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Abstract

The majority of innovations are developed by multi-technology (or multi-sector) firms. The
knowledge needed to invent new products is more easily adapted from some sectors than from
others. Here, we study this network of knowledge linkages between sectors and its impact on
firm innovation and aggregate growth. We develop a general equilibrium model of multi-sector
firm innovation in which intersectoral knowledge linkages determine a firm’s self-selection into
different sets of sectors and its R&D investment across sectors. It captures how firms evolve in
the ‘technology space’, accounts for cross-sector differences in R&D intensity, and describes an
aggregate model of technological change. Using simulations, we demonstrate that the model can
match new observations concerning firms’ multi-technology patenting behavior documented in

this paper. The model also yields new insights into the effects of barriers to diversity on growth.
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1 Introduction

Innovation hardly ever takes place in isolation. Technologies depend upon one another, yet vary
substantially in their degree of applicability. Some innovations, such as the electric motor, create
applicable knowledge that can be easily adapted to design new products in a vast range of sectors;
while other inventions introduce technologies that are limited in their scope of application. The
interconnections between different technologies and the stark contrasts in the way new technologies
affect future innovation have long been recognized by economic historians.! The majority of theo-
retical works on endogenous growth, however, tend to treat innovations in different technologies as
isolated from each other and equally influential.?

Empirical evidence presented in this paper suggests that intersectoral knowledge spillovers are
heterogeneous and highly skewed: a small number of technology categories are responsible for fos-
tering a disproportionately large number of subsequent innovations in the economy. Meanwhile,
a close inspection of the firm patenting data points to the importance of innovations by multi-
technology firms which are able to internalize intersectoral spillovers: More than 42% of patenting
firms innovate in more than one technological area, accounting for 96% of innovations in the econ-
omy. And among all patent citations, 52% are made between distinct technologies, indicating
substantial knowledge spillovers across sectors.?

The questions are: How do firms decide on what kinds of technologies to develop, in which
sectors to apply their existing technologies and grow their business? How does the technological
progress in one sector transmit to another? And ultimately, what are the aggregate implications
for growth of the technological diversification of firms? The consequences for growth of government
policy directed at stimulating innovations in certain sectors hinges on better understanding of the
above questions. Addressing these questions requires a structural framework that integrates micro
empirical observations into a macro-growth model with multiple sectors and heterogenous firms (in
terms of technology scope).

This paper therefore endeavors to achieve two goals. The first goal is to develop a general

'David (1991), Rosenberg (1982), Landes (1969), for example, emphasize the dramatic growth impact played by
general-purpose technologies (GPTs).

2Notable exceptions can be found in the literature of GPTs (see Jovanovic and Rousseau, 2005; Helpman,1998,
and Bresnahan and Trajtenberg, 1995). However, our paper focuses on understanding the impact of technology
linkages on firm innovation and growth, where the notion of applicable technologies is related to but distinct from
the concept of GPTs.

3This is based on 428 technology classes (U.S. Patent Classification System) provided by U.S. Patent and Trade
Office for the period 1976-2006. The percentage becomes even higher when using more disaggregated classifications.
Similarly to this observation, using the product-level data, Bernard, Redding and Schott (2011) find that 41% of U.S.
manufacturing firms operate multiple product lines, accounting for 91% of total sales. Recent trade literature has also
highlighted that world trade flows are dominated by multi-product firms (e.g. Mayer, Melitz and Ottaviano, 2011).
Therefore, understanding how firms expand their technology and product range sheds light on both technological
progress and aggregate production and trade, although this paper focuses on the former.



equilibrium model of multi-sector (or multi-technology) firm innovation to address these issues.*

The framework is built on the leading models of endogenous growth which unify firm-level studies
of R&D, patenting and firm growth with aggregate analysis of technological change, originally
developed by Klette and Kortum (2004). Relative to the existing work in this literature, our
framework emphasizes two new features: heterogenous intersectoral knowledge linkages® which
determine the productivity of R&D when adapting knowledge from one sector to another and
consequently affect firms’ R&D distribution over multiple sectors; and the barriers to diversification
(sectoral fixed costs) which cause sequential entry and exit of firms in different sectors. The model
captures how firms evolve in the ‘technology space’, and describes how knowledge accumulates in
different sectors and in the aggregate economy. It yields simple expressions relating growth to cross-
sector knowledge circulation in the economy. In particular, it points out that barriers to diversity
prevent firms from fully internalizing cross-sector spillovers, reducing technological progress.

The second objective is to assess the performance of the model using patent and R&D data.
Technology interconnections are conceptual and difficult to measure. We propose several mea-
sures based on the patent citation network linking the knowledge receiving and sending sectors.
The method establishes a particular hierarchy in technology space that is amenable to empirical
explorations. Based on these measures and using firm patenting data, we document several new ob-
servations concerning firms’ multi-technology patenting: (i) firms with more patents or innovating
in more patent classes are more concentrated in highly applicable technologies, (ii) yet, their recent
patents are in the less applicable ones, and (iii) firms whose initial technologies are more applicable
innovate faster. When simulated using a large panel of firms innovating in heterogenous (multiple)
sectors, our model reproduces each of the new facts above, as well as endogenously generates Pareto
firm size distribution, in line with existing empirical findings.

In the model, firms invent new products by conducting R&D to adapt existing knowledge
in various technologies. Applicable technologies enhance the innovational productivity of R&D
in downstream sectors and contribute to a sequence of innovations in various areas—exhibiting
‘innovational complementarities’. Therefore, when firms choose R&D optimally, the model predicts

that the equilibrium value associated with the introduction of a new innovation is not confined to

“The terms technologies, technological categories and sectors are interchangeable throughout the paper. One
sector embodies one specific type of technology. Although distinguishing a firm’s position in technology space and
product space is interesting for certain issues previously explored in Bloom et al. (2010), it is not the interest of this
paper.

5We focus on the ‘deep’ knowledge linkages between technologies which are due to intrinsic characteristics of
technologies, and do not vary over time. For this reason, we summarize citations made to (and from) patents that
belong to the same technology class over 30 years to form the intersecotral knowledge diffusion network. We also
abstract from other differences across sectors, such as demand and production costs in the model. While assuming so
may limit its fit, it is in line with Nelson and Winter (1977), who argue that innovations follow ‘natural trajectories’
that have a technological or scientific rationale rather than being fine tuned to changes in demand and cost conditions.



its own future profit gains; rather, it also depends on the application value of this new technology
in all sectors.

For any given sector in which a firm intends to enter or continue conducting research, a period-
by-period firm idiosyncratic fixed cost is required. These fixed costs, acting as barriers to diversity,
make research in multiple sectors a self-selection process: a firm develops new products in sectors
where it can most efficiently utilize its existing range of knowledge portfolio. Consistently with the
evidence in Section 2, firms conducting research in multiple areas are more likely to be concentrated
in highly applicable technologies, because they are better at internalizing intersectoral knowledge
spillovers and have stronger incentives to invest in these areas.

Although the sectors with high knowledge application value attract firms to invest intensively
in R&D, the model suggests that a counteracting force is at play: namely, the fierce competition in
these sectors. Firms would only conduct research and operate in a sector if the expected application
value of its technology is large enough to cover the fixed cost of research.® Therefore, smaller
firms with less knowledge capital start from sectors with high application value—what we call
‘central sectors’ in the technology space—whereas firms with larger knowledge capital in multiple
sectors expand into technologies with lower applicability but allowing them to have larger market
shares—what we call ‘peripheral sectors’. The tradeoff between innovational applicability and
product market competition—which is at the heart of the R&D resource allocation mechanism in
the economy—Tleads to a stationary firm distribution across sectors and a stationary (normalized)
sector size distribution on the balanced growth path.

Innovation by its nature can be highly uncertain. In the model we assume that firms face
idiosyncratic shocks to the success rates of innovations and the fixed costs of research in various
sectors. Therefore, even though firms on average enter multiple sectors sequentially—that is, firms
typically start from central sectors and slowly venture into periphery after accumulating enough
private knowledge in related sectors—mnot all firms follow the same sequence. In any given sector,
existing firms innovate, expanding their sizes as they create new varieties, and exit after experiencing
a sequence of negative innovation shocks or high fixed costs. In addition, new firms enter if they
have accumulated enough knowledge capital in related sectors. This process endogenously generates
a distribution of firm size in each sector (and in the whole economy), converging to a Pareto

distribution in the upper tail, in line with existing empirical findings of firm size distribution.”

SFirms in the model are subject to idiosyncratic sectoral innovation shocks, which is i.i.d over time and across
firms. Thus, a firm exits a specific sector if it experiences a range of negative shocks such that the expected payoff of
operating in that sector cannot cover the fixed cost. As will be shown in Section 4.1, these idiosyncratic shocks also
help to ensure a stationary Pareto firm size distribution.

"Firm or establishment-level data shows that firm size distributions within narrowly defined sectors and within the
overall economy are widely dispersed and follow a Pareto distribution, as documented in Axtell (2001), Rossi-Hansberg
and Wright (2007) and Luttmer (2007).



Because knowledge in different sectors is related (by various degrees), firms can expand through
the technology space by developing new knowledge close to their existing technology mix. When the
scope and applicability of a firm’s knowledge increases, so do the opportunities to innovate, profit
and grow in related sectors. Moreover, existing sectors also benefit from the growth in the new
innovating sectors as a consequence of knowledge spillovers in the opposite direction. With controls
for the size of knowledge capital, the model predicts that firms concentrating more on applicable
technologies tend to innovate faster. Again, this is consistent with the firm-level observations
documented in Section 2.

In addition to explaining firm-level observation, our model predicts that equilibrium R&D
intensity is higher in sectors with larger value of knowledge capital. While this value is not directly
observable, the model suggests that it increases with its innovational applicability—the ability to
foster technical advances in a wide variety of sectors. Employing U.S. Compustat firm R&D data,
we find that R&D intensity in sectors with highly applicable knowledge is, indeed, larger.

The model also yields new insights regarding the mechanism through which barriers to diversity
reduce technological progress in the multi-sector environment.® In the presence of these barriers,
only a small number of firms can afford a sequence of fixed costs, and innovate in multiple sectors.
Thus, these barriers directly block the knowledge circulation in the entire technology space by
preventing firms from fully internalizing spillovers from other sectors, imposing a negative effect on

aggregate technical advances.

Related Literature Our paper is most closely related to Klette and Kortum (2004), which con-
nects theories of aggregate technological change with findings from firm and industry-level studies
of innovation. However, the growth implications of technology diversification in the presence of
interconnections have been largely unexplored.? In the past, most theoretical works on endogenous
growth (e.g. Romer, 1986,1990; Lucas, 1988; Segerstrom, Anant and Dinopoulos, 1990; Aghion
and Howitt, 1992; Grossman and Helpman, 1991a, 1991b; and Jones, 1995) and research on in-

8The economic channel through which entry costs decrease growth in this paper is very different from the ones
stressed in the previous literature. For example, entry costs discourage small but innovative entrepreneurs from entry
and keep existing establishment inefficiently large in Boedo and Mukoyama (2009), or they distort the allocation of
talent across sectors as in Buera, Kaboski and Shin (2011). In Barseghyan and DiCecio (2010), higher entry costs
reduce productivity of the marginal entrant through a general equilibrium effect on wage.

9The previous working paper version of Ngai and Samaniego (2011) suggests including cross-industry spillovers
into their model which identifies factors that account for endogenous differences in research activities and productivity
growth across sectors. However, they abstract from this because they find that citations are dominated by within-
industry citations, speculating that cross-industry spillovers are small. In this paper we show that, although small
in absolute quantity, the spillovers are large enough to have significant implications on growth through higher-order
linkages. Furthermore, previous empirical studies also suggest so. For example, using firm-level R&D investment data
in five high-tech industries, Bernstein and Nadiri (1988) find that knowledge spillovers largely vary across sectors and
are highly significant. Wieser (2005), in his survey paper, claims that spillovers between sectors are more important
than those within sectors, when considering both the social and private return of R&D.



novation and firm dynamics (e.g., Klette and Kortum, 2004; Luttmer, 2007, 2012 and Atkeson
and Burstein, 2010) have considered a single type of technological change or implicitly assumed
a perfectly homogeneous technology space in the sense that innovation takes place in any sector
with equal probability. There are no explicit interactions between different sectors or distinctions
between technologies with different degrees of applicability, and hence, no room to discuss a firm’s
technological position and its impact on future growth.'®

Empirical work by Jaffe (1986), on the other hand, suggests that firms’ technology position
provides different technological opportunities that matter for firms’ innovative success. In that
paper, however, technological position is taken as exogenous and can only be changed over long
time periods. Our study advances Jaffe’s findings by constructing a structural model which allows
for the endogenous sorting of firms across technologies, providing further understanding of the
relationship between technological linkages and firms’ dynamic decisions in allocating their research
effort. Using firm-product-level observations, Bernard, Redding and Schott (2009, 2010) finds that
most firms switch their product frequently, and that endogenous product selection has important
quantitative implications on measured firm and aggregate productivity. Obviously, our focus is
entirely different: we examine firm innovation behavior instead of production performance. The
more interesting difference is that we allow sectors to be inherently connected by their knowledge
spillovers. Hence, sector selection also depends on the firm’s existing position in the technology
space.

Distinguishing between different types of research and their impact is currently being pursued
in a number of papers. Distinguishing between basic research and applied research, Akcigit, Han-
ley and Serrano-Velarde (2011) focuses on analyzing the impact of the appropriability problem on
firms’ incentives to conduct basic research.'’ We do not limit our analysis to two distinct types
of research; rather, we consider the richer and more complex structures of technological interde-
pendence across multiple technologies and also quantify the strength of knowledge linkages using
cross-sector citation data.!? Our purpose is to integrate firm multi-technology innovations and
the cross-sector spillovers into the endogenous growth models. Akcigit and Kerr (2010) studies
how exploration versus exploitation innovations affect growth. Akin to this notion, Acemoglu and
Cao (2010) considers incremental R&D engaged in by incumbents and radical R&D undertaken by

potential entrants. Similarly to Acemoglu and Cao (2010), our paper also allows for simultaneous

OFor example, in the expanding variety models (Romer, 1988 and Grossman and Helpman, 1991a), the initial
varieties do not affect the expected productivity in producing or R&D in another sector. In Aghion-Howitt (1992)
quality ladder model quality improvement takes place across all products at the same time.

10ne of the empirical facts documented is related to this paper: firms’ multi-industry presence is positively
associated with their devotion to basic research.

12 Although cross-sector knowledge spillover is possible in their model, the magnitude of spillovers across different
sectors is homogeneous.



innovations by continuing firms and entrants; however, the different technological fields in which
large versus small firms (or incumbent versus entrants) choose to innovate in our model reflect an
endogenous equilibrium outcome.

Our work also builds on earlier literature in development economics that emphasizes the role
of sectoral linkages and complementarity in explaining growth (see Leontief, 1936 and Hirschman,
1958). Previous work in this area typically focuses on vertical input-output relationships in produc-
tion between sectors—as in Jones (2011), and export-based measures of product relatedness—as in
Hidalgo, Klinger and Hausmann (2007) and Hausmann, Hwang and Rodrik (2007).!3 This paper
focuses on linkages dictated by their knowledge content, which is more suitable for understanding
the mechanics of technological innovation.

Finally, this paper also adds to previous works studying the determinants of cross-industry
differences in R&D intensity. Klenow (1996) evaluates the implications of three hypotheses—
technological opportunity, market size and appropriability in an extended model of Romer (1990).
Ngai and Samaniego (2009), based on a calibrated model, finds that differences in R&D inten-
sity mainly reflect technological opportunities (interpreted as the parameter of knowledge pro-
duction governing decreasing returns to research activity). Empirical evidence and the model
developed in this paper both suggest that these differences can be attributed to sectoral technology
applicability—which constitutes a direct measure and interpretation of technological opportunity,
complementing previous findings.

The paper begins by presenting some new sector and firm-level findings to motivate our modeling
approach. The model itself is developed in Section 3. We then describe the aggregate properties
of the stationary balance growth path equilibrium in Section 4. Section 5 discusses calibration
and parameterization of the model, and the results from simulations. Section 6 discusses possible

directions of future research and policy implications.

2 Empirical Underpinning

In this section, we first document several empirical observations that motivate our model using
patent citations, firm patenting and R&D investment data. First, we show that the applicability of
different technologies is heterogenous and highly skewed. The applicability measure we constructed

for different sectors is found to be positively correlated with the sectoral R&D intensity (defined

130ther research studies the role of input-output relationship in understanding sectoral co-movements and the
transmission of shocks over the business cycle, such as Lucas (1981), Basu (1995), Horvath (1998), Conley and Dupor
(2003), Carvalho (2010) and recently, Acemoglu, Carvalho, Ozdaglar andTahbaz-Salehi (2012).

Other contributions in this literature include Pakes and Schankerman (1984), Levin et al (1985) and Jaffe (1986,
1988).



as R&D expenditure over sales). Next, using the measure of technology applicability, we docu-
ment several facts concerning firms’ multi-patenting behavior and the relationship between firms’
technological position and innovation performance.

Our main data source is the 2006 edition U.S. Patent and Trade Office (USPTO) data from 1976
to 2006.15 We focus on firm patenting activities in this paper, as the model is designed to mainly
understand firm innovation behavior.'® Patent applications serve as proxies of firms’ innovative
output, and their citations are used to trace the direction and intensity of knowledge flows within
and across technological classes.!” Each patent corresponds to one of the 428 3-digit United States
Patent Classification System (USPCS) technological field (NClass). Another source of data is from
U.S. Compustat 1970-2000 which includes firm-level R&D expenditure and firm performance data.
We use this information to construct sector-level R&D intensity. Additional information about the

data and construction of various measures appears in Appendix A.

2.1 The Measurement of Technology Applicability

Network of Intersectoral Knowledge Linkages We summarize cross-sector citation flows
connecting different technology classes to form the intersectoral knowledge diffusion network.'®

The following example illustrates the highly heterogenous nature of technology interconnections.
Consider a network depicted in Figure I consisting of eight interacting technologies. Every vertex
corresponds to one type of technology, and every arrow indicates the direction of the knowledge
flow. In this example, knowledge created in 1 can be adapted to develop new knowledge in 1-7,
indicating high technology applicability. In contrast, knowledge in 8 and 9, for example, are sector-
specific and cannot be applied to any others. 2 is a more important knowledge contributor than
6. Even though 2 contributes to fewer sectors; the one sector to which its knowledge is applicable
is an important sector (sector 1) and hence is of high value. Similarly, 3 should be ranked higher
than 4 as it influences 1 indirectly through 2.

The actual network of intersectoral knowledge linkages (shown in Figure IT) based on citations
between 428 technology classes resembles this network structure. It exhibits strong heterogeneity: a

small fraction of sectors play a disproportionately important role in fostering subsequent innovations

15See Hall, Jaffe and Trajtenberg (2001) for detailed description of the data.

SMerging firm patent data and U.S. Census firm-level data, Balasubramanian and Sivadasan (2011) finds that
although only 5.5% of all manufacturing firms engage in patenting activity, they play an important role in the
aggregate production, accounting for about 60% of value added. Therefore, understanding the behavior of patenting
firms substantially improves our understanding of the driving force of growth.

17We only consider patents by domestic and foreign non-government institutions.

18Since we are interested in studying the ‘deep’, time-invariant characteristics between different technologies, which
firms take as exogenously given, we adopt patent citation data spanning the 1976-2006 period to form the network.
Pooled citations of 30 years also help to even out noises in the annual citation data. At the US 3-digit patent classi-
fication level, one-third technology pairs never cite each other, implying that many technologies are truly unrelated.



Figure I: The Intersectoral Network Representations of Knowledge Linkages: An Example
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in other sectors.

Calculating Sector-Specific Technology Applicability The relationships of knowledge
complementarity (especially, the higher-order interconnections) make it difficult to evaluate the
contribution of any single innovation to the whole technology space. Hence, the first challenge
is to construct such a sector-level measure that characterizes the importance of different sectors
as knowledge suppliers to their immediately application sectors as well as their role as indirect
contributor to chains of downstream sectors. Therefore, the citation count (or variation of it such
as Garfield’s (1972) “impact factor” or the forward-citation-weighted count) may be a poor proxy
of what is really of interest.

To handle this issue, we apply Kleinberg’s (1998) iterative algorithm—which is proved to be
the most efficient at extracting information from a highly linked environment—to the knowledge
diffusion network. We construct a measure quantifying the applicability of each technology (denoted
by a’ in sector i)—called ‘authority weight’ in Kleinberg’s original work. This algorithm is a fixed-
point iteration which generates two inter-dependent indices for each node in the network: authority
weight (aw')—the ability of contributing knowledge to the entire network; and hub weight (hw?)—
the ability of absorbing knowledge. Let J be a set of technological categories. A citation matrix
for J is a |J| x |.J| nonnegative matrix (¢"/); jyesx;. For each i,j € J, ¢V denotes the number of

citations to sector i made by j and S = (S%);c; represents the vector of patent stock in different



Figure II: Intersectoral Network Corresponding to Patent Citation Share Matrix

Notes: NBER patent citation data, 428 technological categories (NClasses). A (directed) link is drawn for every

citation link that counts more than 5% of the total citations made by the citing sector.

sectors. Formally, they are calculated according to:

aw' = A Z W4 hw?
JjeJ
hw' = ,uZWjiawj
Jj€J
where A and u are the inverse of the norms of vectors (aw?);c; and (hw);cs, respectively. W%
denotes the weight of the link, corresponding to the strength of knowledge contribution by sector
i to sector j. As noted in Hall et al. (2001), sectors vary in their propensity to patent. We
consider two ways to calculate the weight W#. First, W% = 1 if there is at least one citation
made by j to i and zero otherwise. Thus, the weight is independent of the relative size between i
and j. The second measure normalizes cross-citation counts by the number of patents in the citing
class: W% = ¢ /S reflecting the average rate at which patents in class j cite patents in class 4.!"
Most of the results reported below are based on the first method, except when information is only
available at the 42 industrial sector level. At this level of aggregation, cross-citation exists for most

sector-pairs and hence difficult to rank the importance of sectors. In this case, we use the second

method.

19This method of constructing the weight is similar to the construction of production input-output matrix by
calculating the share of input used by a downstream sector from any given upstream sector.



For robustness, we also construct three alternative measures to rank sectors’ technology ap-
plicability: the number of inward citations from other technology classes, the (weighted) average
shortest distance to other technologies in the network, and the ‘upstreamness’ of a technology in
the network?® (See Appendix A for details of the construction of these measures). It turns out our
four measures of technology applicability are highly correlated with each other and the results in

the following sections are robust to using alternative measures.

Figure III: Distribution of Technology Applicabilities (aw) Across Sectors
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Notes: The applicability measure is constructed by applying Kleinberg’s algorithm to the cross-sector patent citation
network (NBER Patent Dataset, 1976-2002).

Distribution of Technology Applicability The first fact is that technology applicability is
highly heterogenous across sectors. Figure III shows the highly skewed distribution of our measure
of applicability across sectors, with a small number of sectors acting as the knowledge ‘authority’

in the technology space.

Technology Applicability and R&D Intensity It has been documented previously in the
literature that there are large and persistent cross-sector differences in R&D intensities. Using a
calibrated model, Ngai and Samaniego (2011) argue that these differences mainly reflect different
‘technological opportunities’.?! Here, we empirically investigate this relationship using our measure
of technology applicability embodied in different sectors, giving a natural interpretation of the

technological opportunity.

20The ‘upstreamness’ measure is constructed using a similar method as in Antras et al (2012), modified to fit the
patent citation data. The idea is that a more upstream technology class acts as a more intensive knowledge supplier
to innovations in other categories.

2IThey capture technological opportunities as the parameters of knowledge production in their theoretical model.

10



Following the literature, we measure the long-run sectoral R&D intensity as the median ratio of
R&D expenditures to sales among firms in Compustat dataset over the period 1970-2000.2? Besides
the detailed technology categories, USPTO dataset also includes patent categories at the 2-digit
SIC level. We use this information to assign patents to industry classes, construct our measure
of technology applicability at the 2-digit SIC level and link this measure to R&D intensity in the

same sector.

Figure IV: Sectoral R&D Intensity Significantly Increases with Its Technology Applicability

Average R&D Intensity (1970-2000)

° log(R&D/Sales)=0.653+0.663 log(a)
(0.161)*

Technology Applicability

Notes: R&D intensity is the median ratio of R&D expenditures to sales among firms in Compustat over the period
1970-2000. The applicability measure is constructed based on cross-sector patent citation network (NBER Patent
Dataset, 1976-2002). Both horizontal and vertical axes are in log scale. The solid line represents the fitted values.

The brackets under the regression coefficient estimates shows the standard errors for the estimates.

Figure IV shows there is a strong positive relationship between the R&D intensity in a sector
and the applicability of its technology. In later sections of the paper, we show that, in our model,
firm optimal R&D decision leads to positive correlation between the sectoral R&D intensity and

the application value of the knowledge embodied in the sector, thus explaining this observation.

2.2 Firm’s Technological Position and Innovation Performance

Each firm is identified by its overall patent stock (S¢), and its technological position (Pf) which is
independent of firm scale. Following Jaffe (1986), we characterize the firm’s technological position
by the distribution of its patents over all patent classes, defining a vector Py = (P}, PJ%, ey }128),

where P} is the share of patents of firm f in technology class i. This vector also characterizes the

22Many thanks to Roberto Samaniego for sharing the firm-level R&D intensity data. The same method is also used
in Rajan and Zingales (1998) and Ilyina and Samaniego (2011). Outliers (the top and bottom 1% of observations) in
the sample are removed to reduce the impact of possible measurement error. The relationship does not change much
when we use mean ratio instead of median.

11



firm’s knowledge distribution. A firm’s overall technology applicability measure, T'Ay, is calculated
as the weighted geometric mean of the applicability of its technologies: T Ay = [],. J(ai)P}.%
To measure multi-technology patenting (or technology scope), we count the number of distinct

technology classes in which firm has patented.

Observation 1: Larger firms (measured by sales and number of employees) innovate more and
cover more patent classes.

Table I shows that standard measures of firm size (total sales and number of employees)
are highly correlated with firms’ patent stock and the number of technology classes using the
Compustat-Patent data matched by Hall, et al. (2005). Especially, a firm with a larger patent
stock also conducts R&D in a greater number of patent categories (the correlation equals 0.95).

The correlation between patent stock and sales (size of employees) is also as high as 0.69 (0.66).

Table I: Correlation between Patent Stock, Patent Scope and Firm Size

Variables (in log) No. of Patents No. of Tech Categories Sales No. of Employees
No. of Patents 1

No. of Tech Categories 0.951 1

Sales 0.692 0.711 1

No. of Employees 0.662 0.704 0.952 1

Observation 2: Firms with more patents (or more patent classes) are more concentrated in highly
applicable technologies.
Observation 3: Yet, their recent patents are in the less applicable ones.

Figure V illustrates the scale dependence in firms’ patent distribution and entry pattern. The
left panel plots firms’ technology applicability, T'A, against their patent stock, distinguishing sec-
tors a firm entered in 2000 (the downward sloping fitted line) from sectors in which the firm has
previously patented (the upward sloping line).?* The right panel plots firms’ technology applica-
bility against numbers of technological areas in which the firms are engaged in research (i.e. the
firm’s technology scope). Firms’ patent stock and numbers of technology classes are each divided
into 30 bins, and each figure presents the variable of interest according to the bin.

Two observations stand out. First, the firm with a higher patent stock (left panel) or broader

technological scope (right panel) tends to innovate more in highly applicable technologies. This

23We use geometric mean instead of arithmetic mean is because (a) technology applicability (a’) has highly skewed
distribution and taking the log of {a‘} generates more dispersed distribution; (b) statistically geometric mean is less
affected by outliers.

24 A sector is new to a firm if the firm has not innovated in that sector before. The full data set expands from 1901
to 2006, thus, provides a good sample for identifying new sectors.

12



Figure V: Firm’s Technology Applicability, Patent Stock and Multi-Technology Patenting
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Notes: Y-axis measures the (weighted) average applicability of the firm’s patent portfolio, TAs. Firms are divided
into 30 bins according to their patent stocks (left panel) or their numbers of technology classes (right panel). Each
observation corresponds to an average firm in the size bin. Both horizontal and vertical axes are in log scale. Data
source: NBER Patent Data, 2006 edition.

observation, however, is sharply reversed when focusing on the firm’s recent patent classes: the
new sectors’s applicability is negatively related to firm size (measured either by patent stock or the
number of classes). Second, across firms of various sizes, the new sectors entered by a given firm
tend to be less applicable relative to the existing sectors, except for the very small firms (i.e. the
observations that identify new sectors lie below the observations of all sectors).

In Appendix A.3, we provide further evidence on the relationship between a firm’s patent dis-
tribution, patent stock and multi-technology patenting using fixed-effect panel regressions. We also

show that these results are robust to different levels of disaggregation.?

Observation 4: Controlling for the initial patent stock, firms whose technologies are more appli-
cable innovate faster.
We find that the applicability of a firm’s initial technology mix matters for its subsequent

innovation rate. When regressing firms’ subsequent innovation rate on their initial knowledge

2Results are similar at 42 3-digit Standard Industry Classification (SIC) industry level, or at the International
Patent Classification (IPC) level which is based on 977 technology classes.
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applicability and patent stock, we obtain the following result:?%

AS
Il 346 — 50
Sto (0.229)  (0.009)

In(S 27 In(TA;y), R?>=0.16
n( f,0)+(0.078) n(T'Ayo)

where ASy; is the number of new patents by firm f in the period 1990-2000, Sy is firm f’s
(accumulated) patent stock in 1990 and T'Ay is the firm’s technology applicability in 1990. The
positive coefficient on the term T'A; indicates that after controlling for firms’ initial knowledge
capital, firms which concentrate more on applicable technologies have higher innovation rates.
Although not the focus of our model, the estimation result also shows that firms with larger initial
knowledge stock tend to innovate more slowly in the subsequent period (the coefficient on the term
In(S¢0) is negative). This could reflect the decreasing return of learning from others to the size of
its existing knowledge capital.?”

In Appendix A.3, we present estimation results from panel regressions, controlling for firm sizes
(measured by employment), firm fixed effect and selection bias using Heckman two-step procedure.
In addition, we also investigate the extensive margin (innovation in new technological areas) and
the intensive margin (innovation in existing technological areas) of firm innovation separately. We
find that higher initial technology applicability leads to higher innovation rates (overall, intensive
and extensive), as well as higher survival probability. This implies that a central location on the
technology space enhances firm innovation by providing better prerequisite knowledge for future

expansion.

3 Model

Our model extends the previous literature on firm innovation and growth (especially, Klette and
Kortum, 2004; henceforth, KK) to a multi-sector environment. It regards product innovation as
a process of generating new varieties in different sectors by applying existing knowledge in all
sectors. Thus, the model is built on the tradition of variety expanding models (e.g., Romer 1990;
Grossman and Helpman 1991a; Jones 1995). Recently, Balasubramanian and Sivadasan (2011)
provides strong empirical evidence showing that firm patenting is associated with firm growth

through the introduction of new products.?® The strong link between a firm’s patent stock and its

26We also investigate quality-adjusted innovation rates, which are measured by the growth rates of the forward-
citation-weighted number of patents. When adjusted by the number of inward citations, larger firms’ growth rates
drop even faster, because the number of inward citations per patent decreases with firm size in both the extensive
margin (number of classes) and the intensive margin (number of patents within the class).

2"Related to this observation, using firm-level data, Akcigit (2009) also finds that firm growth is negatively related
to firm size.

28Barlier evidence cited by Scherer (1980) also shows that firms allocate 87% of their research outlays to product
improvement and developing new products and the rest to developing new processes.
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technology scope also suggests that it may be important to consider firm scope as the source of
heterogeneity across innovating firms.?”

In linking the model to the data, we interpret our sector as corresponding to different technol-
ogy classes in the patent data, while varieties within a sector map into patents granted in that
technology class. We also equate patents with innovations (blueprints).

We first describe the goods demand and firm’s static production decision, following the stan-
dard setup in the variety-expanding literature, in Section 3.1. Section 3.2 sets out the knowledge
production process. We then introduce the main departure of our model from the existing liter-
ature: the dynamic multi-sector innovation decisions of firms in Section 3.3 and firmsO sectoral

selection in Section 3.4. The aggregate equilibrium conditions and equilibrium definitions are given

in Section 3.5 and 3.6, respectively.

3.1 Goods Demand and Production

Demand The economy is populated by a unit measure of identical infinitely-lived households.
Households do not value leisure, and order their preferences over a lifetime stream of consumption

{C\} of the single final good according to

o Cl—n
U=2 81 (1)
t=0

where (3 is the discount factor and 7 is the risk-aversion coefficient. A typical household inelastically
supplies a fixed unit of labor, L, which the household can allocate to work as production workers,
researchers or workers in the licensing (or lab-rental) industry. Households have access to a one-
period risk-free bond with interest rate r; and in zero aggregate supply. Maximizing their lifetime
utility subject to an intertemporal budget constraint requires that consumption evolves according

to

Ciy1
C;

P,
P

A(

)—77

(I4+r) =1, (2)

where P, is the price of the final good.

There are three types of goods in the economy: a final consumption good, sectoral goods and
sectoral-differentiated varieties. To concentrate on the heterogeneity in knowledge spillovers across
sectors, we abstract from other possible sources of sectoral heterogeneities, such as expenditure
shares, elasticities of substitution between varieties and within-sector cross-firm knowledge spillover

intensities. The final good is produced by combining quantities of K different sectoral intermediate

29 Also in KK and Bernard Redding and Schott (2011) firms are heterogeneous in terms of their product scopes.
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goods {Q!} according to a Cobb-Douglas production function

K
logY; = Z st log (Qf:) , (3)
i=1

where, s’ = 1/K captures the share of each sector in production of the final good. Without physical
capital in the closed-economy model, the final good is only used for consumption: C; = Y;.

At any moment, each sector contains a set of varieties that were invented before time t. In
particular, we represent the set of varieties in sector ¢ available on the market by the interval
[0,n%]. Sector i good is aggregated over these ni number (measure) of differentiated goods that are

produced by individual monopolistically competitive firms

o

Qi = [/ t(a:;w) v dk:] ., i=1,2,.. K, (4)
0

where xzyt is the consumption of variety k£ in sector ¢ and o > 1 is the elasticity of substitution
between differentiated goods of the same sector :. Each new variety substitutes imperfectly for
existing ones, and the firm which develops it exploits limited monopoly power in the product
market.

The associated final good price is P, = B HZK (P,f)si, where B is some constant consistent with

the Cobb-Douglas specification in (3) and sectoral price index, P} is given by

ni =
/ p};tadk] : (5)
0

These aggregates can then be used to derive the optimal consumption for sector-i goods and for

individual variety k in sector i using

: s'PY;
Qi = B (6)

i P - i
Ty — (P’) Qy- (7)
t

Production Firms undertake two distinct activities: they create blueprints for new varieties of

differentiated products, and they manufacture the products that have been invented. The firm
inventing a new variety is the sole supplier of that variety. As the focus is upon firms’ innovation
activities, the production side of the model is kept as simple as possible. We assume that each

differentiated good is manufactured according to a common technology: to produce one unit of any
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variety requires one unit of labor, y}t = l;}t, Vi, f.
Without heterogeneity in supply and demand, all varieties in the same sector are completely

symmetric: they charge the same price and are sold in the same quantity. The firm producing

variety k in sector i faces a residual demand curve with constant elasticity o specified in (7).%°

Wage is normalized to one. This yields a constant pricing rule p}'g’t = 2%y, V k,i and t. Thus

the sectoral price, P} = ﬁ(n@)ﬁ, decreases with the total number of varieties in that sector as
o>1.

Combining the pricing rules with (5) and (7), we derive the total profit in the product market
in sector i (aggregated over all varieties produced by different firms) as a constant share of GDP,

PtY;Z

g g

= . (8)

P t%k t STy
H / ———dk =
0

The total demand for production labor in sector 7 is

i

. no oc—1 .
Li, = / 2l dk = T =5 PY;. 9)
0 (o

3.2 Knowledge Creation

There is a continuum of firms, each developing new varieties and producing in multiple sectors. A

firm at time ¢ is defined by a vector of its differentiated products in all sectors,

1 2 K/
Zf = (Zf,tvzf,tv ---:Zf,t) ,

where z;}’t > 0 is the number of differentiated sector-i goods produced by firm f at time ¢. To
add new varieties to its set, a firm devotes a given amount of labor to R&D. Since only the firm
inventing the variety has the right to manufacture it, zy; also characterizes the distribution of the
firm’s private knowledge capital across sectors.

Let J be the set of all sectors. Then |J| = K, and S ¢+ © J denote the subset of sectors in
which firm f produces at time ¢, i.e. Sy = {i: s.t. z;}’t > 0}. Let Fip ={f : s.t. z;}’t > 0} denote
the set of firms that produce in sector i. Then n{ = [ fEFir z;}’tdf.

Consider a firm f in sector ¢ with a stock 2%y of private knowledge at time ¢. For simplicity,
we assume knowledge never depreciates. The sectoral knowledge of firm f, thus, accumulates over
time according to

a1 = 2pp T A2py, (10)

30To make the analysis more tractable, we follow Hopenhayn (1992) and Klette and Kortum (2004) by assuming
that each firm is relatively small compared to the entire sector.
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New sectoral knowledge (or new varieties), Az}i, is generated based on an innovation production
function, using the firm’s R&D input and accessible knowledge stock in all sectors and is subject
to idiosyncratic innovation shocks. Since knowledge spillovers across sectors are heterogenous, we
decompose firm’s sectoral R&D investment according to its knowledge source sector.>' For clarity,
we introduce the following notation: Rjﬁj denotes a firm’s R&D input when utilizing sector j’s
knowledge to generate new knowledge (invent new blueprints) in sector i. The arrow indicates
the direction of knowledge flow (when necessary): i represents the sector that the firm is applying
the knowledge to—the application (or target) sector and j is the sector that the firm is adopting
knowledge from—the source sector.3? Thus, each innovation activity is defined by two sectors.

The new sector-i knowledge created by firm f summarizes innovation output in different R&D
activities, each utilizing a different type of source knowledge j, j € J. The firm can use its private
source knowledge capital to innovate, or the public knowledge to imitate. One of the central notions
of our paper is that the productivity of innovation inputs depends on the elements of the knowl-
edge diffusion matrix, A = (A% )(i,j)e 7.7, which is taken as exogenous by firms.?® Specifically,
new knowledge in i is produced based on a Cobb-Douglas combination of innovation productivity
((A*);e7), the firm’s current R&D investment ((R?JT] )jes in innovation and (Rg;j )jes in imi-
tation) and its stock of source knowledge (private knowledge capital, (z}) jeg and public knowledge

capital (27),c7):34

K
A=Y |4 (i) () el (smSE) (o) ]

j=1
where « is the share of R&D in the innovation production. We explain the elements of this

production function in turn as follows.

First, similarly to KK, we assume that the production function of each innovation activity is
constant returns to scale. In addition, the researchers’ efficiency is assumed to be proportional
to the average knowledge per firm in the innovating sector, z{, thus the effective R&D is given

by Z§R2f7t,k = 1,2. This assumption keeps the total number of R&D workers constant in the

31Firms have to devote a certain amount of time digesting and adopting knowledge in one sector to apply it to
another.

32When i = j, it captures the within-sector knowledge spillovers.

331t might be true that technologies advance over time and the interaction between one another evolves, forming a
dynamic network instead of a static one. Also, these relationships of complementarity may be hard to predict and not
necessarily visible or well understood by innovators. Here, we intentionally choose to concentrate on the implications
of very ‘deep’ , time-invariant characteristics of technological linkages on firm’s innovation and leave the study of
dynamic knowledge network formation to future work, as we clearly view it as a necessary first step.

34We use additive instead of multiplicative function to combine the knowledge capital in different sectors, because
the additive function of firm size in different sectors can generate Pareto distribution of {z}t} in each sector i; any
linear combination of {z}t} also follows Pareto distribution according to Kesten(1973). Besides, firm value function
is linear in {z},t} under additive knowledge production function, which makes the model more tractable.
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stationary equilibrium while the number of goods grows. Also, as will be explained later in Section
4.3, it helps to remove the ‘scale effect’ from the model—that is, the endogenous growth rate of the
economy is independent of the population size.

Second, in the process of developing new blueprints in sector 4, a firm utilizes all existing
knowledge at its disposal: its private knowledge from every sector j € Sy, and public knowledge
from all sectors. Here, we assume the size of the public knowledge pool is proportional to the
average knowledge per firm in sector j, Z{ , for the following reasons: When learning from others
is costly, each firm is too small to access all stock of knowledge in the whole sector. When firms
randomly meet and learn from a limited number of peers, the average knowledge capital per firm
is a better proxy for the size of public knowledge than the total knowledge stock in that sector.3?
0 governs the accessibility of the public knowledge relative to the in-house knowledge.

Third, innovation by its nature includes the discovery of the unknown; therefore, the success
of a research project can be uncertain. We assume that firm innovation and imitation are subject
to shocks E?},t and 5;]}’)&, respectively, which follow the same identical and independent distribution
G () across firm, sector-pairs and time.?® Firms know the distribution of shocks but not their
actual realizations before deciding on the optimal R&D input. A series of large negative shocks
lead to exit and a series of positive ones cause further expansion. Later we will show that these i.i.d.
shocks endogenously generate a Pareto firm size distribution in every sector and in the aggregate

economy.

3.3 Firm R&D Decisions

We now determine firms’ R&D effort. A firm may enter sectors freely, but must pay a fixed research
cost of FJZLJ (measured in units of labor) every period in order to develop new varieties in a given
sector ¢. This fixed cost, F},t = FC},t, has two components: a constant term F' that is identical for
all firms and all sectors; and a firm-specific idiosyncratic component, C}i, which is assumed to be
i.i.d. across sectors, firms and time, and satisfies EC}J = 1. If a firm does not pay this cost, then
it ceases to develop new products in that sector. This continuation cost can be interpreted as a
license fee or the financial cost of maintaining a research lab.

The timing works as follows. In each period, a firm first makes a draw of the idiosyncratic

cost C},t from an underlying distribution H(({), and then chooses to stay in (or enter) sector i or

35 As shown later, this assumption also helps to ensure that the sectoral growth rate is independent of the number
of firms and the total population in the general equilibrium.

36The mean of ezjf’t, k = 1,2 is set to be 1 and bounded by zero such that the innovation rate is always positive. A
firm’s market share in sector ¢ increases only if its growth rate beats the average growth rate in the sector. If a firm
stops conducting R&D, its market share will shrink to zero eventually. In this way ‘creative destruction’ is embodied
in this model.
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discontinue this research line. If its expected additional payoff from continuing innovating in that
sector is greater than the fixed cost, the firm decides on the optimal R&D investment, financed by
issuing equity. After that, firm-specific innovation shocks realize and the firm creates AZ}J new
blueprints. If the continuation value is lower than the fixed cost, the firm discontinues its research
in that sector, sells its blueprints and exits that sector.

Given the assumption of a continuum of firms, in equilibrium there always exists a mass of very
large firms that are operating in all sectors, and would never exit any sector.3” We first specify the
R&D decision making process of such a large all-sector firm. Since this kind of firm never dies, the

per-period fixed cost would not affect the firm’s R&D decisions, but simply reduce the firm’s value

by the present value of future fixed costs: Fy; + Ey {Jr‘;l + E; (?::)12 o =Fri+ g We can then
solve for the all-sector firm’s R&D decision problem as if the firm had paid the initial sunk entry
cost, and was only concerned about the optimal R&D investment across all sectors.

Since each variety is sold and priced at the same level, the firm f’s market share in sector j
can be captured by Zj—f An all-sector firm that receives a flow of profit E]K:l 7rg % in the product
market chooses an R:&D investment portfolio to maximize its (post-sunk-cost) etxpected present
value V(zs;), given the interest rate r;. By spending on R&D, the firm incurs a cost of hiring
researchers, whose wage rate is normalized to one. The new blueprints will be turned into products
and sold in the next period. The firm’s Bellman equation is

P K

K
it ‘ 1
mac V() Zﬂt =203 (B R o BV (zpe)] (12)

(Ry5Dijeaxa(Rysijeaxa — i1 j=1
subject to the knowledge accumulation equation (10) and the incremental innovation production
function (11).

This paper only considers the stationary balanced growth path (BGP) equilibrium in which
the growth rates of aggregate variables remain constant over time (it is formally defined in Section
3.6). The full characterization of the dynamics of firm value is presented in Appendix (B.1). In
the BGP equilibrium, the aggregate profit in the product market at the sector level is constant,
i.e. Wi = 77 (because the supply of the only production factor L is fixed). The interest rate also
remains constant r; = r and is pinned down by (2). Define the BGP growth rate of the number
of varieties in sector i as 7} = n! 41 /nt. In Appendix (B.1), we prove that on the BGP, different
sectors grow at the same rate, that is 4/ =+, Vi. The basic intuition is that cross-sector knowledge
spillovers keep all sectors on the same track. Therefore, the distribution of the number of varieties

(knowledge stock) across sectors is stable and invariant: nf/nl = n’/ni. Also, the number (mass)

37An alternative interpretation is that there exists a large research institute which never dies and is willing to
purchase new blueprints at their market value.
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of firms (M}) in every sector in the stationary BGP does not change over time, i.e. M{ = M® and
zi/ni = 1/M?*, Vi. Notice that in such a BGP equilibrium, economy-wide or sector-wide aggregates
grow at constant rates, but firm growth rates, entry and exit into different sectors are heterogenous.

The linear form of the Bellman equation (12) and the constant returns to scale (Cobb-Douglas)
innovation technology allow us to derive closed form solutions for the above optimization problem.
Define p = m; It is easy to verify that in the stationary BGP equilibrium, the firm’s value is a
linear aggregate of the value of its knowledge capital in all sectors,

K .
Vi(zse) = Z (vz 1t Jru’) ,

nt
i=1 t

where v’ is the market value of total knowledge capital in sector i, which is time-invariant on BGP

and is given by

_ 7t wj%z
- )( + ; ), (13)

and w/< captures the application value of sector i’s knowledge stock to innovation in sector 7,

1= i o 1 e
Wit — aa% (A]Hzapv]) I (M])O‘—l. (14)

We refer to u’ as the rent from public knowledge (imitation), measured by the aggregate application

value generated by all sectors to sector .

o= (e ()= ()85

j=1 ny

Clearly from (13) and (14), solving for the equilibrium price of sectoral knowledge capital is an
iterative process: the knowledge value of any given sector depends upon the knowledge value of
all other sectors. Overall, the relative prices of knowledge capital in different sectors (v'/v?) are
determined by the exogenous fundamental linkages between sectors (captured by A*7) and other
general equilibrium conditions.

The interpretations for (13) (15) and (14) are intuitive. (13) shows that the value of all the

blueprints in sector 4, v¢, is not limited to the direct profit return (= p) —but also depends upon its
S i
(==
14) implies that the knowledge application value of j to ¢ is larger when sector j’s knowledge
( g J g j g

indirect capital value captured by its contribution to future innovations in all K sectors

stock is relatively more abundant (higher n/ /nt), or when the knowledge in target sector i is more

valuable (higher v*), or when the knowledge spillovers from j to i is stronger (larger A7), or when
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sector i is less competitive (lower M?). (15) implies that when public knowledge is easier to access
(higher #) or when knowledge in other sectors is more applicable and more valuable (higher w®7),
the rent from external knowledge is higher.

The optimal RED investment associated with applying sector-j knowledge to sector 7 is

a Wi ft +02t

11—« n‘z

AP
Ry =R+ Ry =

1.1 (16)

A firm scales up its R&D investment in proportion to the application value of sector j’s knowledge
to sector j, w7, and its (normalized) accessible knowledge capital.

We now turn to address the innovation decisions of firms that have only entered a subset of
sectors. We assume that the knowledge capital market is efficient.®® Under this assumption, the
all-sector firms would bid up the price of each blueprint in every sector, because they are the most
diversified firms and can fully internalize and utilize the new knowledge in every sector. As a result,
the market price of a blueprint is equivalent to the price that an all-sector firm is willing to pay,
which is given by Z—; at time t. Importantly, we assume that upon exit from a specific sector, a
firm can sell all its blueprints at the market price and thus does not lose the value of its private
knowledge. As long as there exist such potential buyers at any given time, the market price of
knowledge capital will be bid up to its marginal value for an all-sector firm. Therefore, a small
firm, upon entering a sector, takes the price of blueprints in different sectors as given and makes

decisions on its optimal R&D investment portfolio. The solution would be the same as in (16).

3.4 Sectoral Entry and Exit

As explained earlier, to continue its research in sector i, firms incur a period-by-period fixed con-
tinuation cost. If a firm does not pay this cost, then it ceases to develop new products and has to
sell its blueprints and exit the sector. Under free entry, a firm drawing a cost of F' iC},t will continue
its research in sector ¢ or enter this sector if the additional value created by this action can cover

the cost. That is

Figh, < ZR“—J + 7Et[V(..., dhyH Azhy, ) = V(2 )] (17)

38The efficient knowledge capital market assumption significantly simplifies the analysis. Otherwise, firms with
small knowledge scope would not be as motivated to conduct R&D, since they could not internalize intersectoral
knowledge spillovers as complete as an all-sector firm. Without an efficient knowledge capital market, the price of
each blueprint will be inventor-specific and tracking the values of all blueprints of all firms is almost computationally
impossible.
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The effort creates additional value of viAz}t /ni 4 for the firm in the next period, where v* is given

n (13). Combining (13) and (16) we can rewrite (17) as

. 1 v EAZ ' LS ( Zpet 9zt> ro
F'LCZ Rz(—j ( ' £ ) — wu—j wl%j f7 Ut (18)
f»t Z 147 n%-}-l JZ; Z ] 1 +r

The last equation says that a potential entrant to sector i (i.e. Z},t = 0) can apply its private
and public knowledge capital from all the related sectors to invent new products in the entering
sector.?® Therefore, in this multi-sector model, firms with different knowledge mix (z;’,t /nl )ijeSs.
self-select into different sectors. Given the definition of w®7 in (14), large positive elements in the
it" row of the knowledge diffusion matrix and higher value of sector i’s knowledge, v*, attract more

potential entrants. On the other hand, a larger number of existing products, n’, or more incumbent

firms, M?, deter entry.

New Firms There is a large pool of prospective new firms in the economy. A new firm—a firm
which has invented no blueprints in any sector (z;},t = 0 Vi)—enters the economy by starting from
the sector where the fixed cost can be covered by imitation (the application value of the existing
set of public knowledge capital). The free entry condition for the newborn firm implies that it will

first enter the sector ¢ that offers the largest benefit of knowledge spillovers minus the fixed cost:

r . .
L v FeL s 1
i argngix{1+ru Cf} (19)

Since firms have different draws of sector-specific fixed cost C}, the first sectors that new firms enter

may not be the same.

Sequential Sectoral Entry The sectoral entry condition (18) along with equation (19), imply
that firms enter different sectors sequentially: they start developing new varieties in a sector that
offers the largest public knowledge externality, building up private knowledge and then venturing
into other sectors using its accumulated knowledge. The sequential sectoral entry can be better
explained using Figure VI. Suppose sectors are ranked by their externality of public knowledge,
and u' > u? > ... > «f. If firms all draw the same fixed cost F', every new firm enters sector 1
first. Entry stops when the net value of entry is zero. Next, in order to enter more sectors, the
firm needs to accumulate more private knowledge to fill up the gap between the entry cost and the

free knowledge externality provided by the public knowledge, that is As, As, ..., etc. Since firms

39Note that significantly different from previous models of entry, prior to entry, potential entrants are not identical;
they differ in terms of their knowledge mix (2} ,)ies; , -
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Figure VI: Determination of Firm’s Entry into Multiple Sectors

Secl Sec2 Sec3 Secd SecK-1 SecK
Sectors (ranked bin)

are facing idiosyncratic shocks to innovation and fixed costs, not all firms follow the exact same
path expanding across the technology space. Yet, their entries are all path-dependent: depending
on where they have entered in the past, the intersectoral knowledge linkages determines the next

optimal step.

Exit A firm stops inventing new varieties in sector 4 if the fixed cost is higher than the expected
benefit of continuing R&D. A firm that discontinues its R&D in a sector can sell its blueprints
(knowledge capital) in this sector to an all-sector firm for the price of v’/n’ per variety. Once the

patent is sold it can no longer be used it to invent in other sectors.*’

3.5 Aggregate Conditions

The population supplies L units of labor services at every period and they are allocated in three
areas: production workers allocated in different sectors, researchers and workers who are engaged

in applying entry licenses. Formally, the labor market clearing condition is:

K K K K
L=> "Ly, +> > / RYdf + / Fick df (20)
i=1

==l e Fing, =lter,

40 Alternatively, it can potentially still produce and sell their previously invented varieties in the product market, as
well as apply its accumulated knowledge capital in the exiting sector to invent in other related areas. In equilibrium,
these two options generate exactly the same value; thus, the firm is indifferent in keeping the blueprints or not. The
reason is because the discounted value of future payoffs associated with the body of knowledge is already fully priced
in the value of the sectoral knowledge, v*. A firm completely exits sector i if it is hit by a series of negative shocks
such that 2} < 0 according to its knowledge accumulation in (11).
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Using (9) and (16) we can rewrite (20) in the stationary BGP equilibrium as:

1 A o
L= Z g sL+ap(y—1)v"+ F*M"| . (21)
, o

=1

In this economy, the household owns all the firms and finances all the potential entrants. Given
an interest rate r, every period the household gets net income r ), [vi + (uf — lrﬂF )M Z] from

investing in firms.*! The household’s total income is

K
PY:L+7’Z [vi—i—(ui—
i=1

LT oy (22)

Therefore, according to (8) the sectoral profit 7 in the stationary BGP equilibrium is indeed a

constant. Following (2), the stationary BGP interest rate is determined by
n=1
1=p(1+r)yi-—e (23)

3.6 Equilibrium Definitions

Definition 1 An equilibrium is defined as time paths of aggregate consumption, output and price
{Cy, Y4, P 352 that satisfy (21),(22),(23) and the goods market clearing condition Cy = Yi; time
paths of consumption levels, numbers of varieties, measure of firms, the total value of blueprints
in different sectors {nf;,Mf,Q%,vi}l?’il’m,K,t:O that satisfy (5) (6) (13) (18) and (21); time paths of
RED investment, sectoral innovation (production) and prices by different firms {R}TJ 2‘}:1"..7K7f€fj’t?t:0
{Z},t’p?,t}fil,...,K,feJ—‘i,t,t:o that mazimize discounted present firm value, that is, satisfy (10) (11)

and (16) ; time paths of firm’s sectoral entry and exit decisions that satisfy (18) and time paths of

wage and interest rates {we, ¢ }7°, that satisfies (2) and wy = 1.

Definition 2 A balanced growth path (BGP) is an equilibrium path in which output, consumption

and innovation grow at constant rates.

Definition 3 A stationary BGP equilibrium is a BGP in which the distribution of normalized firm

sizes 1§ stationary in every sector.

Throughout the paper, we analyze a stationary BGP equilibrium defined in the section above.
In Section 4.1 we show that our model endogenously generates stationary firm size distribution

that converges to a Pareto distribution when the number of firms is extremely large.

1 Equivalent to getting dividend as profit and capital gains.
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4 Stationary BGP Equilibrium

4.1 Firm Size Distribution

In a typical firm’s life span, the firm starts from a relatively highly applicable center sector. After
accumulating enough background knowledge, a small firm with a sequence of good draws of in-
novation shocks can expand into related sectors along the inter-sector knowledge linkage network.
After several rounds of entry selection, only a few large, multi-sector firms can reach the edge of
the technology space.

Since varieties in the same sector are produced at the same quantity, the normalized firm size
in sector ¢ for firm f can be given by E}J = z}t/ni Putting (10), (11) and (16) together yields the
following firm size dynamics:

Zi1 = Prizss + Prib, (24)

where the K-dimensional vector Zs; = (E}J, s éfcft), the constant vector b = (/M*, ...,0/M*) and

the {i,j}'" elements of the K x K matrices ®¢ ¢ and Wey are given by qSécjt and zp}jt respectively:

gij 51‘3‘

. 1 o . 51t
qb}],t = - (1{if i=j} + gwglljf,t> s 1/1}]7,5 = ! .
Y v
where &9 = #i;pm, Lyit 4=j) 1s one if 7 = j and zero otherwise.

According to Kesten (1973), (24) implies that firm size distribution (in each sector and in
the whole economy) converges in probability to a Pareto distribution in the upper tail.*> The
existence of public knowledge plays an important role in attenuating the size dispersion generated
by idiosyncratic innovation shocks.

In Section 5, we simulate the model economy with a large number of firms and show that the

firm size distribution generated by the model indeed follows Pareto tail distribution.

4.2 Heterogenous R&D Intensities Across Sectors

In this section, we study the sectoral R&D intensity (R&D expenditure as a fraction of sales),

RI' = ﬁ ZJKZ S FeFNFi R?_j df. Based on (16), our model predicts that sectoral R&D resources

“2The firm size distribution in sector 4 can be characterized by the distribution of xZ;, when x = (0,0, ...1,...0)
with the ih element being one. Similarly, when x = (&, &, ..., ), the distribution of xZ; captures the firm size
distribution in the whole economy. Since power law is conserved under addition and multiplication, the overall firm
size distribution in the aggregate economy is also Pareto. For more detailed discussion and application of Kesten
(1973), see Gabaix (2009). Luttmer (2007) provides a state-of-art model for firm size distribution, where firms receive
an idiosyncratic productivity shock at each period and firm exit provides a natural lower bound for the distribution.
Cai (2012) studies how innovation and imitation affects firm size distribution using a one-sector model and provides

more explanations in this context.
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are allocated according to the sectoral knowledge value (formally derived in Appendix B.2):

RI'
R~ vi (25)

Therefore, any policies that distort the relative knowledge value, v*/v7, also cause misallocation
of research investment across sectors. Recall that v¢ = (1 — p)~!(7 + EjK:l w¥). (25) implies that
R&D intensity in sector i increases with Zszl w¥—which captures the ‘technology opportunities’,
one of the main factors identified in the empirical studies as being the potential determinant of
different research intensity across sectors (see Ngai and Samaniego, 2011). This equation is also in
line with the observation documented in Section 2.1: R&D intensity and knowledge applicabilities

across sectors are positively correlated in the data.

4.3 Aggregate Innovation Rate

The number of varieties in sector i evolves according to nj., = (nj + [ feF Az}tdf). Define
797 as the fraction of sector j’s knowledge that is actually wutilized in innovation in sector ¢, i.e.

i Jrer (F402)df )
7 = S —— < 1+6. On the BGP, all sectors innovate at the same rate. Based on (11) we

derive the (gross) growth rate of the number of varieties in the whole economy as

1 K
EaRR (=D D -

Consider a special case of log utility function (n = 1). Combining (26) with (13) and (14), we

obtain

i—j i -1
v:u—ﬁ>u—aw;§§;migi -1 (21)
i Laj

This equation has three implications. First, everything else being the same, an increase in

knowledge linkages across sectors enhances growth (because w'</ increases). Second, in the pres-
ence of fixed costs, not every firm operates in every sector. Therefore, the fraction of knowledge
that is utilized across sectors, 747/, is strictly less than 1+ 6 (when knowledge spillovers are com-
plete) Vi, j. Hence, this equation implies that sectoral entry costs reduce the aggregate innovation
rate in the economy by blocking the knowledge circulation across sectors. Third and more sub-
tly, when the variance of firm-specific idiosyncratic fixed costs, o¢, rises, firms’ sectoral selection
decisions become more random and less driven by the ‘fundamental’ factors—knowledge linkages
between firms’ current and entering sectors. Firms with sufficient background knowledge may not

be able to conduct research in many sectors, and firms with insufficient background knowledge
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may enter many sectors but cannot innovate much. This ‘inefficient’ sorting of firms in different

sectors—manifest in lower 3, >, w"™/7""/—reduces aggregate innovation rate.

4.4 Aggregate Economic Growth

Given that labor supply is fixed, the growth in nominal GDP is zero. However, real growth rate is

positive due to the ‘variety effects’. Because of the variety effect and o > 1, expansion in varieties

Ptl-u — n§4_-1
Py ni

is associated with decrease in sectoral prices: ) "7 Then according to equation (6),

Q41

1
o = vo-1. The aggregate real output grows at
t

K ; st

Yit1 <Qf:+1> 1

g= = H i =yt (28)
Yi i=1 Q;

It is worth pointing out that by assuming the efficiency of R&D workers to be proportional
to the average knowledge stock in that sector, we eliminate the ‘scale effects’ of population on
economic growth. This can be seen from (26). Both w7 and v® are proportional to the total
population in the economy; therefore, the growth rate of varieties is independent of the level of

population.*3

5 Simulations

We have commented along the way when our model can potentially fit one of the observations
in Section 2. Here we simulate the model economy with a large panel of firms (above 30,000)
innovating in various (multiple) sectors, to assess the performance of the model in matching the
empirical observations that motivated our work.

Allowing for a large number of sectors would give us a more accurate definition of technology
classes. It is, however, computationally difficult to calibrate and simulate the economy with a large
K. Therefore, we calibrate the model based on sectors at a less disaggregated level (than in
Section 2)—at SIC 2-3 digit industrial classifications provided by the USPTO, which constructs
42 sectors. We calculate the measure of applicability (authority weight) for these 42 sectors using
the same method as in Section 2.1. The relevant firm patenting and patent citation data over the

30-year period (1976-2006) are employed to discipline the parameters.

43Jones (1999) first pointed out that the ‘scale effects’ that plague many endogenous growth models are not
consistent with empirical evidence.

4 For example, our empirical evidence shown in Section 2 is based on 428 sectors. It is almost impossible to
calibrate all the sectoral parameters for 428 sectors. Specfically, it means we would estimate 428 x 428 elements of
the knowledge diffusion matrix.

28



5.1 Calibration of Parameters

We assume that the distribution of idiosyncratic fixed costs of research, H((), is gamma with mean

one and variance 05.45 The shocks to individual firm’s innovation and imitation are also drawn

from a gamma distribution G(g) with mean zero and variance o2. The set of parameters in the
model to be calibrated includes elements of the intersectoral knowledge diffusion matrix, A, and

other parameters {5, ., 6,0,1, F,0¢,0.}.

intersectoral knowledge diffusion matrix A We proxy the knowledge linkage by the fraction
of citations made to sector j by sector ¢ (knowledge flow from sector j to ). Since sectors with more
patents tend to be cited more frequently, we handle this by normalizing the citation percentage
by the relative importance of sector j, measured by the share of citations received by j in total

citations, citationshare’.*6 Formally,

Jiei _ Do of citations from ¢ to j/total citations made by 4

j 29
citationshare’ (29)

Figure VII shows a contour graph of the knowledge diffusion matrix, (log)A*~7 for these 42
sectors. The darkest area on the diagonal reflects the fact that a large proportion of citations go
to patents in the same sector. This is not particularly surprising given that sectors in this case
are not highly disaggregated; however, most sectors also allocate a significant amount of citations
to patents from other sectors, reflecting the importance of cross-sector knowledge spillovers. We
normalize the knowledge diffusion matrix by a scale parameter, A, such that A7 = Ay x A,

This parameter governs the average innovation productivity over all sector pairs.

Other Parameters Total labor force, L, is normalized to 100 and we choose the following
standard numbers: the (gross) growth rate of real output g = 1.02, the interest rate » = 0.05
and 8 = 0.99. The average (gross) growth rate of patents, 7, equals 1.11 in the data (for the
period 1976-2006). (23) and (28) then imply that the household’s risk aversion parameter n = 3,
and the elasticity of substitution between differentiated goods ¢ = 6, which lies within the range
of estimates of elasticities of substitution provided in Anderson and Van Wincoop (2004) and

Broda and Weinstein (2006).4” Unfortunately, there is no direct information to pin down the rest

45The scale and shape parameters of this gamma distribution are O'g and 1/ 02, respectively. The theory in Kesten
(1973) works with many types of distributions of shocks as long as shocks are i.i.d over time. We choose gamma
distribution because the random number generator in Matlab program behaves well under this distribution for our
sample size.

46Tt is important to note that this measure is different from other technology closeness measures proposed in Jaffe
(1986) and Bloom et al. (2010). These previous papers study the bilateral distance between any two technolo-
gies which is independent from the direction of knowledge flows. In our paper, the knowledge diffusion matrix is
asymmetric across sector-pairs, i.e. A*7 £ 477

“TUsing detailed imports data, Broda and Weinstein (2006) estimate the elasticities of substitution between differ-
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Figure VII: Contour Graph of Knowledge Diffusion Across Sectors
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Note: The figure represents the knowledge diffusion matrix constructed from the NBER Patent Citation data for 42
technological sectors. A darker color implies that the sector is cited by another at a higher rate than a sector-pair
with a lighter color.

of the model parameters. Therefore, we combine the Generalized Method of Moments (GMM)
and Simulated Method of Moments (SMM) and use firm patenting information to estimate these
parameters.

First, we use GMM to back out the parameters that enter the aggregate equilibrium conditions
(13), (21), (22), and (26): Ag, a, 0, {v'};. Specifically, we adopt the continuously updating GMM,
where the optimal weighting matrix is estimated simultaneously with the parameter values. Pooling
the patent data for the period 19762006, we observe firm’s patenting behavior in these 42 sectors.
Based on this information, we calculate the 30-year average of the relative patent stock across
sectors, {n’/n};;, the average fraction of firms in each sector, {M?/M};, and the fraction of
patents in sector i owned by firms that have previously innovated in j, {74/ }i ;- In addition, we
obtain the ratio between the number of firms and total population, M/L, from Axtell (2011).48

Now define vector ¥ = {Ag, a, 0, {v'};} and G¢(9) is the vector of differences between real datal
moments and equilibrium model moments. T = 30 is the total number of periods. The moments

that we attempt to match are Equations (13), (21), (22) and (26). Thus, there are 87 equations

entiated goods for sectors at various disaggregated level. The average of the elasticities of substitution is 6.8 among
3-digit SITC goods during 1972-1988 and 4 during 1990-2001. Anderson and van Wincoop (2004) review the previous
studies and conclude that the elasticity of substitution is likely to be in the range of five to ten.

48there are 5.07 million firms in the U.S. and the total population is 249 million in 1990.
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and 46 unknowns in our estimation. Our estimator minimizes

-1 /

1 & 1 &
T ; G(9)' Gi(9) T ; G(9)

T
A . 1
U = arg min [T ; G(0)

We then use SMM to estimate the remaining parameters, F', 0. and 04.49 Our target moments
are: the 30-year average of the mean number of sectors per firm S = 2.61; the fraction of firms in
each sectors { MM }; and the shape parameter of the Pareto distribution of patent stock across
firms, 1 = 1.89. S helps to pin down the average fixed cost F. Information on the distribution of
M?*/M helps to discipline o¢, because when shocks to sectoral fixed costs are more volatile, firms’
sectoral selection becomes more random, and thus the distribution of the number of firms across
sectors becomes more even. Similarly, more volatile innovation shocks increases the heterogeneity
of firms’ patent stock; thus, information of p helps to identify o..

There are M=33,000 firms in the simulation, which is the maximum number of active firms
within one year in the patent data. Every period, based on (18), S x M firm-sector pairs are
selected to be actively conducting R&D. The active firm-sector pairs follow firm dynamics in (24).
F' is estimated using the average realized fixed costs of these active firms in the simulation. For
any pair of o, and o¢, the simulation starts from the firm patent stock distribution in 1997.50 We

then repeat the following steps for 27" = 100 periods.

1. At period t, define and calculate the expected value gain of each firm f in sector 7 if firm f
chooses to innovate in sector i (after the realization of shocks to its fixed costs of R&D C}?t

for every i) as

K <zj + 92j>
. o\ Fre t .
scorey, = E w“_anj X (Cre) L
j=1 t

where {wi“j }Z.j are calculated according to (14), using parameters estimated previously.

2. Select the cutoff value Finax ¢ such that only S x M elements among all {scorelj}} f,i are greater
than Fiax in period t. Firm dynamics follow (24) if scoreéc > Flax,t; otherwise, the firm is
idle in sector i for period t. F; is estimated using the average fixed costs faced by active firms

at time ¢. F (0., 0¢) is then estimated by taking the average of such Fis in the last T periods.

In the end we choose the pair of 0. and o, that minimizes the quadratic distance between the

49The simulation process is extremely time consuming when keeping track of a large number of firms (N = 33,000)
and their innovation outcome in 42 sectors. We estimate o. and o¢ using SMM because they do not enter the aggregate
equilibrium conditions analytically. Moreover, in order to implement the equilibrium firm dynamics governed by (24)
and firm’s entry decision in (18), we need to know other model parameters estimated previously.

59We choose 1997 because the number of patenting firms is the largest. We also assume that the firm over population
ratio does not change over time.
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Table II: Parameter Values

6 o n « 0 A F o, o¢
099 6 3 044 0.00376 0.0038 0.001 1 2

simulated moments (from the last T' period) and the empirical moments.

The calibrated parameter values are reported in Table II. Most notably, o = 0.44, which implies
a substantial input from researchers in the knowledge creation process. The imitation efficiency
parameter 8 = 0.0038 suggests that private knowledge previously accumulated is significantly more

important than public knowledge for innovating firms.

5.2 Goodness of Fit at Sectoral Level

Figure VIII: Empirical and Model Generated Number of Firms Across Sectors
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We show the goodness of fit of our model by comparing the model’s targeted and untargeted
moments with their empirical counterparts. In Figure VIII we plot the cross-sector observations of
the model generated number of firms and empirical number of firms across sectors (correlation=
0.62). The shape parameter of the Pareto distribution of firms’ total patent stock is 1.91 in the
simulation, close to p = 1.87 in the data.

We also investigate our model’s prediction about some of the moments that we did not directly
target. The left panel in Figure IX shows that the simulated number of firms that patent in s
number of sectors {N*} in the model is highly correlated with that in the data (correlation=0.99).
The right panel compares the estimated share of R&D expenditure across sectors using our model

and real sectoral R&D expenditures in the data.’’ Again, we find a value of 0.64 for the correlation

51Equatior_l (25) implies that the R&D expenditure of sector i is proportional to the market value of sector i’s
knowledge v°.
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between these two variables. Additionally, the model also replicates another set of untargeted
moments, the share of knowledge in sector j that are utilized in the R&D of sector ¢ {Ti(_j } fairly
well, the correlation between the simulated moments and their empirical counterparts is as high as

0.61.

Figure IX: Untarged Moments: Cross-sector Distribution of Firms and R&D

0 0

10 10
2]
o o
S o
5] -1 e}
3 _ 10 o0 o E
n o) S o
3 o
£ 107} ] o o
gv o w107} 4
B Y o 0®
> o Q
8 % 3 O o e}
c o o 10 o O o O o 0o E
~ -
0 102} o 4 =] b 00 o O
S Q 00
iT o g 10" © E
= S 0y o
]
o g z |6 o
S_—G 3 § © 1075 PO E
n 10 & q _§
S g0 ®
= % O . -6
© 8 10 E
> 8 O
IS 8 @
@ 8
1074 -5 0 1077 —4 ‘73 ‘72 ‘,1 0
10 10 10 10 10 10 10
Empirical Share of Firms Covering s Sectors Empirical Share of R&D by Sector

5.3 Simulated Firm-level Observations

When presenting the simulation results, we divide the large number of simulated firms into 20 bins
(similar to Section 2) and present the observations based on an average firms in each bin.?? Results

are shown in Figure X-XIII.

Firm Size, Patent Stock and Multi-Technology Patenting In the data, we observe
significantly positive relationship between firm size and firm patent performance (patent stock and
multi-technology patenting) (Table I). Figure X shows that this is captured in the model as well

(firm size in the model is measured by it total sales Zfil %siPY).53 We find that the correlation
t

52Bins are evenly divided according to the log-scaled X-axis variable. Therefore there may be uneven number of
observations in all bins.

53Since all varieties in the same sector are sold at the same amount and charge the same price in the model, firm’s
knowledge capital in a specific sector—measured by the number of its past innovations—is proportional to the firm’s
sales in that sector. Therefore, a one-sector model would naturally generate a positive and perfect correlation between
firm size and firm’s knowledge capital. This is, however, not as straightforward in a multi-sector model because the
total knowledge capital can differ across sectors. Depending on the sectors in which a firm innovates, a large number
of past innovations may not necessarily imply large sales as the firm’s market share can be small in these sectors (a

firm’s total sales in the model are defined as Zfil Zz;t siPY). Thus, we use simulation to test the prediction of our
t

model.

33



between the simulated number of varieties and sales equals 0.92 and the correlation between the

number of sectors in which a firm has one or more patents and firm’s sales equals 0.71.

Figure X: Larger firms have more patents and innovate in more patent classes
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Knowledge Capital and Technology Applicability In line with the empirical observations
in Figure V, our simulation shows that the model predicts a similar relationship between a firm’s
knowledge capital (measured by the number of blueprints of the firm, ", z}) and its position in the
technology space. Firms with larger knowledge capital tend to concentrate more in sectors with
high knowledge applicability, because they are better at internalizing knowledge spillovers across
sectors and thus have better incentive to innovate in central sectors.

As described in the left panel of Figure XI, firm’s technology applicability (defined in the same
way as in the Section 2—weighted average applicability of its technologies using authority weight
calculated for these 42 sectors in the simulation) increases with its total number of innovations.
However, since firms tend to enter multiple sectors sequentially, the knowledge applicability of the
recent sectors that a firm enter is negatively related to firm’s knowledge capital (as shown in the

right panel of Figure XI).

Firm Innovation Rate and Initial Technology Applicability Figure XII plots the simulated
> AZ},I
2 ij,o ’

evident that the model replicates the empirical observation that firms’ innovation rates are positively

firm innovation rate, against its initial applicability of its technology portfolio. It is
related to the applicability of their initial technological position. A more central positioning in the
technology space opens more potential routes for a firm to expand across sectors, thus boosting the
firm’s extensive growth (innovation in new sectors). It also allows the firm to apply knowledge from

many related sectors to innovating in the existing sectors, driving up the firm’s intensive growth.
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Figure XI: Firms with more patents concentrate more in highly applicable technologies. Yet, their
recent patents are in the less applicable ones.
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Pareto Tail Distribution of Firm Sizes Our simulation shows that the distribution of firm sizes
(measured by the average share of patent stock, % > 2—2, in the model) is indeed well approximated
by a Pareto distribution. Figure XIII depicts the stationary firm size distribution by plotting the
log(rank) against log(size) for large firms. It shows that not only the shape parameter for the
simulated distribution is close to the estimated parameter from the data. The relationship between
log(rank) and log(size) is well approximated by a straight line (except for the few observations
of very large firms), indicating a Pareto distribution (as in Gabaix, 1999 and Acemoglu and Cao,

2010).

6 Final Remarks

Technological advances are complementary and sequential; interconnections between them are,
however, highly heterogeneous. Our goal is to forge a link between observations of firm innovation
in multiple technologies and theories of aggregate technological progress. We provide a theoretical
framework which builds on micro-level observations and helps to elucidate how innovating firms
choose to position themselves in the technology space and allocate their R&D investment. We have
attempted to demonstrate that our model can replicate key firm-level facts; as such, the resulting
aggregate model is likely to provide a more credible tool for policy analysis.

Our study has important implications for economic growth and R&D policies. First, govern-

ment policies directed at stimulating innovation in certain technologies need to be based on better
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Figure XII: Firms innovate faster if their initial technologies are more applicable
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understanding of the intersectoral knowledge linkages. Heterogenous sectoral knowledge spillovers
suggest that industrial or R&D policies that favor highly applicable sectors may boost growth.?*
Second, policies that lower barriers to diversification help to reinforce the effect of industrial poli-
cies, as it can be challenging to shift to more advanced industries given the fixed cost of learning and
adapting technology in new sectors, and more diversification encourages spillovers between differ-
ent technologies. Third, competition policies that encourage joint R&D ventures in highly related
sectors can benefit growth, because firms are better able to internalize knowledge spillovers.?®

One direction for future research is to provide a better understanding of the pattern of sequential

51n fact, in a cross-country study, Cai and Li (2012) show that countries which specialize more in applicable
technologies tend to grow faster.

55 A successful example is China. Over the past two decades, China has significantly shifted its industrial structure
from specializing in exporting low or medium knowledge applicable (e.g. “Textile mill products” and “Food and
kindred products”) to exporting proportionally more highly applicable products (e.g. “Electronic components and
communications equipment” and “Office computing and accounting machines”). The Chinese government has adopted
a set of policies promoting structural transformation.
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sectoral entry using both firm innovation and production data. Our empirical findings suggest
that firms follow a general pattern when they move through the technology space: firms tend
to start from highly applicable central technologies and gradually expand to related technologies
towards the fringe of the technology space. This sequential sectoral entry has the potential to
explain observations at firm and sector levels other than those shown in the current paper. For
example, cross-sector knowledge linkages could potentially help understand the non-random sectors
co-production phenomenon documented by Bernard, Redding and Schott (2010), which finds that
some pairs of sectors (e.g., fabricated metal and industrial machinery) are systematically more
likely to be produced by the same firms than other sector pairs. Our analysis suggests that the
source of these differences could arise from heterogeneity in cross-sector knowledge spillovers. In
fact, we find that the likelihood of innovating in sector ¢ conditional on having already innovated in
sector j—measured by the average percentage of firms in j that also have patents in i—positively
correlates with our measure of intersectoral knowledge linkages, log(A% )i#j, at 56%. However,
this correlation only shows the impact of knowledge in an upstream sector on innovation in an
immediate downstream sector, hence presents an incomplete story of sectors co-R&D. For instance,
a firm may innovate in both ¢ and j, because j provides substantial knowledge spillovers to a third
sector k— which contributes significantly to innovations in ¢. Since it is not the focus of the paper,
we leave for future research a greater in-depth analysis on this topic.

Another unexplored prediction of our model is that a firm’s market value should increase with
the applicability of its technology portfolio.?® Empirical investigation of these predictions could
also be interesting for future research.

Our analysis of multi-sector firm innovation in the presence of barriers to diversity also prompts
the questions: What are quantitative implications of these barriers? What are the counterfac-
tuals? What are the appropriate government policies to mitigate the potential inefficiencies in a

competitive economy? We leave these questions for future work in a separate paper.

56Hall, Thoma and Torrisi (2007) find that Tobin’s q is significantly positively associated with a firm’s R&D and
patent stock, and modestly increases with the quality of patents (measured by forward citations).
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A Data Appendix

A.1 Data Sources

Firm Patenting and Patent Citations  We use patent applications in the 2006 edition of
the NBER Patent Citation Data (see Hall, Jaffe and Trajtenberg, 2001 for details) to characterize
firms’ innovation activities and their citations to trace the direction and intensity of knowledge
flows and to construct indices of knowledge linkages among sectors. The data provides detailed
information of every patent granted by the United States Patent and Trade Office (USPTO) and
their citations from 1976 to 2006. We summarize each firm’s patent stock in each disaggregated
technological class (intensive margin of innovation) and the number of categories (extensive margin
of innovation) for each year.

Each patent corresponds to one of the 428 3-digit United States Patent Classification System
(USPCS) technological classes and also one of more than 800 7-digit International Patent Classifi-
cation (IPC) classes. Figure II presents the intersectoral network corresponding to patent citation
share matrix for 428 technological category. We mostly report the results based on USPCS codes,
but we check for robustness using the IPC classes. We also present some evidence based on indus-
trial sector classification, as the model is estimated based on this categorization. To translate the
data into the industrial classifications, we use the 2005 edition of the concordance table provided by
the USPTO to map USPCS into SIC72 (Standard Industrial Classification in 1972) codes, which
constructs 42 industrial sectors.>” We summarize citations made to patents that belong to the same
technological class and use the cross-sector citations to form the intersectoral knowledge spillover

network.

Firm R&D and Accounting Data Information on firm sizes (i.e. sales or employment) and
firm’s R&D expenditure is from the U.S. Compustat database. Firm-level R&D intensity is defined
as R&D expenditure divided by sales. The industry measure of R&D intensity is the median firm
value. For robustness check, we also investigated the relationship between sectoral R&D intensity
and sectoral knowledge applicability using the average firm instead: again, they are significantly
positively related.

To obtain information of firm sizes (i.e. number of employees, sales), we use the NBER’s
mapping between the Compustat data and the patent data between 1970 to 2006 and keep only

patenting firms.

5"The patents are classified according to either the intrinsic nature of the invention or the function for which the
invention is used or applied. It is inherently difficult to allocate the technological category to economically relevant
industries in a differentiation finer than 42 sectors, even with detailed firm level information. First, most of the
patents are issued by multi-product firms that are present in multiple SIC-4 industries. Second, in the best scenario,
one only has industry information about the origin of the patents but not the industry to which the patent is actually
applied.
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A.2 Alternative Measures of Sectoral Knowledge Applicability

Technology Distance Based on the patent citation network, we also construct a pairwise
knowledge distance measure to facilitate our studies. Define a K x K distance matrix D, where
the {7, j}t" element, DY = d if (C"d)"” > 0 and (C" (d — 1)) = 0. C"d denotes the d power of
the matrix C. D% is the shortest path distance between the nodes i and j. If (C"d)" > 0, there is
at least one indirect route via other d — 1 nodes between nodes i and j. If (C"d)” > 0, that means
there exists at least one d-step route between i and j. If (C" (d — 1)) = 0 is also true, then d is
the shortest path distance between ¢ and j.

The mean of D’s i*" column is the average distance between technology i and all other tech-
nologies. We find the average distance to other technologies is negatively correlated (-0.58) with
the authority weight, since higher authority weight products are located closer to the center of the
network, which are connected to more other technologies. The negative correlation is not perfect,
because the average distance ignores the volume of knowledge flow between sectors and the impor-
tance of related sectors. Nevertheless, the distance measure helps to understand the relatedness

between technologies (or sectors).

Upstreamness Using U.S. Input-Output (I-O) Table, Antras et al. (2012) construct an industry-
level measure of relative production line position. The intersectoral knowledge diffusion network
can be interpreted as knowledge input-output matrix across different technologies. Thus, following
a similar method as in Antras et al. (2012), we construct a measure of knowledge upstreamness as
follows.

Denote the upstreamness measure of technology category i as U;. Cj_; is the number of
citations made by category-j patents to previous patents in category i. C_,; is the total number of

citations received by patents in category i. citationshare® is the share of citations made to patents

citationshare; Cji
max(citationshare;) C_;

share of i’s knowledge used as intermediate inputs by j (similar to the share of sector i’s output

in category ¢ among all citations between 1976-2006. indicates the weighted

citationshare;
max(citationshare;

purchased by sector j as in Antras et al. 2012). The weight ) is chosen such that
the most cited category is assumed to be 100% used as knowledge intermediate input, while if a

sector does not attract any citation, its knowledge is assumed to be only used in its own sector.®

citationshare; Cii
=1 + Z 7 Jj— Uj
max (citationshare;) C_y;

In-degree In the patent citation network, in-degree of a technology class i is the total number
of in-ward citation linkages from other classes to a certain technology class. Compared to authority

weight, in-degree ignores the importance of the citing class and the citation volumne of each in-ward

58The upstream sectors in the knowledge I-O table are different from the upstream sectors in the production I-O
table. In the knowledge I-O table, the most upstream sectors are the frontier and general purpose technologies that
are widely adopted by many other sectors, while the most downstream sectors are the mature and specific purpose
technologies. In the production I-O table, the most upstream industries are related to metal materials, while the
most downstream industries are the final consumption goods, such as automobile and footwear.
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linkage. Still, it provides a rough measure of class ¢’s knowledge contribution to the entire network.
Table A.1 presents the bilateral correlation between different measures of sectoral knowledge
applicability. It is evident that they are all significantly and positively correlated. In fact, all the

empirical observations we documented in Section 2 are robust to using different measures.

Table A.1: Correlation between Different Measures of Sectoral Knowledge Applicability

Variables (in log-scale) aw 1/avg. distance in-degree upstreamness

aw 1

1/avg. distance 0.579 1

in-degree 0.786 0.375 1

upstreamness 0.620 0.632 0.500 1

A.3 Firm-level Observations: Regression Results

Observation 2 and 3: In Figure V, the average applicability of the firms’ patent portfolio
increases with their total patent stock and numbers of categories or technology scope. In the
following regressions, we study carefully how firms allocate their innovative efforts across sectors

and present the results in Table A.2. The regressions are based on the following specifications:
St./Spe = B1Spe+ Bolnaw' + B3Spy x maw' + dy + dy

AS} /NSy = B1Sss + BrInaw’ + B3Ss x Inaw’ + df + dy

Sj}’t /St is the share of patent stock allocated to category ¢ by firm f. AS}J /AS; is the share
of new patents allocated to category ¢ by firm f. (1 < 0 implies that a larger firm spreads a
smaller share of total R&D effort in an average technology category. [o < 0 implies an average
firm allocates less R&D effort to a highly applicable sector than other sectors. 83 > 0 implies that
a larger firm allocates greater share of patents in the highly applicable center sectors than smaller
firms. We confirm the robustness of these relationships at different levels of disaggregation: 3-digit
SIC industry level (42 sectors), US patent categories (Nclass, 428 sectors) and the International
Patent Classification (IPC) classification (977 sectors).

Further, in Table A.3 we study how firms expand across different technological categories given
the heterogenous technology applicability. To investigate the innovation patterns over time, we run

the following two fixed effect regressions, controlling for firm fixed effects in each case.

Inaw}, = o+ Pi1InSss+ Banews, + df + di + ify
In aw}’t = Bi+BiIn Spe+ ﬂénew?t In Sy +dp +di +eipy

where Sy, is firm f’s patent stocks over all sectors, new;y; is a dummy variable equal to one if firm

f is a new entrant in sector ¢ at time ¢ and ach,t is the authority weight of sector ¢ in which firm f
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Table A.2: R&D Allocation and Firm Size

3-digit SIC NClass Categories IPC Categories
Dependent Variables log zi: log iziz log ii: log iziz log giz log iiiz
Independent Variable (1) (2) (3) (4) (5) (6)
Log(Sf,t—1) - 314%x* -0.324***  _ 390%** -0.45T**F*F  _0.426%F*  _0.446%F*
(0.011)  (0.010)  (0.040)  (0.025)  (0.012)  (0.010)
Log(aw}’t,l) -.012 -0.033***  _ 101%** -0.043***  _0.050*%**  _0.032%**

. (0.008) (0.008) (0.012) (0.007) (0.005) (0.004)
Log(aw’,_y X Sye_1) 0.041%F%  0.039%F%  0.023%%%  (.010%¥%*  0.032%%*  0.018%**
(0.003) (0.003) (0.004) (0.001) (0.002) (0.001)

Constant -0.905%**  _0.902*%**  _1.7209%**  _1.269*%**  _Q.875***  _0.97T7*F**
(0.048) (0.041) (0.135) (0.074) (0.037) (0.023)

Year fixed effects Yes Yes Yes Yes Yes Yes

Firm fixed effects Yes Yes Yes Yes Yes Yes

R? 0.600 0.628 0.755 0.766 0.763 0.766

No. of observations 1066867 1066867 1247310 1247310 1190681 1190681

o kok

Notes: Observations are clustered by firm. *,** and *** indicate 10%, 5% and 1% significance, respectively.

has one or more patents at time ¢. d; and d; are firm and year fixed effects. We only use the firms
that have entered at least two technology categories. The results controlling firm fixed effects are
shown in Table (A.3), which are consistent with the cross-sectional findings. A firm grows larger,
its R&D efforts even out in all sectors (51 < 0, 8] < 0) and that the new sectors that a firm enters
are farther away from the center of the technology space than the existing sectors (82 < 0, 85 < 0).

Again the results are robust at different levels of disaggregation.

Table A.3: Choices of New Sectors and Firms Patent Stock

3-digit SIC NClass Categories IPC Categories
Variable (1) (2) (3) (4) (5) (6)
Log(Sri_1) S036%FF 0.072%FF  0.0697FF  -0.112FFF _0.124%%% _0.251%%*
(0.003) (0.004) (0.008) (0.008) (0.015) (0.015)
New Sector -0.454*** -0.287*** -0.810***
(0.007) (0.012) (0.018)
New Sectorxlog(Sy—1) -0.149%** -0.091%** -0.192%**
(0.002) (0.003) (0.004)
Constant S2.542%F¥% L9 BRAFKK 5 QTTHRKE G 116%KF  -7.963FF* T 472%F*
(0.046) (0.053) (0.031) (0.027) (0.073) (0.076)
Year fixed effects Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes
R? 0.039 0.087 0.001 0.002 0.028 0.036
No. of observations 1066867 1213652 991215 991215 817762 817762
Notes: Observations are clustered by firm. *,** and *** indicate 10%, 5% and 1% significance, respectively.

Observation 4: Let g.,+ be the extensive growth rate attributable to new patent applications in
new technological classes and g;,; be the intensive growth rate coming from patent applications

in existing classes. Define StN €W as the number of patent applications in new classes at time .
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Therefore,

B S}Ytew
Gextt Sf,t—l
J _ (Spe = SFEY) = Spa
int,t

vatfl

Table A.4 presents the results of fixed-effect regressions and Heckman two-steps procedure
correcting for selection bias (as only survival firms are observed). When controlling initial firm
size, the firm whose initial average technology applicability T'A;; 1 is greater also experiences
faster growth rate gy;. At the first stage of the Heckman procedure, higher T'A;_; also increases
the firm’s survival probability.

Table A.5 shows that both extensive and intensive firm innovation rates decrease with firm’s
initial number of patents but increases with the applicability of firm’s initial technology mix. The
Inverse Mills ratio in columns (3) and (6) is taken from the columns (5) of Table A.4. Both
extensive and intensive firm innovation rate are positively related to the initial average technology
applicability T'Ay; 1, but the extensive margin is more sensitive to T'Ay; 1 than the intensive
margin. This shows that a central location on the technology space promotes firm growth mainly
through providing prerequisite knowledge while the firm expands into new sectors.

Larger firms (firms with more employees or sales) have more patents and typically grow (inno-
vate) at a slower rate. We investigate if firm’s future innovation rate is indeed negatively correlated
with the commonly used measure of firm size. We merge firm patenting data with firm data from
Compustat dataset and substitute patent stock with number of employers in the above regression.
The results are reported in Table A.6.

46



Table A.4: Firm Innovation Rate and Firm’s Technology Applicability

OLS Heckman Correction
(-100%) survival growth
Variable (1) (2) 3) (4) (5)
Log(Sti_1) S227FFF_0.103FF  _0.811%FF  0.335%%%  _0.143%
(0.002) (0.001) (0.009) (0.003) (0.002)
Log(TAyf,-1) 0.073**¥*  0.066***  0.058***  (0.090***  (.128%**
(0.001)  (0.001)  (0.001)  (0.001)  (0.001)
Age -0.058***
(0.000)
Inverse Mills ratio 1.139%**
(0.020)
Constant 1.595%**  1.176%** 1.483*** 1.074%** 1.371%%*
(0.010)  (0.011)  (0.011)  (0.014)  (0.010)
Year fixed effects Yes Yes Yes Yes Yes
Firm fixed effects No No Yes No No
R? 0.259 0.107 0.210 0.273
No. of observations 333968 424504 333968 333968 333968

Notes: Observations are clustered by sector in all columns, except that they are clustered by firm in column (2) and

(5). 7,

TAyg,—1 is the weighted authority weight of a firm’s patent stock.

and *** indicate 10%, 5% and 1% significance, respectively. Log(S) is the log-scaled number of patents.

Table A.5: Extensive v.s. Intensive Firm Innovation Rate and Technology Applicability

Extensive Firm Growth Rate Intensive Firm Growth Rate

Heckman Heckman
Variable (1) (2) 3) (4) (5) (6)
Log(Sf,t—1) S 143%F% 0 _0.566%FF  _0.071%FF  _0.084**FF  _0.246***  _0.072***
(0.001) (0.008) (0.001) (0.001) (0.004) (0.001)
Log(TAyi—1) 0.048***  0.056***  (0.095*** 0.025***  0.012***  (.033***
(0.001) (0.001) (0.001) (0.000) (0.000) (0.001)
Inverse Mills ratio 0.975%** 0.164**
(0.014) (0.010)
Constant 0.960***  0.896*** 0.768*** 0.635%**  (0.587*** 0.603***
(0.009) (0.009) (0.009) (0.007) (0.007) (0.007)
Year fixed effects Yes Yes Yes Yes Yes Yes
Firm fixed effects No Yes No No Yes No
R? 0.157 0.332 0.173 0.105 0.177 0.106
No. of observations 333968 333968 333968 333968 333968 333968

Notes:Observations are clustered by sector in all columns, except that they are clustered by firm in column (2) and
(5). Years covered are 1997-2006.","* and *** indicate 10%, 5% and 1% significance, respectively. log(Sy—1) is the
log-scaled number of patents. TAf 1 is the (weighted) authority weight of a firm’s patent portfolio.
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Table A.6: Firm Innovation Rate, Firm Size and Technology Applicability (using Compustat)

OLS Heckman Correction
(-100%) survival growth
Variable (1) (2) (3) (4)
Log(Empyri_1) S0247FF _0.180%FF  0.335%%%  (.143%F
(0.001)  (0.010)  (0.003)  (0.002)
Log(T A1) 0.006*%%  0.005%%*%  0.090%%%  (.128%%*
(0.001)  (0.001)  (0.001)  (0.001)
Age -0.058***
(0.000)
Inverse Mills ratio 1.139%**
(0.020)
Constant 0.147%**%  0.372%** 1.074*** 1.371%**
(0.009)  (0.019)  (0.014)  (0.010)
Year fixed effects Yes Yes Yes Yes
Firm fixed effects No Yes No No
R? 0.35 0.26 0.273
No. of observations 39949 39949 333968 333968

* koK

Notes: Observations are clustered by sector in all columns, except that they are clustered by firm in column (2). *,
and *** indicate 10%, 5% and 1% significance, respectively. log(Empys—1) is the log-scaled number of employees.
TAyf 1 is the (weighted) average authority weight of a firm’s patent portfolio.

B Technical Appendix

B.1 An All-Sector Firm’s Optimal R&D Decision

We solve the firm’s R&D decision along the BGP. We adopt the guess-and-verify method to solve
the all-sector firm’s problem. Guess that the value of a firm is a linear combination of its accessible
knowledge capital in all the sectors:

K (2,
Vizp) =D (vl =

+ ug
= ny
Substituting it back to the Bellman equation, we get
j K K .
V(zre) Z(z ) SN (Risi+ R + (30)
=1 i=1 j=1
. .. «@ . N l—a
| 2. +5K, [Aﬂ (—JRJH) (Z}t +92§> } ‘
(Vi1 + Upg)- (31)
1 + ' ]; ni_"_l
The first order condition with respect to Rlej is:
] # J
R = ”t AT apivi ) T e (32)
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where p{ = L " Substituting the optimal R&D in (32) and (33) back to the Bellman equation
1

14r 7
(31), we get:
K J K J K i i\ T J =
S (v AT R 3 (# I Yy A apiup\ e Zre 0%
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where M/ is the total number of firms in sector i, M;z} = n!. The transversality condition takes

the form

T

H = 0,V
T—)oo

T .

1 4

1i L= 0,Vi
Tgréotl:([](l—l—rt)nzT A

In a stationary BGP equilibrium, the measure (number) of firms in a given sector is constant
M} = M". The sectoral knowledge values and the application value of knowledge j to i are all

constant, i.e. vi = v, ul = u’, (to be proved later). Now we get:

o= (L=p) 7 W+ 5 E n% (A" app') = M'aT]
i=1 "1
K
. 1 1 -« ] Hz
Y/ — 1— Az<—] 1 o Mz— t
v ( 1+ 7"t o ; : ap; & ) ng )

To simplify the notations, define the value of sector j’s knowledge in contributing to innovations

in sector 7 as

o 1-— an
—J _ t 1] o 7
w = nt (A apv)1 (M)

49



Substituting it back, we have

and

o
Ry’ = Ripj + RG] =5

”t
ij

To prove that p{, vl uj,wt are all constants, we first need to show that the innovation rates

j .
n T .

across sectors are the same on the BGP; therefore, we need to show — = ™ V¢. The evolution of
Ty

the number of varieties in sector 7 is:

ni,, = ni+ / Az df

fEFit
. K L1 o[pévi a . .
= ni+ Z(Azkj)m <M> / (Z},t +0z])df
j=1 fE€Fit
K o (aBui\TE] . M
iy %
= i+ [(A)Ta (’YiMi> (n" + 03 m0)
=1 K
where nil = J z%tdf represents the total number of sector j goods that are produced by

fe]-‘i,tﬂ]—'j,t
firms which also produce in sector i, because not all firms in sector j is innovating and producing

in sector i. The second term in the last bracket represents the total public knowledge in sector j
that is used for innovation in sector i. Firms can adopt public knowledge capital from every sector
when innovating, but private knowledge is limited to what sectors firms have previously entered.
The innovation rate (the growth rate of varieties) in sector i is vi = n! 11 /nt. Rearranging the
terms, we have

i,.J
ny

L K 7t
(i = 1) (i) = (aﬁ”) >0 (AT (B 05, (34)

Jj=1

Jnt

The number of goods in every sector grows at the same speed, because inter-sector knowledge
spillovers keep all sectors on the same track. More specifically, if one sector ¢ had been growing
more slowly than other sectors for a lengthy period, its number of goods would be extremely small
relative to other sectors. (34) implies that the cross-sector knowledge spillovers would increase 7}
tremendously through a large ratio ngz /nt and n{ /nt until 4} is the same as the innovation rates

in other sectors. This is vice versa for sectors starting with a slower growth rate. Therefore, in
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the stationary BGP equilibrium, v* = 79 = ~ and the distribution of the sector is stable and

. ng 1
rank-preserving. Denote —t = "= V.
t

This result implies that pt = B/v = p and w; Y = i are both constants, consistent with our
original guess. Therefore, we have (13), (15), (14) and (16). Now we can verify our previous guess

that the all-sector firm’s value is a linear constant-coefficient combination of its knowledge in all

V(zf4) Z vt

’LGSf t

sectors:

B.2 Sectoral Innovation Rate and Research Intensity

The number of varieties (patents) in sector i accumulates according to
ni, =n+ /Az}’tdf

Substitute (11) into the above equation, we get

K -
io— iy Y |4ty apvt) + 0z df
Ny ny M ftglft Zt €2ft
feEFit j=1
& fapii\Te . .
= ni4 Z(AM—J)E (]\JtZ) / (z}t + 92%) df,
j=1

fe€Fit

which implies the common innovation rate is

K L fap o fe‘]f-' (zjct - 92{) df
— Z i,t
5 E : [ ) ( - > ] - (35)

Ty

ze],]_zej

;
- z:: (1—a)pvt

where 777 = [ (z?;t + 927{ ) df /nt stands for the fraction of knowledge in j that is utilized in
fE€Fit
innovating in i. Based on (13), we can rewrite the equation above as

1—-p Zfil Zf:l W Tl
(I—a)p 3k w4+ 30, Zszl witd’

y=1+

Substituting out p = 3/ leads to (26) after rearranging the terms.

The sectoral research intensity is defined as the overall sectoral R&D expenditure divided by

51



sectoral revenue: RI* = ﬁ ZJKZ i FeFNFi R?_j df. Substitute the optimal R&D expenditure (16)

and (35) into the equation, we have

RI' = . Wi ffe]-'i(zf,t + 07z )df
1—-as'PY st nd

a 1 K
— ' 1 1]
1— asPY Z“’ ’

_ oy - DR

PY

Therefore, RI*/RI7 = v'/v/.

B.3 The Evolution of (Normalized) Firm Size

Based on knowledge accumulation (10), knowledge production (11) and optimal R&D investment

(16), firm f accumulates its knowledge in sector i according to

. AN Y . 11—« AN Y 11—«
Zfp1 = th + Z AZ(_J (_ZRZEi) (ng,t) 51ft +0A* <_ZR12;i) (Zg) 52]f, ]

j=1
K i—7\ ¢
_ G0 W JoJi L psigi
= zft+ZA —j ( 11 - ) (Zf,t51f,t+9zt52f,t)
Jj=1 t

Divide both sides by n{, , we can write the dynamics of firm market share as

; ) K . o L _a ) .
25141 n}t ft ng Zren? i A apvt \ 7o 45 ny 0z; i A apy® \ 7o 4
W man w2 |\ ) e Ty ; g 21
t+1 t+1 't t+1 ny t+1 =1 't

= |
=

. K ] . .. . a K . .
1| 2%, Zrand ey (AYaput N1t 1 67 nt
= gD D e L G M €114 +§§:7jﬁ
j
o

ny j=1
[ K i K i
I ) 3 e (@ i VLt 3 O ST
3 T2 (T ) | 5 2 (= a2
s ij
Define gbf] = % (l{if i—j} T f”slljft) 1/th = €2f L we can rewrite the above equation as in (24).
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Sticky Note
I think we should delete K here.




