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Abstract

We provide a macroeconomic model where demand for goods has a productive role. A
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model using standard Bayesian techniques, allowing for business cycles being driven by both
demand shocks and true technology shocks. Demand shocks account for more than 95%
of the fluctuations in output and the measured Solow residual, whereas true technology
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1 Introduction

In the standard neoclassical model, output is a function of inputs such as labor and capital. There

is no explicit role for demand, in the sense that (Walrasian) prices will adjust so that whatever firms

can produce will eventually be utilized. In reality, customers and producers must meet in order for

the produced good to be consumed. Consider, for example, a restaurant. According to the standard

model, the output of a restaurant should be a function of its employees, building, equipment, and

raw material, irrespective of market conditions. However, the restaurant’s production takes place

only when customers show up to buy meals. Without customers no meals will be served, so the

actual value added is zero. The larger the demand for the restaurant’s meals, the more customers

will be served and the larger the value added will be. Thus, the demand for goods plays a direct

role. The spirit of this example extends to many forms of production: car dealers need shoppers,

hospitals need patients, all producers need buyers.

This paper provides a theory where demand for goods has a productive role. The starting

point is that potential customers search for producers, and a standard matching friction prevents

neoclassical market clearing in the sense that all productive capacity does translate into value

added. Clearly, for households and firms, the acquisition of goods is an active process that involves

costs that are not measured in the National Income and Product Accounts (NIPA). Technically,

we resolve the search friction by building on the competitive search model. Firms post prices and

customers trade off good prices versus congestion when searching for the goods: prices are higher

for goods that are easier to find.

Allowing such an explicit role for demand has direct implications for business cycle analysis,

especially for our understanding of the driving factors of business cycles.1 A striking consequence

of this type of demand-driven business cycle model is that changes in demand will increase output

even if inputs, and the intensity with which they are used, remain constant. If viewed through the

lens of a standard neoclassical aggregate production function that ignores demand, an increase in

demand would appear as an increase in the total factor productivity (TFP), i.e., shocks to the

Solow residual.

Our paper focuses precisely on how the (search-based) model of demand alters the role of

productivity shocks in business cycle analysis. Such shocks to TFP feature prominently in both real

1There is a long tradition of attributing a role for demand in business cycle analysis, starting with Keynes’ theories
and, more recently, in New Keynesian versions of the Dixit-Stiglitz monopolistic competition model. However, in
none of these earlier approaches has demand had a directly productive role. This is a key contribution of this paper.
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business cycle (RBC) models and in New Keynesian DSGE models. To study the role of shocks

to demand and productivity, we embed the search model in an otherwise standard neoclassical

growth model. We show how a variety of simple demand shocks (to preferences, to the shopping

technology of firms) are capable of generating movements in TFP that mimic those in the data. In

fact, we estimate processes for each one of those shocks off the Solow residual in the data. However,

the implied business cycle comovements of those univariate economies are not like the ones in the

data. But a simple combination of consumption and investment demand shocks generates business

cycle statistics that rival and, in fact, beat those generated by standard RBC models without any

changes in technologies.

We then proceed to pose an economy where demand shocks coexist with TFP shocks and

use Bayesian estimation techniques targeting time series for output, consumption, investment,

and the measured Solow residual to tease out the contribution of each of those shocks to the

variance of aggregate variables. We consider shocks to consumption and investment demand,

to the marginal rate of substitution between consumption and leisure (MRS), and to TFP. Our

findings are that demand shocks to consumption and investment account for almost two-thirds of

the variance of output, the shock to the MRS for one-third, and the technology shock accounts for

only one percent of the variance of output. Yet the Solow residual fluctuates as it does in the data.

According to our estimated model, what appears as technology shocks from the perspective of a

standard neoclassical growth model are increases in capacity utilization arising from more effective

search on the part of consumers and investors.

In addition to these findings, the mechanics of our model relate a lot more closely to the popular

notions of what makes business go well: that there is high demand for the product and not that

there is a technological improvement. All these findings taken together, we think, makes a strong

case for demand sources being a major source of economic fluctuations while being within the most

complete neoclassical orthodoxy.

In our model the role for demand is intrinsic to the process of production and is not arbitrarily

imposed: markets clear, and no agent has incentives to deviate. Although New Keynesian models

generate demand-induced shocks, they do so by making agents trade at prices that are not equilib-

rium prices, in the sense that agents would, ex post, prefer to change the prices and quantities in

order to achieve better allocations. In this paper there is no involuntary trade and the equilibrium

allocation is efficient. We see our paper pursuing Keynes’ central idea of the role of demand.

However, this is done neither in the fixed-price tradition of the New Keynesian literature nor in

the coordination-problem tradition that sees a recession as a bad outcome within environments
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susceptible to multiple equilibria. Instead, our model follows a tradition where failures of demand

generate recessions via infrautilization of productive capacity. In our environment “animal spirits,”

modeled as shocks to agents’ forecasts, can generate recessions.

We have posed demand shocks in the most simple fashion – as shocks to preferences and

to shopping ability – because we wanted to illustrate their ability to generate fluctuations in as

stark a manner as possible. It is straightforward to extend our environment to contexts where the

demand shocks are generated by financial frictions, government expenditures, and foreign demand

shocks. Moreover, it is also straightforward to embed our structure within the New Keynesian

and Mortensen-Pissarides approaches to fluctuations, which assume frictions in either price setting

or labor markets to generate large fluctuations in output and hours worked. Ultimately, these

two traditions build on technology shocks as a major source of fluctuations. Our theory provides

a rationale for substituting productivity shocks for demand shocks in these models. We view

demand shocks as a more desirable theory of business cycles because it provides as good or better

quantitative fit than productivity shocks and because it rings more true as a driving factor.

Additional contributions Besides the proposal of a novel model of aggregate demand to study

aggregate fluctuations, our work has other contributions. First, it shows how in models with

production and competitive search, achieving optimality requires indexing markets, not only by

price and market tightness but also by the quantity of the good traded. Second, we provide a

theory of the cyclical changes of the relative price between investment and consumption goods

that is not based on exogenous technology shocks2. Third, we provide a theory of endogenous

capacity utilization, different from the early capacity utilization literature (see below for further

discussion). Fourth, we also provide a theory of stock market movements that are associated

not with capital adjustment costs or shocks to productivity or production costs, but rather with

aggregate demand and with how well firms can match up with customers.

Literature Our exercise of exploring endogenous sources of fluctuations in the Solow residual is

related to the capacity utilization literature. For example, Greenwood, Hercowitz, and Huffman

(1988), Basu (1996), and Licandro and Puch (2000) consider variable capital utilization, and

Burnside, Eichenbaum, and Rebelo (1993) introduce variable worker utilization in the form of

labor hoarding during periods of low aggregate activity. In periods during which productivity

and/or profits are high, firms will use the input factors more intensively, and this will drive a

2See, for example, Krusell, Ohanian, Ŕıos-Rull, and Violante (2000) and Fisher (2006) for papers that use
exogenous technical shocks as the source of changes in the relative price of investment.
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wedge between “true” technology shocks and the measured Solow residual.3 A key insight is

that through varying capacity utilization, true technology shocks magnify the shocks to the Solow

residual. Moreover, Wen (2004) argues that with variable capacity utilization, preference shocks

that change the desired timing of consumption will cause changes in the utilization of input factors

and, hence, changes in the measured Solow residual. Our theory provides a source of fluctuations

in capacity utilization fundamentally different from and a complement to this former literature.

Our paper is also related to Petrosky-Nadeau and Wasmer (2011), which is developed inde-

pendently from our paper.4 They also model costly search for goods in final goods markets, and

study how this search interacts with search in the labor market and influences the business cycle

properties of the model. Our contribution is also related to several papers emphasizing the effects

of search frictions in shaping TFP (Lagos (2006), Faig and Jerez (2005), and Alessandria (2005))

although none of these focus on business cycles. Moreover, Diamond (1982) and Guerrieri and

Lorenzoni (2009) show that due to a search friction, the difficulty of coordination of trade can give

rise to and exacerbate aggregate fluctuations.

Finally, there are some papers that examine, as we do, how demand changes could affect

productivity and capacity utilization, although they investigate very different mechanisms. In

Fagnart, Licandro, and Portier (1999), monopolistic firms with putty-clay technology are subject

to idiosyncratic demand shocks, which causes fluctuations in capacity utilization. Floetotto and

Jaimovich (2008) consider changes in markup rates due to the number of firms changing over the

business cycle. In their model, changes in markups cause changes in the measured Solow residual.

Swanson (2006) uses a heterogeneous sector model and shows that shocks from government

demand can increase aggregate output, consumption, and investment.

The paper is organized as follows. Section 2 lays out the main mechanism in a simple Lucas-

tree version of the economy where we show how increases in demand are partially accommodated

by an increase in productivity via more search and by an increase in prices, whereas in the original

Lucas (1978), all the adjustment occurs in prices. The full neoclassical growth model is analyzed

in Section 3. We then map the model to data in Section 4. In Section 5 we analyze the properties

of the model when restricting attention to univariate shock processes (one shock at a time) and

3Cooley, Hansen, and Prescott (1995) focus on a different source of discrepancy between the Solow residual
and true TFP: Due to a strong complementarity between workers and capital at the plant level, firms may choose
to leave plants idle, so only part of the capital stock is in use.

4A different strand of literature studies firms’ search for customers in order to form long-lasting customer
relationships (Rudanko and Gourio (2011), Hall (2008), and Mateos-Planas and Ŕıos-Rull (2007)). These papers
emphasize the role of customers as capital, and their focus is very different from ours.
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when we have only demand shocks. In Section 6 we estimate the full model with various shocks

simultaneously to gauge their relative contribution. In Section 7 we explore other implications of

the model, such as the relative price of investment, asset prices, and capacity utilization. Section 8

concludes, and an Appendix provides the proofs, additional tables, and computational and data

details.

2 Competitive search for goods in a Lucas’ tree model

We start by illustrating the workings of the model in a simple search model where output is

produced by trees instead of capital and labor. We show that the search process has an impact

on aggregate output in a way that appears as a level effect on the Solow residual. In an example

we show how shocks to preferences are partly accommodated by increases in prices and interest

rates and partly accommodated by increases in quantities, and demonstrate that absent the search

friction, the same shocks translate only to price increases.

2.1 Technology and preferences

There is a continuum of trees (i.e., suppliers) with measure T = 1. Each tree yields one piece

of fruit every period. A standard search friction makes it difficult for consumers to find trees. To

overcome this friction, the consumer sends out a number of shoppers to search for fruit. The

aggregate number of fruits found, Y , is given by the Cobb-Douglas matching function:

Y = A Dα T 1−α, (1)

where D is the aggregate measure of shoppers searching for fruit (we sometimes call it aggregate

demand) and A and α are parameters of the matching technology.

Following Moen (1997), we assume a competitive search protocol where agents can choose to

search in specific locations indexed by both the price and market tightness, defined as the ratio of

trees per shopper, Q = T/D. The probability that a tree is found (i.e., matched with a shopper)

is ΨT (Q) = A Q−α = A Dα/Tα. Once a match is formed, then the fruit is traded at the posted

price p. By the end of the period, all fruit that is not found is lost. The trees pay out sales revenues

as dividends and the expected dividend is ς = pΨT (Q).

The economy has a continuum of identical, infinitely lived households of measure one. Their
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preferences are given by

E

{∑
t

βt u (ct , dt , θt)

}
, (2)

where ct is consumption, dt is the measure of shopping units (search effort) by the household,

and θ is a preference shock that follows a stochastic Markov process. The probability that an

individual shopping unit is successful is given by the ratio of matches to the aggregate number of

shoppers. Given the matching technology (1), this can be expressed in terms of market tightness

as Ψd(Q) = A Q1−α, so ct is given by

c = d Ψd(Q) = d A Q1−α. (3)

Trees are owned by households and are traded every period. We normalize the price of the

tree to unity and use it as the numéraire good. Let s denote the number of shares owned by

the household. The aggregate number of shares is unity. Consequently, with identical households

the aggregate state of the economy is just θ, whereas the individual state also includes individual

wealth s.5 The representative household problem can then be expressed recursively as

v(θ, s) = max
c,d ,s′

u (c , d , θ) + β E {v(θ′, s ′)|θ} (4)

s.t. c = d Ψd [Q(θ)] (5)

P(θ) c + s ′ = s [1 + ς(θ)]. (6)

It is easy to see that this is a simple extension of the original Lucas (1978) economy, which is

one where α = 0 and A is large enough to make consumption worthwhile in equation (3).

2.2 Competitive search in the market for goods

There are differentiated markets indexed by the price and market tightness (number of trees or

firms per shopper). Let ς denote the outside value for firms of going to the most attractive market,

yet to be determined. Clearly a market can attract trees only if it offers them at least ς. This

5Throughout the paper, we take advantage of the perfect correlation between the idiosyncratic and aggregate
shocks to preferences, and we write only one of them as a state variable.
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constrains the feasible combinations of prices and market tightness that shoppers can offer:

ς ≤ p ΨT (Q). (7)

The expected contribution to household utility of a shopper that chooses the best price–tightness

pair is6

Φ = max
Q,p
{ud (θ, s) + Ψd(Q) (uc (θ, s) − p m̂)} s.t. ς ≤ p ΨT (Q), (8)

where ud (θ, s) and uc (θ, s) are the marginal utility of increases in d and c , respectively. Moreover,

m̂ = m[θ, s ′(θ, s)] is the expected discounted marginal utility of an additional unit of savings:

m (θ, s ′) = β E

{
P(θ) [1 + ς(θ′)]

P(θ′)

∂v (θ′, s ′)

∂s ′

∣∣∣∣ θ} .

Solve (8) by substituting (7) at equality and take the first-order condition w.r.t. Q. This yields

the unique equilibrium price p and value of the tree ς as functions of market tightness Q:

p = (1− α)
uc (θ, s)

m̂
, (9)

ς = pA Q−α. (10)

2.3 Equilibrium

A competitive search equilibrium is defined by a set of individual decision rules, c(θ, s), d(θ, s),

and s ′(θ, s), the aggregate allocations D(θ) and C (θ), good prices P(θ), and the rate of return on

trees ς(θ) so that

1. The individual decision rules, c(θ, s), d(θ, s), and s ′(θ, s) solve the household problem (4).

2. The individual decision rules are consistent with the aggregate functions

C (θ) = c (θ, 1) D (θ) = d (θ, 1) s ′ (θ, 1) = 1.

6To derive this, take the first-order condition of (4) with respect to d and consider the price-tightness posting
problem when the cost ud of sending an additional shopper has been borne. The idea is that each shopper is
equipped with a credit card and if no fruit is found, then utility is not affected over and above the sunk search cost.
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3. Shoppers and firms search optimally in the market for goods, i.e., (p (θ) , Q (θ) , ς(θ)) satisfy

the search conditions (9) and (10), where market tightness is Q(θ) = 1/D(θ).

4. The goods market clears:

C (θ) = A D (θ)α . (11)

The competitive search equilibrium and its efficiency properties can then be characterized by

the following proposition.

Proposition 1. 1. Aggregate search D is determined by the functional equation

0 = α A D (θ)α−1 uc [A D (θ)α , D(θ), θ] + ud [A D (θ)α , D(θ), θ] . (12)

The functions C , Q, and ς then follow directly from the equilibrium conditions C (θ) =

A D (θ)α, Q (θ) = 1/D (θ), and ς(θ) = p (θ) A D (θ)α.

2. The equilibrium price is defined by the functional equation

uc [C (θ) , D(θ), θ] = β E

{
P(θ) [1 + ς(θ′)]

P(θ′)
uc [C (θ′) , D(θ′), θ′] | θ

}
. (13)

3. The competitive equilibrium is efficient.

The proof of the first two items is straightforward: simply derive the first-order conditions of

households and combine them with the competitive search conditions (see the Appendix for details).

For efficiency, we consider a planner solving maxC ,D {u(C , D, θ)} subject to the aggregate resource

constraint C = A Dα. The solution to equation (12) solves this planner problem, which establishes

efficiency. Interestingly, the Euler equation (13) is the same as the one in the standard Lucas tree

model.

We now turn to our focus, the measured total factor productivity Z , which is defined as

C = Z T . The Solow residual Z is a function of the search effort and fluctuates in response to

preference shocks. A direct application of the equilibrium formulation of aggregate consumption

from Proposition 1 and T = 1 yields the following corollary:

Corollary 1. In equilibrium, the Solow residual is a function of preference shocks and given by

Z (θ) = A (D(θ))α . (14)
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2.4 An example

The explicit consideration of an example allows us to show with the aid of closed-form solutions

how preference shocks that increase the desire to consume are accommodated in part by an increase

in the price of consumption today relative to consumption later and in part by an increase in search

effort that translates into squeezing more output out of the economy, thereby making it more

productive. Consider a version of this economy with preferences given by

u (c , d , θ) = θc log c − d ,

where θc is independently and identically distributed with E {θc} = 1 and θc > 0. Given these

preferences, the equilibrium conditions (12) and (11) yield the following equilibrium allocations:

D(θ) = α θc , C (θc) = A αα θαc .

It is straightforward to verify that the equilibrium price and interest rate (in terms of the consump-

tion good) are

P(θ) =

(
1

β
− 1

)
1

Aαα
θ1−α
c , 1 + r(θ) =

θ1−α
c

β E {(θ′c)1−α}
.

An increase in the desire to consume today translates into an increase in consumption proportional

to the shock to the power of α and an increase in the gross interest rate proportional to the

shock to the power of 1− α. As α → 0, the shopping economy converges to the standard Lucas

tree model. In this case, aggregate consumption is invariant to the demand shock, and all the

adjustment to the shock takes place through prices.

3 The stochastic growth model version of the economy

We now extend the search model to an otherwise standard growth model suitable for quantitative

business cycle analysis. We add capital, which requires for its installation both investment goods

and professionals to shop for those goods, and a disutility of working. We start with describing

technology and preferences. We then analyze the problems faced by households and firms, and

study price determination in the presence of competitive search for consumption and investment

goods. Along the way, we prove a few results that guarantee that all firms make the same choices

of labor and investment. We also establish that the equilibrium is Pareto optimal. Finally, we
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discuss how the labor share and the Solow residual can be estimated using NIPA data.

3.1 Technology

There is a unit measure of firms. Each firm has a “location,” i.e., equivalent to the tree in Section

2. The firm has a certain amount of capital installed in that location. There is a technology that

transforms capital and labor services into goods that is described by a standard (differentiable and

strictly concave) production function f (k , n). To install new capital for the following period, the

firm, like the households, has to shop. The firm has a technology that transforms one unit of labor

(that cannot be used for production) into ζ shopping units.

As in Section 2, we assume a competitive search protocol in specific locations. Markets are

indexed by a triplet (Q, P , F ) of market tightness, price, and the quantity of the good produced

which in turn is a function of the firm’s pre-installed capital stock and labor. Recall that the

quantity produced was not part of the variables indexing markets in the simple Lucas tree model.

At the beginning of each period, there could potentially be a distribution of firms with different

pre-installed capital, perhaps specializing in the consumption or investment good. We proceed by

guessing and verifying below that if firms have the same capital today, they choose the same capital

for tomorrow. This approach allows us to look only at a representative firm and thus drastically

reduce the state space of the economy from a distribution of firms to an aggregate level of capital.

To simplify our presentation of the problems of firms and households, we use (θ, K ), the preference

shock and aggregate capital, to denote the state of the economy. Choosing the same capital

stock, firms may, however, choose to produce different goods – consumption or investment goods

– and charge different prices and market tightness. In equilibrium, there are two markets, one for

consumption with index (Qc , Pc , F c) and one for investment with index (Q i , P i , F i). These goods

are identical from the viewpoint of production but not from the viewpoint of search and prices.

The share of firms producing consumption goods is given by T (θ, K ).

3.2 Households

There is a measure one of households who have preferences over consumption c , shopping d , and

working n and who are affected by preference shocks θ perfectly correlated across households. This

is summarized in the utility function u(c , d , n, θ).

The state variable for the household is the state of the economy (θ, K ) and the individual

wealth, i.e., the number of shares s. The households take a number of aggregate variables as
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given: market tightness Qc , price Pc , and quantity F c in the consumption good market, the

rate of return, the wage, and the law of motion of capital denoted G (θ, K ). These objects are

equilibrium functions of the state variable (θ, K ).

Household problem The representative household solves

v(θ, K , s) = max
c,d ,n,s′

u(c , d , n, θ) + β E {v(θ′, K ′, s ′)|θ} (15)

s.t. c = d Ψd [Qc(θ, K )] F c(θ, K ), (16)

Pc(θ, K ) c + s ′ = s [1 + R(θ, K )] + n w(θ, K ), (17)

K ′ = G (θ, K ). (18)

Equation (16) shows that consumption requires the household’s shopping effort, but it also depends

on market tightness and the amount produced by consumption-producing firms. Equation (17) is

the budget constraint in terms of shares.

The solution to this problem is a set of individual decision rules d(θ, K , s), c(θ, K , s), n(θ, K , s),

and s ′(θ, K , s). Anticipating equilibrium conditions, we introduce the aggregate counterparts of

these functions:

C (θ, K ) = c(θ, K , 1) (19)

Dc(θ, K ) = d(θ, K , 1) (20)

N(θ, K ) = n(θ, K , 1) (21)

s ′(θ, K , 1) = 1. (22)

The last condition stems from the fact that stock market shares are the only asset in positive

net supply and the equilibrium condition that these shares add up to unity. Abusing notation,

we use these aggregate conditions to write marginal utility as a function only of aggregate state

variables yielding uc(θ, K ) = uc [C (θ, K ), D(θ, K ), N(θ, K ), θ]. Using these aggregate conditions,

the stochastic discount factor can be expressed as

Π(θ, θ′, K ) = β
Pc(θ, K )

Pc(θ′, G (θ, K ))

uc [θ′, G (θ, K )] + ud [θ′,G(θ,K)]
Ψd [Qc (θ′,G(θ,K))] F c (θ′,G(θ,K))

uc(θ, K ) + ud (θ,K)
Ψd [Qc (θ,K)] F c (θ,K)

. (23)
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So the intertemporal Euler becomes

1 = E {[1 + R(θ′, G (θ, K ))] Π(θ, θ′, K ) | θ} , (24)

while the intratemporal first-order condition is

uc(θ, K ) +
ud (θ, K )

Ψd [Qc(θ, K )] F c(θ, K )
= un (θ, K )

Pc(θ, K )

w(θ, K )
. (25)

To further simplify notation, let m(θ, K , θ, s) denote the value in terms of marginal utility of an

additional unit of savings and let M(θ, K ) be its aggregate counterpart,

M(θ, K ) = β E

{
[1 + R(θ′, G (θ, K ))]

Pc(θ′, G (θ, K ))

(
uc [θ′, G (θ, K )] +

ud [θ′, G (θ, K )]

Ψd [Qc(θ′, G (θ, K ))] F c(θ′, G (θ, K ))

)
|θ
}

.

(26)

3.3 Firms

Given the state of the economy (θ, K ) and its individual state k , each firm has to choose three

things in a particular order: first, whether to produce for investment or consumption, second, the

specific submarket to go to, and third, how much to invest. Firms choose to produce whichever

good that gives higher value, i.e.,

Ω(θ, K , k) = max{Ωc(θ, K , k), Ωi(θ, K , k)}, (27)

where Ωj(θ, K , k) is the best value for producing consumption goods, j = c , or investment goods,

j = i ; that is, they choose (Q j , P j , F j) among those available (a still to be determined set):

Ωj(θ, K , k) = max Ω̃j(θ, K , k , Q j , P j , F j) for all available (Q j , P j , F j).

A firm in a (Qc , Pc , F c) consumption goods submarket chooses labor for shopping nk , invest-
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ment i , and next period’s capital stock k ′ to solve the following problem:

Ω̃c(θ, K , k , Qc , Pc , F c) = max
nk ,k ′,i

Ψd(Qc)

Qc
PcF c − w(θ, K ) [n(k , F c) + nk ]

−P i(θ, K ) i + E {Ω(θ′, K ′, k ′) Π(θ, θ′, K )| θ} (28)

s.t. i = nk ζ Ψd [Q i(θ, K )] F [K , N i(θ, K )] (29)

k ′ = i + (1− δ)k (30)

K ′ = G (θ, K ) (31)

where n(k , y) is the inverse function of the production function y = f (k , n) for a given k , and

ζ is a technological requirement specifying how many shopping workers are needed to provide

one unit of shopping service. Finally N i(θ, K ) is the equilibrium amount of production workers in

investment goods production, so f (K , N i(θ, K )) is the amount of investment good produced by

investment-producing firms.

As for investment good producers, a firm delivering to an investment good market (Q i , P i , F i)

chooses labor for shopping nk , investment i , and next period’s capital stock k ′ to solve the following

problem:

Ω̃i(θ, K , k , Q i , P i , F i) = max
nk ,k ′,i

Ψd(Q i)

Q i
P i F i − w(θ, K ) [n(k , F i) + nk ]

−P i(θ, K ) i + E {Ω(θ′, K ′, k ′) Π(θ, θ′, K )| θ} (32)

subject to (29), (30), and (31).

The first-order condition over investment is given by

E {Ωk(θ′, K ′, k ′) Π(θ, θ′, K )| θ} =
w(θ, K )

ζ Ψd [Q i(θ, K )] f [K , N i(θ, K )]
+ P i(θ, K ). (33)

Let ς(θ, K , k) denote the firm’s revenue induced by selling to the best market (expressed in

units of shares), whether a consumption good market or an investment good market:

ς(θ, K , k) = max{ςc(θ, K , k), ς i(θ, K , k)},
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where ς j(θ, K , k) is the maximum over the available submarkets of ς j(θ, K , k , Qc , Pc , F c),

ς j(θ, K , k , Q j , P j , F j) = P j Ψd(Q j)

Q j
F j − w(θ, K ) n(k , F j), (34)

with j being both consumption and investment.

Before analyzing the search equilibrium, it is useful to establish that firms in all submarkets

have the same expected revenue.

Lemma 1. Ωc(θ, K , k) = Ωi(θ, K , k) implies ςc(θ, K , k) = ς i(θ, K , k).

A direct consequence of this lemma is that it allows firms to consider only the current rev-

enue (and so the demand for current labor) instead of lifetime revenue (and so the lifetime labor

demands) in deciding which markets to enter.

3.4 Competitive search in the market for consumption goods

In addition to the decisions made by the households with respect to the main elements of the

allocation (how much to consume, shop, work, and save), its shoppers choose how to conduct

their shopping, i.e., which market to go to. In our environment with competitive search, this

means choosing a triplet (Qc , Pc , F c) of market tightness, price, and quantity. These choices will

give us two conditions to be satisfied by these three variables.

We can write the contribution to the utility of a household of a shopper that chooses the best

price-tightness-quantity triplet as

Φ = max
Qc ,Pc ,F c

ud(θ, K ) + Ψd(Qc)F c (uc(θ, K )− Pcm(θ, K , s ′))

subject to the constraint

ςc ≤ Pc Ψd(Qc)

Qc
F c − w(θ, K )n(k , F c). (35)

This constraint reflects the fact that the only relevant markets are those that guarantee certain

expected revenue for the firms. Substituting (35) with k = K and the definition for Ψd(Q) and

replacing m(θ, K , s ′) with M(θ, K ), we rewrite the problem as

Φ = max
Qc ,F c

{
ud(θ, K ) + A (Qc)1−α F c

(
uc(θ, K )− ςc + w(θ, K ) n(k , F c)

A(Qc)−αF c
M(θ, K )

)}
. (36)
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The first-order condition over Qc yields an equation for equilibrium Pc and an equation for price

Pc :

0 = (1− α)
AF c

(Qc)α
uc(θ, K )− [ςc + w(θ, K )n(k , F c)] M(θ, K )

= (1− α)
AF c

(Qc)α
uc(θ, K )− APc

(Qc)α
F c M(θ, K ),

which yields an equation for the equilibrium price Pc :

Pc(θ, K ) = (1− α)
uc(θ, K )

M(θ, K )
. (37)

The first-order condition over F c , together with the relation of ∂n/∂F c = 1/fn and k = K , gives

us

0 = A(Qc)1−αuc(θ, K )− Qc M(θ, K ) w(θ, K )
∂n

∂F c
.

Substituting the equilibrium price from equation (37) and the relation ∂n/∂F c = 1/fn for the given

k = K , we have

w(θ, K )

Pc(θ, K )
=

1

1− α
A(Qc)−α fn [K , Nc(θ, K )] ,

where Nc(θ, K ) = n(K , F c(θ, K )) is the labor associated with k = K and proposed F c . The market

tightness Qc is a function of the equilibrium value for producing consumption goods ςc(θ, K ),

Qc(θ, K ) =

[
A Pc(θ, K ) f (K , Nc(θ, K ))

ςc(θ, K ) + w(θ, K ) Nc(θ, K )

] 1
α

. (38)

3.5 Competitive search in the market for investment goods

In the same way as households do, firms shop investment goods by sending shoppers to markets

offering the best triplet of tightness, price, and quantity, (Q i , P i , F i). These choices yield two

conditions to be satisfied by these three variables.
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A shopper for the firm chooses the best price-tightness pair {Q i , P i , F i} to solve

ΦF = max
Q i ,P i ,F i

−w(θ, K ) + ζ Ψd(Q i)F i
[
E {Ω(θ′, K ′, k ′) Π(θ, θ′, K )| θ} − P i

]
s.t. ς i ≤ P i Ψd(Q i)

Q i
F i − w(θ, K )n(k , F i).

Substituting P i , we can rewrite the problem as

max
Q i ,F i

−w(θ, K ) + ζ A(Q i)1−αF i

[
E {Ω(θ′, K ′, k ′) Π(θ, θ′, K )| θ} − ς i + w(θ, K )n(k , F i)

A(Q i)−αF i

]
.

The first-order condition over Q i is given by

0 =
(1− α)ζA

(Q i)α
F i E {Ω(θ′, K ′, k ′) Π(θ, θ′, K )| θ} − ζ(ς i + w(θ, K )n(k , F i)),

which implies that the equilibrium price is

P i(θ, K ) = (1− α) E {Ω(θ′, K ′, k ′) Π(θ, θ′, K )| θ} . (39)

The first-order condition over F i is given by

0 = ζ A (Q i)1−α E {Ω(θ′, K ′, k ′) Π(θ, θ′, K )| θ} − ζ Q i w(θ, K )
∂n

∂F i
.

Substituting equation (39) for price and ∂ñ/∂F i = 1/fn for given k = K , we have

w(θ, K )

P i(θ, K )
=

1

1− α
A(Q i)−αfn(K , N i(K , θ)),

where ni(θ, K ) = n(K , F i(θ, K )) is the labor associated with k = K and the amount produced by

investment firms, F i . The equilibrium market tightness Q i as a function of ς i is given by

Q i(θ, K ) =

[
A P i(θ, K ) F [K , N i(θ, K )]

ς i(θ, K ) + w(θ, K )ni(θ, K )

] 1
α

. (40)
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3.6 Equilibrium

We have now established the necessary conditions for equilibrium that arise from the households’

and firm’s problems.

Before formally defining equilibrium, we provide a set of results – stated in a series of lemmas

– that allows us to verify our conjecture that (θ, K ) is a sufficient aggregate state variable. The

results show that if all firms start with the same capital, they will make the same choice of labor

and investment and will, hence, have identical capital K ′ next period.

Lemma 2. All firms with k = K choose markets with the same quantity F = F c = F i and the

same labor input for production.

We therefore use Ny (θ, K ) to denote the aggregate labor input, Ny (θ, K ) = Nc(θ, K ) =

N i(θ, K ) for any (θ, K ).

Lemma 3. The expected revenue per unit of output is the same in both sectors:

Pc(θ, K )
Ψd [Qc(θ, K )]

Qc(θ, K )
= P i(θ, K )

Ψd [Q i(θ, K )]

Q i(θ, K )
. (41)

Lemma 4. Firms with the same k choose the same k ′ as future capital stock.

The following two lemmas will prove useful later. The first states properties of investment

prices unveiling a relation between the direct and the indirect costs of installing capital.

Lemma 5. The investment price is proportional to the ratio of the wage and the amount of

shopping that a worker can carry out:

w(θ, K )

ζΨd [Q i(θ, K )]f (K , Ny (θ, K ))
=

α

1− α
P i(θ, K ). (42)

The last lemma characterizes firms’ optimal choice of capital accumulation. When making

decisions for future capital, firms face an explicit cost of investment (the price paid) and an

implicit cost (the wages of shoppers). Interestingly, the Euler equation in equilibrium looks almost

exactly like the one in a standard RBC model in that the implicit wage cost disappears. The

reason is that competitive search links the implicit wage cost and explicit cost. In equilibrium, the

following lemma holds:
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Lemma 6. The Euler equation of a firm equates the price of investment to the value of capital

tomorrow.

E

{
P i(θ′, K ′) Π(θ, θ′, K )

[
Ψd(Q i)

Q i
fk(K ′, Ny (θ′, K ′)) + (1− δ)

]}
= P i(θ, K ). (43)

We are now ready to define equilibrium in this economy.

Definition 1. Equilibrium is a set of decision rules and values for the household {c , d , n, s ′, v}
as functions of its state (θ, K , s), firms’ decisions and values {ny , nk , i , k ′, Ω} as functions of its

state (θ, K , k), and aggregate functions for shopping for investment D i , shopping for consumption

Dc , consumption C , labor N, labor for production Ny , labor for shopping Nk , investment I ,

aggregate capital G , expected revenues ς, the measure of consumption-producing firms T , wages

w, consumption good prices Pc , consumption market tightness Qc , production of firms F c and F i ,

investment good prices P i , investment market tightness Q i , and the rate of return of the economy

R as functions of the aggregate state (θ, K ) that satisfy the following conditions:

1. Households’ choices and value functions d(θ, K , s), c(θ, K , s), n(θ, K , s), s ′(θ, K , s) , and

v(θ, K , s) satisfy (15-17) and (24-25).

2. Firms choose nk(θ, K , k), i(θ, K , k), k ′(θ, K , k), and Ω(θ, K , k) to solve their problem (27).

They satisfy conditions (29-30) and (33).

3. Competitive search conditions: Shoppers and sellers go to the appropriate submarkets, i.e.,

equations (37-38) and (39-40).

4. Representative agent and equilibrium conditions: Individual decisions are consistent with

aggregate variables.
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5. Market clearing conditions:

s ′(θ, K , 1) = 1 (44)

I (θ, K ) = D i(θ, K ) Ψd(Q i(θ, K )) F i(θ, K ) (45)

C (θ, K ) = Dc(θ, K ) Ψd(Qc(θ, K )) F c(θ, K ) (46)

N(θ, K ) = Ny (θ, K ) + Nk(θ, K ) (47)

Qc(θ, K ) =
T (θ, K )

Dc(θ, K )
(48)

Q i(θ, K ) =
1− T (θ, K )

D i(θ, K )
. (49)

Note that since the numéraire is the stock market pre-dividends, Ω must be given by Ω(θ, K , K ) =

1 + R(θ, K ). The financial wealth of the household is s(1 + R) and is equal to the stock market

today including the dividends. Note also that the share of consumption expenditure equals the

fraction of firms producing consumption goods T , i.e., T = PcC/(PcC + P i I ).

3.7 The equilibrium is efficient

This section analyzes the efficiency properties of the competitive search equilibrium. To this end,

we start by characterizing the efficient allocation arising from the problem of a social planner who

also faces the technology constraints that searching efforts have to be exerted for consumption

goods and investment goods to be found. We then prove that the competitive search equilibrium

is efficient.

Definition 2. An allocation {T , Dc , D i , Ny , C , K ′} is said to be efficient if it solves the following

social planner problem:

V (θ, K ) = max
T ,Dc ,D i ,Ny ,C ,K ′

u

(
C , D, Ny +

D i

ξ
, θ

)
+ βE{V (θ′, K ′)|θ}

subject to

C ≤ A(Dc)α(T )1−αf (K , Ny ) (50)

K ′ − (1− δ)K ≤ A(D i)α(1− T )1−αf (K , Ny ). (51)

Proposition 2. The competitive search equilibrium is efficient.
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Note that efficiency requires that markets are indexed by per-unit price, tightness, and quantity.

This is necessary to avoid a hold-up problem between firms and consumers. Recall that once the

consumers’ search cost has been sunk and a consumer has been matched with a firm, a trade

between them would be carried out regardless of the quantity offered. Therefore, if markets were

characterized only by tightness and price, firms might find it optimal to deviate from the efficient

quantity. However, once firms are allowed to index their market also on quantity, this hold-up

problem disappears, and the competitive equilibrium allocation is efficient.7

3.8 Understanding Solow residual and labor share

We can use our model economy to compute the Solow residual provided that we specify a particular

production. Let such production function be f (k , n) = z kγk nγn , where z is a parameter that

determines units and γk + γn < 1 (see Section 4 for a discussion). Measured with base year prices,

GDP is given by

Y = Pc
0 C + P i

0I (52)

where Pc
0 is the base year consumption price and P i

0 is the base year investment price. By replacing

C and I with the aggregate production function, GDP can be expressed as

Y =
[
Pc

0 A(Dc)αT 1−α + AP i
0 (D i)α(1− T )1−α] zK γk (Ny )γn . (53)

The Solow residual Z is defined as Z = Y
K1−γNγ , where γ denotes the average labor share of

output. In our model, the labor share in steady state is

γ =
1

1− α
γn +

αδ

(1− α)(1/β − 1 + δ)
γk . (54)

If we use this steady-state labor share to compute the Solow residual in our model, we have

Z = A z
[
Pc

0 (Dc)αT 1−α + P i
0(D i)α(1− T )1−α]︸ ︷︷ ︸

Demand Effect

Effective Work︷ ︸︸ ︷(
Ny

N

)γn
K γk−(1−γ)Nγn−γ.︸ ︷︷ ︸

Share’s Error

(55)

7See Faig and Jerez (2005) for a related argument in economies with private information. They find that to
restore efficiency, it is necessary to index markets by a non-linear price-quantity schedule. In the case of symmetric
information, their efficient indexation simplifies to our triplet index of price, tightness, and quantity.
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That is, the Solow residual depends on the demand; increases in demand without changes in

technology increase the Solow residual. The two additional terms are due to the mismeasure of

productive labor and to the imputation of constant returns to scale. In empirical applications

N − Ny is small and γn is close to γ. This implies that the last two terms in equation (55) are

almost constant over the business cycle and that all movements in the Solow residual are due to

movements in demand.

4 Mapping the model to data

To map the model to data, we start by making the case for the functional forms that we use and

by describing the eleven implied parameters. We then discuss the targets for the steady state of

the model economy.

Preferences (four parameters). We pose separable preferences to be able to clearly discuss the

role of the Frisch labor elasticity and also to isolate the role of shopping. The per-period utility

function or felicity is given by (56),

u(c , n, d) =
c1−σ

1− σ
− χ n1+ 1

ν

1 + 1
ν

− d , (56)

where we omit the shocks to preferences for simplicity. The involved parameters are the discount

rate β, the coefficient of risk aversion, σ, the Frisch elasticity of labor, ν, and the parameter that

determines average hours worked, χ. That the disutility of shopping is linear is not important,

since the shocks that affect it will shape its properties.

Production technology (five parameters). Firms have a decreasing returns Cobb-Douglas pro-

duction function

f (k , n) = z kγk (ny )γn (57)

There is no need to impose constant returns to scale given the fact that the number of locations

is fixed.8 Note also that z is a parameter to determine units (below we will allow for shocks to

z). In addition, a worker devoted to shopping for investment goods produces ζ units of shopping

services, allowing for the possibility that firms could be better at shopping investment goods than

people are at shopping for consumption goods. Capital depreciates at rate δ.

8The model could easily be extended to accommodate the costly creation of such locations.

21



Matching technology (two parameters). The matching technology is Cobb-Douglas indexed

by A and α:

A Dα T 1−α. (58)

4.1 Calibration

In this economy, most of the targets for the steady state (and associated parameters) are the

standard ones in business cycle research, whereas others are specific to this economy. Table 1

reports the targets and the parameters closest associated with each target. The targets are defined

in yearly terms even though the model period is a quarter.

Table 1: Calibration Targets, Implied Aggregates, and (Quarterly) Parameter Values

Targets Value Parameter Value
First Group: Parameters Set Exogenously

Risk aversion 2. σ 2.
Real interest rate 4% β 0.99
Frisch elasticity 0.72 1

ν
0.72

Second Group: Standard Targets
Fraction of time spent working 30% χ 16.81
Physical capital to output ratio 2.75 δ 0.07
Consumption share of output 0.80 γk 0.23
Labor share of income 0.67 γn 0.59
Steady-state output 1 z 2.03

Third Group: Targets Specific to This Eeconomy
Share of production workers 97% ζ 3.16
Capacity Utilization of consumption sector 0.81 A 0.97
Capacity Utilization of investment sector 0.81 α 0.09

Implications over Other Aggregate Variables
Percentage of GDP payable to shoppers 2%
Percentage of cost of new capital that is internal 9%
Relative price of investment in terms of consumption 1
Wealth to output ratio 3.33

The first group of parameters is set independently of the equilibrium allocation. The intertem-

poral elasticity of substitution is set to two, and the real rate of return is 4%. The Frisch elasticity

is more controversial. We choose a value of 0.72, based on Heathcote, Storesletten, and Violante
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(2008), who take into account the response of hours worked for both men and women in a model

that explicitly incorporates households with husbands and wives.9

The targets in the second group are standard in the business cycle literature. Note that

the consumption to output ratio is set to 0.8, since investment in our model is strictly business

investment. We exclude consumption durables, since business investment and consumer durables

use different shopping technologies.

The third group of targets is specific to our model. Our notion of capacity utilization is related

to the series published by the Federal Reserve Board.10 We target a steady-state capacity utilization

of 81% in both sectors, which corresponds to the postwar average of the official data series (see

Corrado and Mattey (1997)). We target 3% of the workforce as being involved in investment

shopping even if we do not have direct measurements of such a variable. As the last panel of

Table 1 shows, this choice implies that 2% of GDP is spent on search activities, or that 9% of the

cost of installing new capital is internal to the firm. We view this as a plausible magnitude for the

adjustment costs associated with finding the right investment goods.

The last panel of Table 1 reports that the relative price of consumption and investment is 1

(a direct implication of equal capacity utilization in both sectors) and the wealth to output ratio

which turns out to be 3.33. This result has the nice feature that the book value of firms is only

80% of their stock market value.

5 Demand shocks in univariate economies

We now study economies with univariate shocks, i.e., economies where all fluctuations are driven

by one shock. We analyze two types of shocks to preferences: shocks to the shopping technology of

firms and shocks to total factor productivity. In Section 5.1 we estimate univariate shock processes

with Bayesian methods11 using only Solow residual data. We pose AR(1) shocks and assume

that the persistence follows a Beta distribution while the volatility follows an inverse Gamma

9Table A-3 of the Appendix reports results for an economy with a Frisch elasticity of 1.1.
10The Federal Reserve Board’s Industrial Production and Capacity Utilization series is based on estimates of

capacity and capacity utilization for industries in manufacturing, mining, and electric and gas utilities. For a given
industry, the capacity utilization rate is equal to an output index (seasonally adjusted) divided by a capacity index.
The purpose of the capacity indexes is to capture the concept of sustainable maximum output – the greatest level of
output a plant can maintain within the framework of a realistic work schedule, after factoring in normal downtime
and assuming sufficient availability of inputs to operate the capital in place.

11See An and Schorfheide (2007) or Ŕıos-Rull, Schorfheide, Fuentes-Albero, Kryshko, and Santaeulalia-Llopis
(2009) for details.
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distribution. We show that each one of these shocks can, on their own, generate fluctuations

in the Solow residual like those in the U.S. data. Section 5.2 studies the quantitative business

cycle properties of the univariate shock economies, showing that these economies have strongly

counterfactual implications. In particular, the demand shock to consumption induces a reduction in

investment, whereas the reverse occurs with a demand shock to investment. This result indicates

that a shock that is joint to both consumption and investment is more likely to generate the correct

comovements. This is in fact the case and is studied in Section 5.3.

5.1 Estimating shock processes of univariate economies

We pose a shock to the disutility of shopping, θd , and another to the disutility of work, θn, so we

have c1−σ/(1 − σ) − θn n1+1/ν/(1 + 1/ν) − θd d , a shock to the firm’s shopping technology, ζ,

and a technology shock, z . The estimates are in Table 2. The last column of the table reports

Table 2: Estimates of the Processes for Univariate Shocks

Univariate Versions of the Shopping Model Standard
RBC

Shocks to Shop. Disut Labor Disut Firm’s Shop. Tech Tech
θd θn ζ z z

ρ 0.946 0.720 0.985 0.960 0.945
Para(1) 0.94 0.72 0.95 0.95 0.94

Para(2) 0.05 0.05 0.03 0.05 0.05

90% Intv [0.91, 0.98] [0.66, 78] [0.98,0.99] [0.93, 0.99] [0.91, 0.98]

σ 0.086 0.171 0.334 0.006 0.006
Para(1) 0.09 0.17 0.30 0.004 0.006

Para(2) 0.20 0.20 0.20 0.20 0.20

90% Intv [0.08, 0.09] [0.16, 0.18] [0.31, 0.36] [0.006, 0.007] [0.006, 0.007]

Likelihood 735.13 737.09 732.62 733.98 735.05
Var of Z̄ 3.44 3.02 2.08 3.36 3.45
Autocorr of Z̄ 0.95 0.96 0.91 0.95 0.95

the results from a standard RBC economy (without shopping), where the technology shock is the

Solow residual. As is evident from the table, all of these shocks can generate a process for the

Solow residual like that in the data, without having to resort to shocks to technology. Moreover,

the estimates are quite precise, and in terms of likelihood, they are as good as those of the RBC
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economy.12 The standard deviations of these shocks are, however, quite a bit larger than those of

the productivity shock. Interestingly the process of the technology shock in the shopping economy

does not have a smaller variance than that of the shock in a standard RBC model. If anything

(due to the larger autocorrelation), technology shocks as the only shocks of the shopping economy

have a larger variance. This property indicates that the shopping economy does not amplify TFP

shocks.

5.2 Business cycle properties of univariate economies

Whether demand shocks provide a good rationale for business cycles does not depend only on

their ability to generate movements in the Solow residual. Indeed, what has made the model with

technology shocks so popular is its ability to generate the right comovements: the Solow residual,

output, and the components of output and hours worked are all strongly correlated, and investment

is much more volatile than output, which in turn is more volatile than consumption. Table 3 shows

how this is the case and how the standard RBC economy displays the right comovements. In

this economy, however, the variance of hours is quite small. This is due to the relatively low

Frisch elasticity of substitution that we use in our calibration (that we are using variances gives an

additional optical illusion of being small).

Table 3: Main Business Cycle Moments: U.S. Data and Standard RBC Model

U.S. Data Standard RBC

Variance Cor w Y Autocor Variance Cor w Y Autocor
Z 3.19 0.43 0.94 3.45 0.99 0.95
Y 2.38 1.00 0.86 0.82 1.00 0.71
N 2.50 0.87 0.91 0.04 0.96 0.72
C 1.55 0.87 0.87 0.05 0.95 0.76
I 34.15 0.92 0.80 13.74 0.99 0.71
cor(C , I ) 0.74 0.93

All variables except the Solow residual are HP-filtered.

The business cycle statistics of the shopping economies are reported in Table 4. Clearly, they

differ significantly from each other and from the RBC economy and the U.S. data. The only feature

12Table A-2 in the Appendix shows the details of its calibration, which is designed to be as close as possible to
those of the shopping economy.
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they really have in common is that output and the Solow residual move together – something that

follows immediately from the way the Solow residual is constructed.

Table 4: Main Business Cycle Moments: Various Economies with Demand Shocks

(a) Shop Disut θd (b) Labor Disut θn

Variance Cor w Y Autocor Variance Cor w Y Autocor
Z 3.44 1.00 0.94 3.02 -0.85 0.94
Y 0.37 1.00 0.71 35.49 1.00 0.58
N 0.07 -1.00 0.72 97.13 0.99 0.55
C 0.51 1.00 0.72 2.90 0.76 0.84
I 0.03 0.99 0.69 626.37 0.98 0.55
cor(C , I ) 0.99 0.63

(c) Firms’ Shopping Tech ζ (d) Technology Shock z

Variance Cor w Y Autocor Variance Cor w Y Autocor
Z 2.08 0.73 0.91 3.45 0.99 0.95
Y 1.73 1.00 0.75 0.59 1.00 0.73
N 0.54 0.78 0.69 0.01 -0.52 0.96
C 0.45 -0.53 0.74 0.22 0.98 0.78
I 69.22 0.96 0.70 4.08 0.98 0.70
cor(C , I ) -0.74 0.92

All variables except the Solow residual are HP-filtered.

In the economy with shocks to the shopping disutility (Panel (a)), labor is negatively correlated

with output. This is counterfactual. These shocks generate a positive wealth effect: consumption

goes up and work goes down. Consumer shoppers are more effective, and consumption-producing

firms operate at higher capacity, allowing for lower work effort. So shocks of this type by themselves

cannot be the trigger of fluctuations.

The labor disutility shock (Panel (b)) generates the volatility of the Solow residual by attracting

more search effort when labor is low, making productivity and output negatively correlated. The

variance of output required for this to happen is tremendous, six times that of the data, and that

of labor is even larger, about 15 times that of the data. This economy generates comovements

that are dramatically different from those associated with business cycles in the data.

The shock to the firm’s shopping technology (Panel (c)) has to generate all the movements
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of the Solow residual from a small part of GDP, and hence its variance is immense. It makes

hours worked quite volatile and positively correlated with output, but consumption is negatively

correlated with output.

The economy featuring a technology shock (Panel (d)) has implications different from those

than in the standard RBC. The existence of the search margin implies that households do not

take advantage of the higher productivity by working longer hours; in fact, hours fall slightly. The

comovement of consumption and investment has the right sign. In the shopping model, a positive

productivity shock induces enough of a wealth effect and decreases consumers’ shopping effort. It

makes firms allocate more labor into searching, however, due to a lower investment goods price

arising from the positive productivity shock. According to the Solow residual decomposition shown

in Section 3.8, both lower consumer shopping and fewer production workers decrease the Solow

residual, whereas higher firm shopping increases the Solow residual. In sum, these effects cancel

out somehow and generate almost no amplification of the productivity shock. This also explains

why the estimated volatility of innovation in our model is similar to that in the standard RBC

model.

To summarize, the shopping economies with only demand shocks do not display the business

cycle properties of the data in terms of the comovements of the major variables. In economies

subject to TFP shocks or to shocks to the MRS between consumption and labor, there is a

negative relation between labor and output. More importantly, in the economies with pure demand

shocks (to either consumption demand or investment demand) the increase in the expenditures

of the variable affected by the shock generates an increase in labor and the Solow residual but a

reduction in the other component of expenditures, indicating that if demand shocks are to play a

role, they have to affect consumption and investment simultaneously, a topic that we explore next.

5.3 Joint demand shocks

We now pose an economy with only one source of uncertainty but one that affects consumption and

investment simultaneously. Specifically, we pose that θd follows an AR(1) process to be estimated

and that ζ is proportional to θd , with the proportionality constant to be estimated. As before, we

use Bayesian methods for the estimation, with the new parameter’s prior assumed to be normal.

The top panel of Table 5 shows the estimates. The standard deviation of the consumption demand

shock is 60% of what was needed in the pure univariate economy, whereas the standard deviation of

the demand shock, although being two and a half times the standard deviation of the consumption

shock, is about one-third of what it was in the pure univariate version.
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Table 5: The Shopping Economy with Perfectly Correlated Demand Shocks

Priors and Posteriors for the Shock Parameters

Shopping model with (θd , ζ), likelihood = 734
Parameter Density Para(1) Para(2) Mean 90% Intv.
ρd Beta 0.95 0.05 0.968 [0.946, 0.992]
σd Inv. Gamma 0.05 0.20 0.052 [0.044, 0.059]
σζ/σd Normal 2.60 0.50 2.643 [1.854, 3.471]

Main Business Cycle Statistics
Variance Correlation with Y

Data (θd , ζ) RBC Data (θd , ζ) RBC

Solow 3.19 3.33 3.45 0.43 0.98 1.00
Y 2.38 0.84 0.82 1.00 1.00 1.00
N 2.50 0.05 0.04 0.87 0.57 0.96
C 1.55 0.10 0.05 0.87 0.75 0.95
I 34.15 13.92 13.74 0.92 0.97 1.00

The lower panel of Table 5 shows the business cycle statistics of this economy and compares

them with those of the standard RBC economy. Now the comovements of the variables are the

appropriate ones. Consumption and investment are positively correlated, with investment being

substantially more volatile. Although hours is positively correlated with output, its volatility is too

small. This is a shortcoming shared with the standard RBC model and is caused by the low Frisch

elasticity and by the assumption that all employment is voluntary. Table A-3 in the Appendix shows

how a Frisch elasticity of 1.1 doubles the volatility of hours worked in both models. Moreover,

Section B of the Appendix compares versions of the shopping and RBC economies with a higher

hours volatility due to an additional shock to the MRS that increases the volatility of hours. The

findings remain unaltered. The shopping economy with a shock to demand that jointly affects

consumption and investment performs as satisfactorily as the RBC economy in terms of generating

business cycle statistics.

6 Estimating the contribution of all shocks

So far we have compared the shopping model against the RBC model. We now estimate the

full-blown version of the shopping model, allowing all four shocks to matter. This allows us to
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impute the contribution of each shock to aggregate fluctuations. These shocks are the two demand

shocks, a shock to MRS, and a true TFP shock. We again use Bayesian methods. We assume

that, except for the consumption and investment demand shocks that are correlated, the shocks

are independent. The data that we use are the Solow residual, output, hours, and consumption,

all linearly detrended. We assume that the autocorrelations follow a Beta distribution, that the

standard deviation of the innovations follow an inverse Gamma distribution, and that the correlation

between demand shocks follows a normal distribution. Because of its importance for identification,

we explore below in more detail the role of the correlation of the demand shocks.

Table 6 shows the priors and posteriors for all shock parameters. The 90% intervals are tight

except for the correlation between the demand shocks. The estimates for the standard deviations

of all shocks are much smaller than in the univariate shock economies (a factor of 8 for the shock

to the MRS, a factor of 3 for the TFP shock, and a factor of 2.5 for the investment demand shock)

except for the consumption demand shock (a factor of 1.2), indicating that the role of the demand

shocks is likely to be the strongest. This is confirmed by the variance decomposition of the major

aggregate variables also reported in Table 6. Demand shocks are much more important than the

productivity shock, not only in terms of its contribution to output (63% relative to 1%) but also

in terms of its contribution to the Solow residual itself (95% relative to 2%).

The volatility of hours is still dependent mostly on shocks to the MRS, but the demand shocks

contribute 14% and productivity shocks have no effect on hours. Demand shocks also account for

more than half of consumption and 90% of investment, whereas the contribution of TFP shocks

is less than 5%.

An interesting and somewhat surprising feature of the estimates is the estimate of the corre-

lation between the two demand shocks. When we consider only demand shocks to consumption

and investment, the correlation has to be very large to obtain the right comovements between

consumption, investment, labor, and output,13 This is not the case, however, when all shocks are

permitted to be present. Now the shocks are essentially orthogonal, and the correct comovements

of the main variables arise from the joint response to all shocks.

It is hard to say exactly where the identification comes from, given that the system is somewhat

complicated. We think it has to do with the timing of the relative moment of the variables. In

addition, the 90% interval of the estimated demand shock correlation is not very tight. To see

13Estimating the Solow residual out of orthogonal consumption and investment shocks with the same persistence
yields an HP-filtered correlation between consumption and investment of -0.13 and between hours and output of
0.45.
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how sensitive the variance decompositions are to this parameter, we re-estimated the shocks for

values of the correlation between the demand shocks within the confidence interval varying from

−0.1 to 0.1. The log-likelihood ratios of the estimates for the various values of the correlation are

not significantly different from each other. As the correlation increases, the contribution of the

demand shocks to the Solow residual goes from 97% to 65%, whereas that of output goes from

65% to 41%. See Table A-4 in the Appendix for details.

Table 6: Full Estimation of the Shopping Model

Priors and Posteriors for the Shock Parameters (Likelihood = 2244.29)

Parameter Density Para(1) Para(2) Mean 90% Intv.
ρd Beta 0.96 0.05 0.953 [0.930, 0.979]
σd Inverse Gamma 0.072 0.20 0.073 [0.066, 0.084]
ρζ Beta 0.96 0.05 0.953 [0.930, 0.979]
σζ Inverse Gamma 0.13 0.20 0.128 [0.109, 0.144]
ρz Beta 0.93 0.05 0.918 [0.840, 0.997]
σz Inverse Gamma 0.002 0.20 0.002 [0.001, 0.003]
ρn Beta 0.95 0.05 0.996 [0.992,1.000]
σn Inverse Gamma 0.02 0.20 0.022 [0.020, 0.024]
Cor(θd , ζ) Normal -0.10 0.20 -0.055 [-0.225, 0.080]

Variance Decomposition (%) Business Cycle Statistics
θd ζ z θn Variances Cor w Y

Y 32.44 30.46 1.21 35.89 1.07 1.00
Solow 81.66 14.23 2.15 1.97 12.88 0.63
N 2.91 10.88 0.02 86.18 1.29 0.61
C 52.34 15.52 0.75 31.39 0.69 0.62
I 1.84 87.76 0.52 9.88 16.44 0.77

Lastly, we report the major business cycle statistics for the estimations conducted in this section

in the bottom right panel of Table 6. The shopping economy gets the right comovements between

the main variables. With respect to the variances, they are too high for the Solow residual and too

low for output and labor.
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7 Other business cycle implications of the shopping economies

In this section, we explore additional interesting implications of the shopping economies that are

absent from the standard RBC model. In the shopping model, the relative price of investment, the

stock market price, and capacity utilization are all endogenous variables that move over the cycle.

Table 7 reports the properties of the data and the two main versions of the shopping model that

we have explored: the version with perfectly correlated demand shocks and the economy estimated

with all shocks.

1. The relative price of investment. The role of the relative price of investment in shaping

economic performance has been studied in various contexts, from its role in shaping the skill

premia (Krusell, Ohanian, Rios-Rull, and Violante (2000)) to its role as a direct source of

business cycles (Fisher (2006)). In most of these cases, such relative price is taken to be an

exogenous object that depends purely on technological considerations (an exception is Valles

(1997), which uses a non-linear production possibility frontier). In our economy, the relative

price of consumption and investment is purely an economic object, since consumption and

investment are perfect substitutes in production. In the shopping environment, a reduction

in the disutility (or cost) of shopping translates into a willingness to shop longer while facing

a cheaper price for the consumption (or the investment) good. In the data, the relative price

of investment is countercyclical and less volatile than output. The model economies also

pose a countercyclical relative price of investment. The economy with only demand shocks

has a volatility that is twice that in the data and, like the data, is negatively correlated with

output, albeit much more than the data. The multiple shock economy has an extremely

volatile relative price of investment with the correct correlation. We find this encouraging

because we believe that in the data, consumption and investment goods are only partially

substitutable and hence the model is likely to exaggerate the volatility of the relative price.

2. The stock market price. Given our normalization, the stock market is just the inverse of the

price of consumption. In the shopping economy, the value of firms changes not only because

of changes in the cost of shopping for new capital, but also because the value of locations

capable of matching with shoppers changes. As is well known, the stock market price in the

data is extremely volatile with a variance of log about 40 times that of output. It is also

procyclical. Our model does indeed generate a procyclical stock price. Not surprisingly, the

variance of the price is much smaller than that of the data, but still sizeable especially given

the low risk aversion that we have posed. The correlation is similar to that of the data in
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both economies.

3. Capacity utilization. In the shopping economies, the ratio of output to potential output is

constantly changing, with higher utilization resulting in higher measured productivity. In the

United States, the Federal Reserve Board has constructed a series of capacity utilization,

which is about twice as volatile as output and very procyclical. Our model without frictions

in production also has procyclical utilization, although with lower volatility than the data.

One indication of this finding might be that there are other fixed factors in production besides

capital, and such omitted factors contributes to the larger value of the volatility in the data.

We conclude that the shopping economy captures the qualitative aspects of the additional dimen-

sions of business cycles.

Table 7: Other Business Cycle Statistics for the Full Estimation Shopping Model

Variance Correlation with Y
Data θd , ζ θd , ζ Data θd , ζ θd , ζ

z , θn z , θn
pi/pc 0.47 0.98 2.71 -0.23 -1.00 -0.30
Stock Market (S&P 500) 42.64 0.26 1.82 0.41 0.26 0.33
Capacity Utilization 10.02 0.68 0.57 0.89 0.99 0.71

8 Conclusions and Extensions

In this paper, we have developed a model where demand shocks generate procyclical productiv-

ity via a cyclical use of production capacity that implies inconveniences for shoppers. We have

developed the theory using search frictions under competitive search protocols that imply opti-

mality (and hence existence and uniqueness) of equilibrium. We have shown how demand shocks

can replicate the movements of the Solow residual that the RBC literature typically identifies with

technology shocks. We show that correlated shocks to the demand of consumption and investment

replicate the properties of the standard real business cycle models in terms of the comovements

of macroeconomic variables. If anything, our model performs marginally better. When allowing in

our model economy for the coexistence of demand shocks and technology shocks, a full Bayesian

estimation imputes essentially no role to technology shocks even in shaping the properties of the

Solow residual. In addition, our shopping economies have implications for other macroeconomic

32



variables (relative price of consumption and investment, the stock market, capacity utilization)

over which standard models are silent. Such implications are remarkably consistent with the data.

Our assessment of the findings is that our modeling structure provides an alternative to tech-

nology shocks as a source of fluctuations. We think that these findings can and should be naturally

applied to the other most popular lines of business cycle research (New Keynesian and Mortensen-

Pissarides type of models) to accommodate demand shocks as a substitute for technology shocks

as the main source of fluctuations. We also think that our findings may provide a rationale for

fiscal stimulus packages, a feature that is hard to rationalize in standard macro models. The re-

search agenda we think is clear and has two directions: to pose deep models of demand shocks:

financial shocks, shocks to the real exchange rate, wealth shocks, monetary policy, etc.; and to

accommodate mechanisms that substitute the frictionless labor market.
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APPENDIX

A Proofs

Proof of Proposition 1.

Proof. Substituting d = c/Ψd (D) into the period utility and differentiating u w.r.t. c , we get

du

dc
= uc +

∂u

∂d

∂d

∂c
= uc +

ud

Ψd(D)

The Euler equation can then be expressed as

uc +
ud

Ψd(D)
= p(θ)m.

Impose the representative agent conditions c = C = ADα and d = D, and use (9) to substitute

out the term p(θ)m. This gives one functional equation:

uc (C (θ), D(θ), θ) +
ud (C (θ), D(θ), θ)

Ψd (D(θ))
= (1− α) uc (C (θ), D(θ), θ) .

Rearranging this equation and using (11) yields the functional equation (12). The functional

equation (13) is derived from the equilibrium price equation (9) and the definition of m, where we

exploit the envelope theorem and (5) to express ∂v/∂s as

∂v (θ, s)

∂s
= uc (C (θ) , D(θ), θ) +

ud (C (θ) , D(θ), θ)

Ψd [Q(θ)]
.

At the equilibrium, the agents’ budget constraint (6) is satisfied. Given (12)-(13), the first-order

conditions of (4) hold, which guarantees individual optimization.

Consider the planner problem maxC ,D {u(C , D, θ)} subject to the aggregate resource constraint

C = A Dα. It is straightforward to verify that the solution to equation (12) solves this planner

problem, which establishes efficiency.

Lemma 1. Ωc(θ, K , k) = Ωi(θ, K , k) implies ςc(θ, K , k) = ς i(θ, K , k).

Proof. From the firms’ first-order condition over k ′ (33), it is clear that both marginal return
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and marginal cost of capital are independent of the firms’ current choice over which goods to

produce and choice of labor for production. This implies that firms simply search for the markets

that give them the best current revenue. Thus, Ωc(θ, K , k) = Ωi(θ, K , k) implies ςc(θ, K , k) =

ς i(θ, K , k).

Lemma 2. All firms with k = K choose markets with the same output F = F c = F i and also

the same labor input for production.

Proof. Let’s define nc(K , θ) as the necessary labor for a consumption-producing firm with capital

k = K to produce output y c(θ, K ), namely, nc(K , θ) = n(K , y c(θ, K )). Similarly, we define

ni(K , θ) = n(K , y i(θ, K )) for investment-producing labor. In equilibrium, firms are indifferent

between producing consumption goods or investment goods, i.e., ςc = ς i . By definition, ςc =

Pc(θ, K )A[Qc(θ, K )]−αy c(θ, K ) − w(θ, K )nc(θ, K ). We can further rewrite ςc using equilibrium

conditions from the competitive search w(θ,K)
Pc (θ,K)

= 1
1−αA(Qc)−αfn[K , nc(θ, K )],

ςc = Pc(θ, K )A[Qc(θ, K )]−αy c(θ, K )− w(θ, K )nc(θ, K )

= w(θ, K )

[
Pc(θ, K )A[Qc(θ, K )]−αy c(θ, K )

w(θ, K )
− nc(θ, K )

]
= w(θ, K )

[
(1− α)

A[Qc(θ, K )]−αy c(θ, K )

A[Qc(θ, K )]−αfn[K , nc(θ, K )]
− nc(θ, K )

]
= w(θ, K )

[
(1− α)

f [K , nc(θ, K )]

fn[K , nc(θ, K )]
− nc(θ, K )

]
.

Similarly, we have

ς i = w(θ, K )

[
(1− α)

f [K , nc(θ, K )]

fn[K , nc(θ, K )]
− nc(θ, K )

]
.

Equalizing ς i and ςc implies that nc(θ, K ) = ni(θ, K ) under the assumption that the production

function is concave and strictly increasing in labor. Thus, the labor inputs are the same for the

firms with the same capital k = K . Their outputs must be the same too.

Lemma 3. The expected revenue per unit of output is the same in both sectors:

Pc(θ, K )
Ψd [Qc(θ, K )]

Qc(θ, K )
= P i(θ, K )

Ψd [Q i(θ, K )]

Q i(θ, K )
. (A-1)
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Proof. Under Lemma 2, firms with the same k = K have the same labor input for production, the

same output, and the same ς. This implies equation (A-1).

Lemma 4. Firms with the same k choose the same k ′ as future capital stock.

Proof. According to Lemma 2, firms with the same k choose the same labor input. For a firm that

considers producing consumption goods tomorrow, the first-order condition over k ′ is given by

E

{[
−w(θ′, K ′)nk(k ′, y(θ′, K ′)) + (1− δ)

(
w(θ′, K ′)

ζ Ψd [Q i(θ′, K ′)] f [(θ′, K ′)]
+ P i(θ′, K ′)

)]
Π(θ, θ′, K )

∣∣∣∣ θ}
=

w(θ, K )

ζ Ψd [Q i(θ, K )] f [(θ, K )]
+ P i(θ, K ).

For a firm that considers producing investment goods tomorrow, the first-order condition over k ′

is

E

{[
−w(θ′, K ′)nk(k ′, y(θ′, K ′)) + (1− δ)

(
w(θ′, K ′)

ζ Ψd [Q i(θ′, K ′)] f [K ′i(θ′, K ′)]
+ P i(θ′, K ′)

)]
Π(θ, θ′, K )

∣∣∣∣ θ}
=

w(θ, K )

ζ Ψd [Q i(θ, K )] f [(θ, K )]
+ P i(θ, K ). (A-2)

With Lemma 2, it is easy to see that the first-order conditions for k ′ of future consumption-

producing firms and investment-producing firms are identical. Thus, all the firms with the same

current capital choose the same future capital.

Lemma 5. The investment price is proportional to the ratio of the wage and the amount of

shopping that a worker can carry out:

w(θ, K )

ζΨd [Q i(θ, K )]f (K , Ny (θ, K ))
=

α

1− α
P i(θ, K ).
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Proof. From investment-producing firms’ first-order condition over k ′, we have

E {Ω(θ′, K ′, k ′) Π(θ, θ′, K )| θ} =
w(θ, K )

ζ Ψd [Q i(θ, K )] f [K , N i(θ, K )]
+ P i(θ, K ).

The equilibrium search in the investment goods market implies

P i(θ, K ) = (1− α) E {Ω(θ′, K ′, k ′) Π(θ, θ′, K )| θ} .

Combining the above two equations proves the lemma.

Lemma 6. The Euler equation of a firm equates the price of investment with the value of

capital tomorrow:

E

{
P i(θ′, K ′)

[
Ψd(Q i)

Q i
fk(K ′, Ny (θ′, K ′)) + (1− δ)

]
Π(θ, θ′, K )

∣∣∣∣ θ} = P i(θ, K ).

Proof. Recall that investment-producing firms choose future capital stock evaluated at K ′ ac-

cording to equation (A-2). According to Lemma 5, we can replace w(θ,K)
ζΨd [Q i (θ,K)]f (K ,Ny (θ,K))

with
α

1−αP i(θ, K ). The same is true for the future variables. The Euler becomes

E

{
−w(θ′, K ′)nk(K ′, y(θ′, K ′)) + (1− δ)P i(θ′, K ′)

1− α
Π(θ, θ′, K )

∣∣∣∣ θ} =
P i(θ, K )

1− α
.

Multiplying 1− α on both sides and reorganizing the equation, we have

E

{
P i(θ′, K ′)Π(θ, θ′, K )

[
−(1− α)

w(θ′, K ′)nk(K ′, y(θ′, K ′))

P i(θ′, K ′)
+ (1− δ)

]∣∣∣∣ θ} = P i(θ, K ).

Substituting w(θ′, K ′)/P i(θ′, K ′) with 1
1−α

Ψd (Q i )
Q i fn(K ′, Ny (θ′, K ′)) from the competitive search

problem, we can rewrite the Euler as

E

{
P i(θ′, K ′)Π(θ, θ′, K )

[
−Ψd(Q i)

Q i
fn(K ′, Ny (θ′, K ′))nk(K ′, y(θ′, K ′)) + (1− δ)

]∣∣∣∣ θ} = P i(θ, K ).

According to the implicit function theorem, nk ≡ dn
dk

= − fk
fn

. Thus, fk = −fnnk . Substituting
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−fnnk with fk in the Euler equation, we have

E

{
P i(θ′, K ′)

[
Ψd(Q i)

Q i
fk(K ′, Ny (θ′, K ′)) + (1− δ)

]
Π(θ, θ′, K )

∣∣∣∣ θ} = P i(θ, K ).

A.1 Proof of Proposition 2.

Proof. Let λ be the multiplier for condition (50) and µ be the multiplier for condition (51). The

first-order conditions are given by

uC = λ (over C )

uD = λαA(Dc)α−1(T )1−αf (over Dc)
uN

ζ
= µαA(D i)α−1(1− T )1−αf (over D i)

uN = λA(Dc)α(T )1−αfn + µA(D i)α(1− T )1−αfn (over Ny )

λ(1− α)A(Dc)α(T )−α = µ(1− α)A(D i)α(1− T )−α (over T )

µ = βE
{
λ′A′(Dc′)α(T ′)1−αfk ′ + µ′A′(D i ′)α(1− T ′)1−αfk ′ + µ′(1− δ)|θ

}
After simplifying, the efficient allocation {T , Dc , D i , Ny , C , K ′} can be characterized by the

following six equations:

uN

uC
= A(Dc)α(T )−αfn (A-3)

uD

uC
= αA(Dc)α−1(T )1−αf (A-4)

fn =
αζ(1− T )f

D i
(A-5)

uC
(Dc)α(T )−α

(D i)α(1− T )−α
= βE

{
uc ′

(Dc′)α(T ′)−α

(D i ′)α(1− T ′)−α
[
A′(D i ′)α(1− T ′)1−αfk ′ + (1− δ)

]}
(A-6)

C ≤ A(Dc)α(T )1−αf (K , Ny ) (A-7)

K ′ − (1− δ)K ≤ A(D i)α(1− T )1−αf (K , Ny ) (A-8)
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Equation (A-3) implies that the marginal rate of substitution between consumption and leisure

equals the marginal product of labor. Equation (A-4) implies that the marginal rate of substi-

tution between consumption and shopping effort equals the marginal product of shopping in the

consumption-goods-producing sector. Equation (A-5) implies that the marginal products of pro-

duction labor and search labor are the same. Equation (A-6) is the Euler equation for capital.

Equations (A-7) and (A-8) are the resource constraints.

To show that the competitive search equilibrium is efficient, we must prove that the equilibrium

allocation satisfies equations (A-3)-(A-8). Clearly, the resource constraints (A-7)-(A-8) are satis-

fied. In equilibrium, wage is equal to both the marginal product of labor of consumer-producing

firms and the marginal rate of substitution between leisure and consumption of households, i.e.,

w

Pc
=

1

1− α
A(Dc)α(T )−αfn,

w

Pc
=

uN

(1− α)uC
.

Combining these two equations implies that the equilibrium allocation satisfies equation (A-3).

Equation (A-4) is also satisfied through the following two conditions in equilibrium:

uc −
uD

A(Dc)α−1(T )1−αf
= Pc M ,

Pc = (1− α)
uc

M
,

where M is the expected discounted marginal utility of an additional unit of savings. The first

equation is from consumers’ optimal choice between consumption and shopping effort. The second

equation comes from optimal consumer search.

Similarly, combining consumers’ first-order condition over labor with the firms’ and consumer’s

search problems, we can obtain equation (A-5).

Lastly, we show that the Euler equation for capital, equation (A-6), is satisfied. According to

Lemma 6 in the paper,

E

{
Π(θ, θ′, K )P i ′

[
Ψd(Q i ′)

Q i ′ fk ′ + (1− δ)

]}
= P i . (A-9)

6



Substituting the definition for Π and Ψd(Q i)/Q i = A(D i)α(1−T )−α into equation (A-9), we have

βE

{
PcuC ′

Pc′uC
P i ′ [A′(D i ′)α(1− T ′)−αfk ′ + (1− δ)

]}
= P i .

Reorganizing the above equation, we have

βE

{
P i ′

Pc′uC ′
[
A′(D i ′)α(1− T ′)−αfk ′ + (1− δ)

]}
=

P i

Pc
uc .

Recall that

P i

Pc
=

(Dc)α(T )−α

(D i)α(1− T )−α
.

Thus, the Euler equation in the competitive search equilibrium can be written as

βE

{
uC ′

(Dc′)α(T ′)−α

(D i ′)α(1− T ′)−α
[
A′(D i ′)α(1− T ′)−αfk ′ + (1− δ)

]}
=

(Dc)α(T )−α

(D i)α(1− T )−α
uc ,

which is exactly the Euler equation from the social planner’s problem, equation (A-6).

B Main shocks plus shocks to the MRS in the shopping and RBC

economies

As a further comparison of the shopping and the RBC economy’s performance, we estimate versions

of both economies where, in addition to the main shock that moves the Solow residual (both a

shock to the demand of consumption and investment in the shopping economy and a shock to

TFP in the RBC economy), we pose a shock to the MRS that moves the willingness to work. We

assume that both the main shocks and the MRS shocks are uncorrelated and, as in Section 5.3,

we estimate the relative size of the demand shocks to consumption and investment (they are

perfectly correlated). The estimations for both models use Bayesian methods over the Solow

residual and output data. We assume that the autocorrelations follow Beta distributions and that

innovations of the shocks follow inverse Gamma distributions. The priors, posteriors, and the

estimated parameters are reported in Table A-1. The log likelihood for the shopping model is

1492, significantly higher than that in the standard RBC model of 1484. The 90% intervals are

tight, indicating significant estimated parameters. All shocks are highly persistent. The volatility
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of the demand shocks is much larger than that of the technology shock of the RBC model, and

the volatility and persistence of the shock to the MRS are a bit lower. Table A-1 also reports the

variance decomposition over the major business cycle variables. We see that the demand shocks

play a more central role in the shopping model than the TFP shock in the RBC model: the variance

of the MRS shock is lower in the shopping model, and the contribution of the demand shock to the

variance of the endogenous variables is larger. The last panel of Table A-1 presents the business

cycle statistics for the major variables, for both the shopping model and the standard RBC model.

They are very similar, with the volatility of hours being slightly higher in the RBC model.

C Computational Details

Data We used seven raw data series in the paper: GDP, consumption, investment, labor, ca-

pacity utilization, stock market price, and relative price of investment. The data series of GDP,

consumption, investment, and labor are from the Bureau of Economic Analysis (BEA) for the

period of 1948:Q1-2009:Q4. The data series of capacity utilization is the Industrial Production

and Capacity Utilization published by the Federal Reserve Board. The series is from 1967:Q1 to

2009Q4 and is based on estimates of capacity utilization for industries in manufacturing, mining,

and electric and gas utilities. For a given industry, the capacity utilization rate is equal to an

output index (seasonally adjusted) divided by a capacity index. The raw data of S&P 500 stock

market price is a monthly data series compiled by Robert Shiller based on the daily price of S&P

500 stock market price, available at http://www.econ.yale.edu/∼shiller/data.htm. Our quarterly

data of stock price is the monthly average of the raw data in each quarter. Lastly, the relative price

of investment is from 1948Q1 to 2009Q4, constructed in Ŕıos-Rull, Schorfheide, Fuentes-Albero,

Kryshko, and Santaeulalia-Llopis (2009). We detrend all data series with a Hodrick-Prescott filter.

Computation. The model is estimated using Dynare, which adopts a Metropolis-Hastings algo-

rithm for the Bayesian estimation. Using Dynare, we exploited twelve endogenous variables
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Table A-1: Comparison of Shopping Model and RBC Model: Main Shocks Plus Shocks to the
MRS

Priors and Posteriors for the Shock Parameters

Shopping model (likelihood = 1499)
Parameter Density Para(1) Para(2) Mean 90% Intv.
ρd Beta 0.95 0.05 0.926 [0.900, 0.952]
σd Inverse Gamma 0.20 0.20 0.061 [0.053, 0.068]
σζ/σd Normal 0.50 0.50 1.861 [1.131, 2.320]
ρn Beta 0.95 0.05 0.982 [0.969, 0.999]
σn Inverse Gamma 0.06 0.20 0.019 [0.017, 0.020]

RBC model (likelihood = 1484)
Parameter Density Para(1) Para(2) Mean 90% Intv.
ρz Beta 0.93 0.05 0.952 [0.925, 0.981]
σz Inverse Gamma 0.006 0.20 0.006 [0.0055, 0.0065]
ρn Beta 0.94 0.05 0.993 [0.981,1.000]
σn Inverse Gamma 0.02 0.20 0.021 [0.018, 0.023]

Variance Decomposition (%)
Shopping model RBC model
θd , θζ θn z θn

Y 74.62 25.38 63.13 36.87
Solow 98.47 1.53 100.00 0.00
N 6.17 93.83 3.08 96.92
C 44.36 55.64 19.71 80.29
I 89.19 10.81 86.02 13.98

Business Cycle Statistics
Shopping model RBC model

Variance Cor w Y Variance Cor w Y
Y 1.23 1.00 1.27 1.00
Solow 2.45 0.78 4.19 0.79
N 0.94 0.63 1.09 0.73
C 0.26 0.82 0.31 0.88
I 16.34 0.96 14.58 0.96
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{C , I , K ′, Ny N , T , Dc , D i , Pc , P i , R , w} with the following twelve equations:

P i C−σ

Pc
= βE

{
P i ′ (C ′)−σ

Pc′

[
γk

Pc′C ′

P i ′K ′T ′
+ (1− δ)

]}
,

C−σ

Pc
= βE

{
(1 + R ′)(C ′)−σ

Pc′

}
,

(1− α)
w

Pc
= χθnN

1
ν Cσ,

(1− α)
w

Pc
= γn

C

NyT
,

θdDc = αC 1−σ,

Pc(Dc)αT−α = P i(D i)α(1− T )−α,

P i =
1− α
α

wD i

ζI
,

N = Ny + D i/ζ,

C = A(Dc)α(T )1−αzK γk (Ny )γn ,

I = A(D i)α(1− T )1−αzK γk (Ny )γn ,

I = K ′ − (1− δ)K ,

R = PcC − wN .
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D Additional tables

Table A-2 presents the calibration for the standard RBC model. The intertemporal elasticity of

substitution σ is set to 2, and the real rate of return is 4%. We choose a Frisch elasticity of 0.72.

We calibrate the depreciation rate to match the observed consumption to output ratio of 0.8. The

labor share is 0.67 in the data, which implies γn = 0.67. The disutility parameter χ is calibrated

to match the average time spent at working of 30%. We normalize the mean of the productivity

shock such that aggregate output is 1 at steady state.

Table A-2: Calibration for the Standard RBC Model

Targets Value Parameter Value
Risk aversion 2 σ 2
Real interest rate 4% β 0.99
Frisch elasticity 0.72 1

ν
0.72

Fraction of time spent working 30% χ 18.49
Consumption Share of Output 0.80 δ 0.06
Labor Share of income 0.67 γn 0.67
Units of output 1 z 0.94
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Table A-3: Perfectly Correlated Demand Shocks in the Shopping Economy versus

TFP Shocks in an RBC Economy with a Frisch Elasticity of 1.1

Priors and Posteriors for the Shock Parameters

Shopping model with (θd , ζ), likelihood = 733.43
Parameter Density Para(1) Para(2) Mean 90% Intv.
ρd Beta 0.95 0.05 0.979 [0.962, 0.995]
σd Inv. Gamma 0.05 0.20 0.049 [0.036, 0.061]
σζ/σd Normal 2.60 0.90 2.860 [1.414, 4.328]

RBC model with z , likelihood = 734.8
Parameter Density Para(1) Para(2) Mean 90% Intv.
ρz Beta 0.95 0.05 0.948 [0.916,0.984]
σz Inv. Gamma 0.006 0.20 0.006 [0.0055, 0.0065]

Main Business Cycle Statistics
Variance Correlation with Y

Data (θd , ζ) RBC Data (θd , ζ) RBC

Solow 3.19 3.51 3.59 0.43 0.98 1.00
Y 2.38 0.93 0.92 1.00 1.00 1.00
N 2.50 0.10 0.08 0.87 0.61 0.96
C 1.55 0.09 0.05 0.87 0.73 0.95
I 34.15 13.46 15.40 0.92 0.98 1.00
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Table A-4: Sensitivity Analysis over the Correlation between the

Consumption and Investment Demand Shocks

Correlation
−0.2 −0.1 0 0.1

Estimates
Likelihood 2244.02 2244.87 2244.48 2244.52
ρd 0.958 0.956 0.954 0.958
σd 0.076 0.074 0.072 0.067
ρn 0.997 0.997 0.996 0.996
σn 0.022 0.022 0.022 0.022
ρζ 0.958 0.956 0.954 0.954
σζ 0.133 0.131 0.126 0.126
ρz 0.924 0.918 0.886 0.888
σz 0.001 0.001 0.002 0.004

Variance decomposition for output
θd 36.63 32.30 27.77 15.06
ζ 28.76 30.75 31.97 25.97
z 0.65 0.74 2.18 22.89
θn 33.96 36.21 38.08 36.08

Variance decomposition for the Solow residual
θd 83.65 82.43 79.89 52.23
ζ 13.44 14.35 14.82 12.60
z 1.07 1.23 3.18 33.18
θn 1.84 1.99 2.10 1.99
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