.28)–(A.29) and rearrange to get:

QrT

(
θ01 , η01 +

δ√
T

)
⇒ Ψ′

r
(θ0r)Σ

−1/2
11 (θ0r)MΣ

−1/2
11 (θ0r )M2R1

Σ
−1/2
11 (θ0r)Ψr(θ0r), (A.30)

where M
Σ
−1/2
11 (θ0r )M2R1

= Is − P
Σ
−1/2
11 (θ0r )M2R1

is idempotent with rank s − m2. Since

Σ
−1/2
11 (θ0r)Ψr(θ0r) ∼ N(0, Is), it clear from (A.30) that QrT

(
θ01 , η01 + δ√

T

)
⇒ χ2(s−m2)

uniformly in δ ∈ Θ2R. This completes the proof for rST (θ01 ; R) since weak convergence

‘=⇒’ implies convergence in distribution ‘
d→ .’

Now, consider the statistic rKLMT (θ01 ; R). Without any loss of generality, assume

that the Jocabian limit Jr =
[
J1

... M2R1

]
has full-column rank p1 +m2 (i.e., θ1 is identi-

fied). The case where Jr has deficient rank (i.e., θ1 is weakly identified) can be adapted

as in Kleibergen (2005) with an appropriate normalization of the Jocabian estimator

D̂r̂T (θ01 , η̂1T
).

From (3.11), rKLMT (θ01 ; R) is defined as

rKLMT (θ01 ; R) = T φ̄r̂T (θ01 , η̂1T
)′Ŵ

1/2

r̂T PŴ 1/2

r̂T D̂r̂T
Ŵ

1/2

r̂T φ̄r̂T (θ01 , η̂1T
), (A.31)

where Ŵr̂T ≡ Ŵr̂T (θ01 , η̂1T
) and D̂r̂T ≡ D̂r̂T (θ01 , η̂1T

). From the proof of the result for

rST (θ01 ; R), we have

Ŵ
1/2

r̂T (θ01 , η̂1T
)
√
T φ̄r̂T (θ01 , η̂1T

)⇒M
Σ
−1/2
11 (θ0r )M2R1

Σ
−1/2
11 (θ0r)Ψr(θ0r) (A.32)
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uniformly in η1 under H0, and from Lemma 3.2-(c) &(e) we also have

Ŵ
1/2

r̂T (θ01 , η̂1T
)D̂r̂T (θ01 , η̂1T

)
p→ Σ

−1/2
11 (θ0r)Jr (A.33)

uniformly in η1 under H0. Therefore, these results along with (A.31) imply that

rKLMT (θ01 ; R)⇒ Ψ′
r
(θ0r )Σ

−1/2
11 (θ0r )M

Σ
−1/2
11 (θ0r )M2R1

P
Σ

−1/2
11 (θ0r )Jr

M
Σ

−1/2
11 (θ0r )M2R1

Σ
−1/2
11 (θ

0r
)Ψ

r
(θ

0r
)(A.34)

uniformly in η1 under H0. Since Jr =
[
J1

... M2R1

]
, we have

P
Σ
−1/2
11 (θ0r )Jr

= P
Σ
−1/2
11 (θ0r )M2R1

+ PM
Σ
−1/2
11 (θ0r )M2R1

J1

⇒ M
Σ
−1/2
11 (θ0r )M2R1

P
Σ
−1/2
11 (θ0r )Jr

= M
Σ
−1/2
11 (θ0r )M2R1

PM
Σ
−1/2
11 (θ0r )M2R1

J1

≡ PM
Σ
−1/2
11 (θ0r )M2R1

J1

and (A.34) then becomes:

rKLMT (θ01 ; R)⇒ Ψ′
r
(θ0r)Σ

−1/2
11 (θ0r)PM

Σ
−1/2
11 (θ0r )M2R1

J1
Σ
−1/2
11 (θ0r)Ψr(θ0r). (A.35)

As Σ
−1/2
11 (θ0r)Ψr(θ0r) ∼ N(0, Is) and PM

Σ
−1/2
11 (θ0r )M2R1

J1
is idempotent with rank p1, it

clear from (A.35) that rKLMT (θ01 ; R) ⇒ χ2(p1) uniformly in η1, which completes the

proof.

Proof of Theorem 3.2. For some α ∈ (0, 1) and any KT ∈ {rST , rKLMT , rJKLMT , rMQLMT },
the asymptotic size at nominal level α for the parameter space F0 in (3.7) is given by:

AsySz
[
ϕT (KT ; cKα );F0

]
:= lim sup

T →∞
sup
π ∈ F0

EP [ϕT (KT ; cKα )]

= lim sup
T →∞

sup
π ∈ F0

P [KT > cKα ], (A.36)

where cKα are defined in Theorem 3.1. From Andrews and Guggenberger (2010, 2017),
Guggenberger (2010), and Guggenberger et al. (2012), there exists a “worst case se-
quence” πT = (η

1T
, PT ) ∈ F0 such that:

lim sup
T →∞

sup
π ∈ F0

P [KT > cKα ] = lim sup
T →∞

PT [KT > cKα ] = lim
ωT →∞

PωT [KωT > cKα ] (A.37)

where the first equality in (A.37) holds by the choice of the sequence {πT : T ≥ 1} and

{ωT : T ≥ 1} is a subsequence of {T : T ≥ 1} : such a subsequence always exists.

But, for any subsequence {ωT : T ≥ 1} of {T : T ≥ 1}, and any sequence {πωT : T ≥
1}, we have KωT

d→ ψ
K

under H0 by Theorem 3.1, where

ψ
rS
∼ χ2(s−m2), ψ

rKLM
∼ χ2(p1), ψ

rJKLM
∼ χ2(s− p1 −m2),

and ψ
rMQLR

≡ 1

2
[ψ

rS
− τr(θ01)] +

1

2

√
[ψ

rS
+ τr(θ01)]2 − 4[ψ

rS
− ψ

rKLM
]τr(θ01)].
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Therefore, we have

AsySz
[
ϕT (KT ; cKα );F0

]
= lim sup

T →∞
PT [KT > cKα ] = lim

ωT →∞
PωT [KωT > cKα ]

= P0[ψ
K
> cKα ] = α, P0 ≡ P

(θ01 ,η1)
, (A.38)

where the last equality holds by Theorem 3.1.

Proof of Theorem 3.3. Without any loss of generality, m2 := ρ[M2] > 0.

As for Theorem 3.1, we focus on rST (θ01 ; R) and rKLMT (θ01 ; R).

(a) Suppose first that θ1 6= θ01 and
√
Tρ1T (θ1) → ∞. The divergence of the statis-

tics rST (θ01 ; R) follows immediately from Lemma 3.2. For the statistic rKLMT (θ01 ; R),

observe from Lemma 3.2 that Ŵ
1/2

r̂T (θ01 , η̂1T
)

p→ Σ
−1/2
11 (θ0r), D̂r̂T (θ01 , η̂1T

)
p→ Jr , and√

T φ̄rT
(
θ01 , η01+δ/

√
T
)

=⇒∞ uniformly in (θ′1, η
′
1)′. Therefore, we have rKLMT (θ01 ; R)

d→
∞ by (3.11).

(b) Suppose now that θ1 6= θ01 and
√
Tρ1T (θ1) → ρ̄1(θ1) < ∞ [ρ̄1(θ1) = 0 is allowed].

From Lemma 3.2 and the proof of Theorem 3.1, it is easy to see that

rST (θ01 ; R) ⇒
[
Ψr(θ1, η01) +M2R1δ

∗(θ1, η01) + ρ̄1(θ1)
]′

Σ−1
11 (θ1, η01)×[

Ψr(θ1, η01) +M2R1δ
∗(θ1, η01) + ρ̄1(θ1)

]
, (A.39)

uniformly in (θ′1, η
′
1)′, where for some fixed θ1, δ

∗(θ1, η01) solves

δ∗(θ1, η01) = arg min
δ∈∆

Qr

(
θ1, δ; η01

)
≡ −[R′1M

′
2Σ−1

11 (θ1, η01)M2R1]−1R′1M
′
2Σ−1

11 (θ1, η01)×

[Ψr(θ1, η01) + ρ̄1(θ1)]. (A.40)

By combining (A.39)–(A.40) and rearranging, we get

rST (θ01 ; R) ⇒ [Ψr(θ1, η01) + ρ̄1(θ1)]′Σ
−1/2
11 (θ1, η01)M

Σ
−1/2
11 (θ1,η01 )M2R1

Σ
−1/2
11 (θ1, η01)×

[Ψr(θ1, η01) + ρ̄1(θ1)] ≡ ψ
rS

(µ2
rS

) ∼ χ2(s−m2;µ2
rS

), (A.41)

where µ2
rS
≡ µ2

rS
(θ1, η01) = ρ̄1(θ1)′Σ

−1/2
11 (θ1, η01)M

Σ
−1/2
11 (θ1,η01 )M2R1

Σ
−1/2
11 (θ1, η01)ρ̄1(θ1). By

following similar steps, we find

rKLMT (θ01 ; R) ⇒ [Ψr(θ1, η01) + ρ̄1(θ1)]′Σ
−1/2
11 (θ1, η01)PM

Σ
−1/2
11 (θ1,η01 )M2R1

J1
Σ
−1/2
11 (θ1, η01)×

[Ψr(θ1, η01) + ρ̄1(θ1)] ≡ ψrKLM (µ2
rKLM

) ∼ χ2(p1;µ2
rKLM

), (A.42)

where µ2
rKLM

≡ µ2
rKLM

(θ1, η01) = ρ̄1(θ1)′Σ
−1/2
11 (θ1, η01)PM

Σ
−1/2
11 (θ1,η01 )M2R1

J1
Σ
−1/2
11 (θ1, η01)ρ̄1(θ1).

Proof of Lemma 3.3. From Lemma A.1, we
√
T φ̄r̂T (θ01 , η1T

) =
√
T φ̄rT (θ01 , η1)+Op

(
bT

T ν−
1
2

)
and Ŵr̂T = ŴrT +Op

(
bT
T ν

)
. Hence, we can express Qr̂T (θ01 , η1T

) as:

Qr̂T (θ01 , η1T
) = A1T + A2T + A3T +B1T +B2T +B3T , (A.43)
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where

A1T = T φ̄rT (θ01 , η1)′ŴrT φ̄rT (θ01 , η1) := QrT (θ01 , η1)

A2T = 2
√
T φ̄rT (θ01 , η1)′ŴrTOp

( bT

T ν−
1
2

)
= Op(

√
T )Op(1)Op

( bT

T ν−
1
2

)
≡ Op

( bT
T ν−1

)

A3T = Op

( bT

T ν−
1
2

)
ŴrTOp

( bT

T ν−
1
2

)
= Op

( bT

T ν−
1
2

)
Op(1)Op

( bT

T ν−
1
2

)
≡ Op

( b2T
T 2ν−1

)
B1T = T φ̄rT (θ01 , η1)′Op

( bT
T ν

)
φ̄rT (θ01 , η1) = Op(T )Op

( bT
T ν

)
Op(1) ≡ Op

( bT
T ν−1

)

B2T = 2
√
T φ̄rT (θ01 , η1)′Op

( bT
T ν

)
Op

( bT

T ν−
1
2

)
= Op(

√
T )Op

( bT
T ν

)
Op

( bT

T ν−
1
2

)
≡ Op

( b2T
T 2ν−1

)

B3T = Op

( bT

T ν−
1
2

)
Op

( bT
T ν

)
Op

( bT

T ν−
1
2

)
≡ Op

( b3T
T 3ν−1

)
.

We can thus write (A.43) as:

Qr̂T (θ01 , η1T ) = QrT (θ01 , η1) +Op

( bT
T ν−1

)
+Op

( b2T
T 2ν−1

)
+Op

( bT
T ν−1

)
+

+Op

( b2T
T 2ν−1

)
+Op

( b3T
T 3ν−1

)
(A.44)

= QrT (θ01 , η1) +Op

( bT
T ν−1

)
(A.45)

where the last equality in (A.43) follows from the fact that max{ bT
T ν−1 ,

b2T
T 2ν−1 ,

b3T
T 3ν−1} = bT

T ν−1

when bT satisfies (3.18).

Proof of Theorem 3.4. The proof follows easily from Lemmas 3.3 & A.1, therefore it

is omitted.

Proof of Lemma A.3. (a) For any scalar ε > 0, the Markov inequality implies that

P
[
‖M̂2T −M2‖ ≥ ε

]
≤ 1

ε
EP
[
‖M̂2T −M2‖

]
. (A.46)

By choosing ε = cT/
√
T , (A.46) becomes:

lim sup
T→∞

sup
P∈P

P
[
‖M̂2T −M2‖ ≥

cT√
T

]
≤ lim sup

T→∞
sup
P∈P

√
TEP

[
‖M̂2T −M2‖

]
cT

≤ lim sup
T→∞

(√4d2log(p2 + s)

cT
+

2dlog(p2 + s)

3
√
TcT

)
(A.47)

where the last inequality holds from (A.18). Since cT → ∞ as T → ∞ and d < ∞, we

have lim sup
T→∞

sup
P∈P

P [‖M̂2T −M2‖ ≥ cT√
T

] = 0 from the last inequality in (A.47).

(b) The result follows straightforwardly from (a). We have lim sup
T→∞

sup
P∈P

P [‖M̂2T−M2‖ ≥

cT√
T

] = lim sup
T→∞

sup
P∈P

P
[‖M̂2T−M2‖

cT√
T

≥ 1
]

so that lim sup
T→∞

sup
P∈P

P
[‖M̂2T−M2‖

cT√
T

≥ 1
]

= 0 from (a),
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i.e., ‖M̂2T −M2‖ = Op

(
cT√
T

)
uniformly over P .

Proof of Theorem 3.5. (a) To establish this result, it suffices to show that each of the

events
{
m̂2T (cT ) > m2

}
and

{
m̂2T (cT ) < m2

}
is unlikely to materialize (uniformly over

P) as T goes to infinity.

We start with the event
{
m̂2T (cT ) > m2

}
. First, observe that m̂2T (cT ) > m2 ⇔

σm2+1(M̂2T ) ≥ cT√
T

by (3.19). Therefore:

lim sup
T→∞

sup
P∈P

P
[
m̂2T (cT ) > m2

]
= lim sup

T→∞
sup
P∈P

P
[
σm2+1(M̂2T ) ≥ cT√

T

]
. (A.48)

Now, by the Weyl inequality [e.g., see (Tao, 2012, p.53)], we have
∣∣σm2+1(M̂2T )−σm2+1(M2)

∣∣ ≤∥∥M̂2T−M2

∥∥.We must distinguish the following two cases: (a1) σm2+1(M2)
∣∣ = σm2+1(M̂2T )−

σm2+1(M2) and (a2) σm2+1(M2)
∣∣ = σm2+1(M2)− σm2+1(M̂2T ).

Assume first that case (a1) is true. Then, combining this with (A.48) gives:

lim sup
T→∞

sup
P∈P

P
[
m̂2T (cT ) > m2

]
= lim sup

T→∞
sup
P∈P

P
[
σm2+1(M̂2T ) ≥ cT√

T

]
≤ lim sup

T→∞
sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥ cT√
T
− σm2+1(M2)

]
≤ lim sup

T→∞
sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥ cT√
T
− κT√

T

]
(A.49)

= lim sup
T→∞

sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥ cT√
T

(1− κT
cT

)
]

where the second inequality follows from the fact that σm2+1(M2) < κT/
√
T by (3.19).

As cT = o(
√
T ), we have lim sup

T→∞
sup
P∈P

P
[∥∥M̂2T − M2

∥∥ ≥ cT√
T

]
= 0 by Lemma A.3. If

further we have κT/cT → 0 as T → ∞, it is clear that get lim sup
T→∞

sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥
cT√
T

(1− κT
cT

)
]

= 0, i.e.

lim sup
T→∞

sup
P∈P

P
[
m̂2T (cT ) > m2

]
= 0. (A.50)

Now, assume (a2) is true. Then, we have

lim sup
T→∞

sup
P∈P

P
[
m̂2T (cT ) > m2

]
= lim sup

T→∞
sup
P∈P

P
[
σm2+1(M̂2T ) ≥ cT√

T

]
≤ lim sup

T→∞
sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥ σm2+1(M2)− cT√
T

]
≤ lim sup

T→∞
sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥ κT√
T
− cT√

T

]
(A.51)

= lim sup
T→∞

sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥ cT√
T

(
κT
cT
− 1)

]
= 0

Similarly, observe that m̂2T (cT ) < m2 ⇔ σm2(M̂2T ) < cT√
T

by (3.19). Under case (a1)
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discussed above, we have

lim sup
T→∞

sup
P∈P

P
[
m̂2T (cT ) < m2

]
= lim sup

T→∞
sup
P∈P

P
[
σm2(M̂2T ) <

cT√
T

]
≤ lim sup

T→∞
sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥ σm2(M2)− cT√
T

]
≤ lim sup

T→∞
sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥ κT√
T
− cT√

T

]
(A.52)

= lim sup
T→∞

sup
P∈P

P
[∥∥M̂2T −M2

∥∥ ≥ cT√
T

(1− κT
cT

)
]
,

where the first inequality is follows by the Weyl inequality
∣∣σm2(M̂2T ) − σm2(M2)

∣∣ ≤∥∥M̂2T −M2

∥∥ ⇔ σm2(M2) −
∥∥M̂2T −M2

∥∥ ≤ σm2(M̂2T )– e.g., see (Tao, 2012, p.53). The

second inequality follows from the fact that σm2(M2) ≥ κT/
√
T by (3.19). From the

results in (A.49), (A.52) entails that

lim sup
T→∞

sup
P∈P

P
[
m̂2T (cT ) < m2

]
= 0. (A.53)

We can also adapt the previous proof for case (a2). Thus Theorem 3.5-(a) follows by

combining all these possibilities.

(b) If further cT ∈ {(lnT )1/2, (2lnlnT )1/2}, m̂2T (cT ) satisfies the Law of the Iterated

Logarithm [see (Cragg and Donald, 1997, Assumption 6) and (Ratsimalahelo, 2003, As-

sumption LIL)]. As a results, m̂2T (cT ) is a strong consistent estimator of m2 by (Cragg and

Donald, 1997, Theorem 4) and (Ratsimalahelo, 2003, Theorem 7)], i.e., the convergence

a.s. in Theorem 3.5-(b) holds.
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