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ABSTRACT

We designed a low-cost arm-mounted wearable 3D input device
that uses inertial measurement units. The device is an alternative
to tracking systems requiring fixed frames of reference. The
device employs two inertial sensors mounted on the arm to derive
a 3D cursor position through natural arm movement. We also
explore three methods of selection, one entirely software based
(dwell, holding the cursor in the target), one using a twist gesture,
and one using a button. To address the paucity of research
reporting human performance metrics, we quantify the
performance of the device through a point-select experiment.
Results indicate that throughput was 1.05 to 1.12 bits/s. In
contrast, similar studies using conventional 3D trackers (e.g.,
NaturalPoint OptiTrack) report throughput ranging from 2.5 to 3.5
bits/s. However, error rates for the wearable input device were
lower than with the OptiTrack system at 6.8% vs. 13.5%,
respectively. A detailed analysis of system performance issues is
provided along with design suggestions for future gyro-based
input devices.

Keywords: Point selection. Gyro controller. Inertial measurement
units. 3D selection interface. Fitts' law.

Index Terms: H.5.2.1 [User Interfaces]: Human-centered
computing—User studies; H.5.2.1 [User Interfaces]: Human-
centered computing—Pointing devices

1 INTRODUCTION

With the advent of a new generation of commodity virtual reality
(VR) head-mounted displays, such as the Oculus Riff, Samsung
Gear VR, HTC Vive, and others, there is great potential for new
applications in 3D interaction. Never before has this technology
been so accessible to so many people. Yet interacting in 3D
remains challenging. One problem is the availability of input
devices.

While the mouse is ubiquitous in desktop computing, as yet, no
standard universally accepted input device exists for 3D user
interfaces. This is not for lack of trying on the part of researchers
and hardware manufacturers, as numerous 3D input devices have
emerged over the years. We group these (roughly) into in-air
tracker-based devices and desktop devices. Tracker-based devices
employ some form of tracking technology, e.g., electromagnetic,
optical, or mechanical. In general, they are prohibitively
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expensive for end users, although recent entries like the Razer
Hydra' challenge this notion.

Common tracker devices include electromagnetic sensors such
as the Polhemus Patriot®> and the NDI Aurora’® (descended from
the well-known Ascension family of trackers), optical trackers
like the NaturalPoint OptiTrack* family of trackers, or VICON’s
optical trackers®. A major limitation of trackers (aside from cost)
is the tendency to offer only a fixed frame of reference — tracking
space is limited. Most also suffer from interference effects,
notably occlusion with optical technologies.

Desktop devices such as the 3DConnexion SpaceMouse®, and
the Logitech AirMouse’ leverage user familiarity with devices like
a mouse. Despite employing mechanical tracking technology,
devices like the Geomagic Touch® (formerly the Phantom Omni)
and the Novint Falcon® — both haptic devices — are also desktop
devices, or 3D mouse analogs. These devices ultimately yield a
single 3D cursor position, with the addition of force feedback.
While in some cases they offer superior performance to 3D
trackers [4,48], they still require a supporting surface to operate
on, much like a mouse. Desktop devices are thus unsuitable for
VR scenarios where the user is standing or walking. Head-
mounted displays also occlude the device; thus, the user often
cannot see the device. A comprehensive overview of 3D input
devices is provided elsewhere [32].

Figure 1: The wearable input device used in our study.
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9 http://www.novint.com/index.pp/novintfalcon



http://sixense.com/razerhydra
http://polhemus.com/motion-tracking/all-trackers/patriot/
http://www.ndigital.com/msci/products/aurora/
http://optitrack.com/
https://www.vicon.com/
http://www.3dconnexion.com/products/spacemouse.html
http://support.logitech.com/en_za/product/mx-air-rechargeable-cordless-air-mouse
http://support.logitech.com/en_za/product/mx-air-rechargeable-cordless-air-mouse
http://www.geomagic.com/en/products/phantom-omni/overview
http://www.novint.com/index.pp/novintfalcon

Table 1. An overview of research on inertial measurement units (IMUs)

1st Author [ref] User Task Summary Device Modality
Study

Jain [16] yes 2D pointing ~ Comparison of distal pointing Phone Hand held
techniques

Rico [39] yes 1D Fitts Body based gesturing Head, foot, wrist Wearable

sensors

Lazewatsky [20] yes 2D pointing ~ Human robot interaction Google glass Wearable

Raya [38] yes 2D Fitts Mouse for children with Forehead sensor Wearable
cognitive physical impairments

Hincapie-Ramos yes 2D pointing  Raycasting for self-contained GyroWand Handheld

[14] AR HMD

Prayudi [37] no N/A Design of an arm motion - -
capture system

Oakley [31] yes 2D Fitts Pointing with hands, wrist, Handheld, wrist Wearable,
fingers comparison handheld

Yun [53] no N/A Design, Kalman filter - -

Bachmann [3] no N/A Design; MARG sensor - -

Burstyn [7] yes 1D Fitts Pose dependent display device Wrist sensor Wearable

Jung [18] no N/A Motion capture system design Full body Wearable
based on smart shoes

Yun [54] no N/A Position tracking, gait analysis ~ Foot sensor Wearable

Pietroszek [36] [35] yes 3D pointing  Raycasting, SmartCasting Phone Handheld

Calvo [8] yes 2D Fitts Remote finger based pointing Ring Wearable

Teather [45] yes 2D Fitts Tilt position vs velocity control ~ Tablet Handheld

Skogstad [40] no N/A Comparison between optical Xsens, OptiTrack ~ Wearable, camera
and inertial tracking

Solberg [41] no N/A Comparison between optical Qualisys, Axivity =~ Wearable, camera

and inertial tracking

We note that inertial measurement units (IMUs) — input devices
based on accelerometers and gyros — can overcome the limitations
of both tracker-based and desktop-based devices. They are
inexpensive, require little setup, operate without supporting
surfaces, and theoretically support unlimited space sizes if the
user carries the device with them and relative motion is all that is
required. If mounted on the body (Figure 1 depicts the setup used
in our study), occlusion is not a problem either.

However, the input potential of such devices has been
underexplored in 3D contexts compared to the mouse and 3D
trackers [4,48]. Although there is extensive research in the design
of inertial-based human tracking devices, there are comparatively
few empirical studies on their performance in fundamental tasks
like point-and-select. To our knowledge, no previous study has
evaluated 3D point-select performance of wearable IMU-based
input devices.

Our input device uses a combination of six-degree-of-freedom
gyro and accelerometer sensors. Each sensor reads its orientation
and any acceleration experienced in three-dimensional space. The
sensors are worn on the forearm and upper arm. Rotations in three
dimensions about the shoulder and elbow are registered. The
system is self-contained and unobtrusive. However, the device
itself provides no means to indicate selection. Thus, we present a
study evaluating the effectiveness of the device combined with
three methods of selection.

Our contribution is threefold:

1) We present the design and implementation of a low-cost

wearable input device for 3D point-select tasks.

2) We evaluate and quantify performance of the device using

a 3D Fitts’ law task.

3) We provide a detailed analysis of performance issues and

design considerations for future reference.
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To our knowledge, our study is the first to study performance of
wearable IMU-based input devices in the context of fundamental
point-select tasks in a 3D environment. We employ a 3D
extension of a standardized ISO methodology for evaluating
pointing devices [15,43]. The principle advantage of this approach
is the consistency in Fitts’ throughput between studies following
the ISO standard, and this enables comparisons among studies
[42]. Throughput also incorporates speed and accuracy into a
single metric, and thus characterizes pointing performance better
than metrics like speed or accuracy alone (between which there is
a clear tradeoff) [26]. It is our hope that the results reported herein
will provide a global sense of the relative performance of IMU-
based devices in 3D environments.

2 RELATED WORK

2.1 Inertial Motion Tracking

There has been significant interest in inertial measurement devices
by researchers in the design of tracking systems and in their
implementation for user interfaces. Table 1 presents an overview
of previous work in several areas of interest. Many of the studies
use IMUs in smartphone or similar devices [16,36,45], or
wearable devices [7,9,20,38,39]. Others look at the use of IMUs
for full body motion capture [18]. As seen in the table, some
studies evaluate performance in 2D Fitts’ law contexts. While this
invites comparisons with other 2D studies (for reasons described
in Section 2.4), these results do not translate directly to 3D
contexts [49]. We extend this body of research by providing (to
our knowledge) the first experiment on 3D point-select tasks in a
Fitts’ law context using an IMU-based wearable device.



2.2 3D Selection

There is a large body of work on object selection techniques in
virtual 3D environments [2,13,17]. Most selection techniques can
be roughly grouped into ray-based or virtual-hand. Our gyro-
based device falls under the latter category, as it supports 1:1
control of a 3D depth cursor through arm motions, rather than ray-
based remote pointing. However, unlike most virtual hand
implementations, our cursor is decoupled (i.e., offset) from the
physical position of the hand. This occurs because we use a
desktop stereo monitor with the cursor “inside” the 3D scene;
hence, the screen prevents physically touching objects.
Implementations using a head-mounted display could instead
couple the cursor position to the physical hand, but we note that
previous evidence suggests little performance difference [44].

Liu et al. [21] compared aimed movements in the real world
with movements in virtual reality. They observed significant
temporal differences in both the ballistic and control phases.
Movements in virtual reality were less efficient and on average
twice as long compared to real-world movements. The correction
phase in virtual reality was substantially longer, taking on average
6x longer than real-world corrections. Improvements in the
correction phase in virtual reality were more efficient, but that
was attributed to the inherent need for less correction in the real
world. This speaks to a need for highly precise input devices and
effective visual feedback, since the correction phase is guided by
visual feedback.

Teather and Stuerzlinger conducted several studies
[48,47,49,50] on 3D selection in a Fitts’ law context, first
extending and validating the methodology for use in 3D contexts
[48]. They applied their framework in studying the influence of
visual aids [50], and pointing at screen-space projections of
targets [47]. Other researchers have employed the methodology in
studying selection in HMD contexts [22] and touching stereo
displays [6,11]. Based on these results, we modeled our task after
previous work [47], which improves comparability with past
results. This provides a better idea of the relative performance of
IMU-based input compared to the mouse and 3D trackers.

2.3 Jitter and Latency

Latency is known to impact the effectiveness of pointing
interfaces [27,34]. Jitter, when significantly present, is also known
to impact effectiveness [46]. We expect a similar impact on
performance with our device (which exhibits noticeably higher
latency than a mouse); hence, we discuss these effects briefly
here. The effect of lag on human performance was investigated by
MacKenzie and Ware [27]. It was observed that at the highest lag
tested (225 ms) movement times and error rates increased by 64%
and 214%, respectively, while throughput decreased by 46.5%.
The effect was modeled as a multiplicative factor added to Fitts’
Index of Difficulty (/D). Lag and frame rate in VR displays have
also been studied previously [52], confirming the multiplicative
factor. It was observed that low frame rates degrade performance
and that error rates and movement times increase in depth
movements as opposed to movements orthogonal to the axis of
viewing.

In another study, latency and spatial jitter on object movement
were examined using a NaturalPoint OptiTrack compared to a
baseline optical mouse [29]. End-to-end latencies were 35 ms for
the mouse and 70 ms for the OptiTrack. Latency had a much
stronger effect than jitter. Large spikes in jitter significantly
impacted 3D performance, particularly when jitter levels are
approximately half the target size or greater [41].
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2.4 Fitts’ Law and Throughput

Selection tasks that involve rapid-aimed movements to a target are
well-modeled by Fitts’ law. Our experiment employs a 3D
interpretation of the Fitts’ law task described in the ISO 9241-9
standard [15,43]. We now describe the evaluation protocol and
calculation of the dependent variable called throughput. The ISO
standard’s reciprocal targeting task is depicted in Figure 2. The
task ensures consistent difficulty within a circle of targets, as
target distance and size are the same within a circle. The task can
be further presented at varying depths for 3D pointing [48].

)
@@
©

Figure 2: Two-dimensional Fitts’ law task in ISO 9241-9.

The primary dependent variable of interest is throughput
[23,24], previously known as Fitts’ index of performance [12].
Throughput incorporates selection speed and accuracy into a
single metric through a post-experiment correction to the error
rate (see below) and has been shown to compensate for the speed-
accuracy trade-off [26]. Throughput (7P, in bits per second) is
computed as the ratio of the index of difficulty (/D, in bits) and
the movement time (M7, in seconds) computed over a sequence of
trials (Eq. 1):

TP = =
MT

()
ID is calculated using movement distance, 4 (for amplitude),
and target width, /. The Shannon formulation of /D is given as:

ID = log, (5 +1) )

The ISO 9241-9 standard specifies calculating throughput using
ID. rather than /D. This better accounts for the variability in target
selections [23]. ID. is calculated as:

ID, = log, ( 3)

A, )
4.133XSD,

The A. term is the effective distance a participant actually
moved between targets, i.e., the average of the actual movement
distances over a sequence of trials for a particular 4-W condition.
SDx is the standard deviation of selection coordinates projected
onto the task-axis over a sequence of trials. Multiplying by 4.133
yields the so-called effective width (W.), and adjusts the
experimental error rate to a nominal value of 4%. This effectively
normalizes error rates and strengthens comparisons of results
between studies. Figure 3 depicts the calculation of 4. and We.
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Figure 3: The effective index of difficulty (/De) is calculated using
the effective distance or amplitude (Ae) and the effective width of
the target (We).

Fitts’ law has been extended to two dimensions (see Figure 2)
[25,29] and three dimensions [10,30]. In the 3D case, a direction
parameter is included as a practical extension for common 2D
tasks on a computer display [30]. We note that adding extra
parameters in a regression analysis inherently improves the model
fit for a given dataset [33]. Care must be taken to ensure that
extensions to the model generalize to other results. The principle
advantage of the approach proposed by Teather and Stuerzlinger
[48] is that it “collapses” to a 2D task equivalent to mouse
pointing and allows comparisons with a large body of 2D
literature. It has also demonstrated consistent 3D pointing
performance [22,47,50]. Thus, by employing this methodology,
we not only ensure comparability of our results with other 3D
pointing literature, but also with 2D literature employing ISO
9241-9.

3 THEWEARABLE INPUT DEVICE

The IMU sensors were based on the Invensense MPU6050 chip
running on an 8 MHz Arduino F/O host microcontroller and
communicating over an 12C bus. The MPU6050 chip was selected
due to its many features including run-time calibration firmware,
the ability to output quaternions, and sensor fusion. It integrates a
three-axis accelerometer and a three-axis gyroscope. The chip
utilizes these MEMS sensors to help compensate for both short
term jitter and long term drift and can provide gravity
compensation in its measurements. The MPU6050 was observed
to compensate for drift when held stationary, likely a property of
Invensense’s proprietary MotionFusion algorithms. After device
initialization — a period of several seconds — drift in the yaw axis
was observed to zero out. Thus, upon device initialization we
enforced a 10-second period of motionlessness for output
stabilization and drift compensation.

The device must also be initialized in a specific orientation with
regards to the gravity vector, which is required by Invensense’s
proprietary run-time calibration function. Initialization in other
orientations yielded fluctuations without converging to a solution.
Throughout the trials in our user study, we observed errors when
returning to a known reference position. We compensated by
measuring the quaternion offset and applying this as a correction
to subsequent movements. This was required because the
MPUG6050 does not utilize a magnetometer, thus drift around the
yaw axis was significant. The MPU6050 refresh rate was set at 25
samples per second, although higher rates are theoretically
possible. The FIO modules communicated wirelessly with the
host computer through DigiKey Xbee radios transmitting in the
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900 MHz and 2.4 GHz bands at 57600 bits/sec. The Xbee
receivers connected to the host computer’s USB 2.0 and 3.0 ports.

Precomputed quaternion orientations provided by the sensors
were used to calculate the 3D cursor position. We used the public
source ToxicLibs Quaternion class for these operations and
applied the quaternion rotations to a wireframe model that
included an upper arm segment, a forearm segment, and shoulder
and elbow joints. Thus, our implementation approximates a virtual
hand, or, more accurately, behaves as a 3D cursor. With two
sensors, measuring both shoulder and elbow rotation, the wearer
can reach almost any point in the volume of a hemisphere with its
base anchored at and in front of the shoulder. The upper arm
segment and the forearm segments were represented by the
vectors V1 (Eq. 4) and V2 (Eq. 5) respectively and were formed
thus:

V1 = [0, upper arm length, 0] 4)

V2 =0, forearm length, 0] %)

The received quaternions were QS (a quaternion representing
rotation of the arm about the shoulder) and QE (a quaternion
representing rotation of the forearm about the elbow). We
calculated the position of the hand by rotation of V1 and V2 about
the shoulder and elbow respectively. The elbow position in 3D
space was calculated by quaternion rotation of our model’s upper
arm segment:

V1I'=QS * V1 * QS (6)

The hand position was then calculated by quaternion rotation of
our model’s forearm segment:

V2'=QE * V2 * QE! )
and calculated as V1'+ V2'. These coordinates were then scaled to
match the size of the virtual scene, which was 51 cm wide, 29 cm
tall, and 30cm deep (based on monitor dimensions). After
scaling, reaching the hand to a comfortable extent either left or
right (roughly orthogonal to the body) moved the cursor to the
corresponding side of the virtual scene. Based on pilot tests, we
additionally multiplied the coordinates by a gain factor of 1.5 in
the x and y directions, as cursor movement felt too slow. Because
in/out arm movement has the shortest range, we further applied a
3x gain factor to z-axis movements, allowing participants to
comfortably and quickly reach the deepest targets in our scene.
These gain factors could be investigated in future work, but were
deemed suitable for initial testing.

Overall, motion of our virtual arm in the screen was analogous
to motion of the physical arm in real space, with an offset applied.
Note that we did not draw the virtual wireframe arm in the
display; we only showed the final 3D cursor position. The upper
arm length and forearm length were given representative values
for the average dimensions of a human arm. Although our
implementation was designed for right-handed users, adaptation
for left-hand use is possible.

3.1

While accelerometer/gyroscopes are ubiquitous in modern
devices, they often lack convenient buttons. Reflecting this, our
input device does not include a button, and necessitates an
alternative method for selection. While one option is to add a
physical button, we also investigated alternative software-based
approaches: dwell and twist. For dwell selection, the cursor must

Selection Indication



enter a target volume and remain within that volume for a
prescribed time. Past work on similar dwell selection techniques
revealed that 350 to 600 ms felt neither too fast nor too slow [28],
so we chose a dwell time of 500 ms. Note that dwell imposes an
upper limit on performance, since it directly influences movement
time and hence throughput. It also eliminates the possibility of
“missing” a target, since all trials must end in selection (and hence
error rates are 0% with dwell selection).

The other selection method is “twist” (Figure 4) and requires
the user to twist their wrist, similar to motion described in other
studies [19]. To activate twist selection, the user moves the cursor
within the target volume, then supinates the wrist and forearm.
Based on pilot tests, we chose a threshold of 40° rotation
clockwise within 100 ms, necessitating a very deliberate twist
gesture by the user. This helps avoid accidental activation. Since
the twist gesture involves moving the lower arm, it may introduce
additional cursor motion due to sensor movement. This is the so-
called “Heisenberg Effect” [5]. To avoid this, we included a
“sticky” function. Without the sticky function, the twist motion
often moved the cursor outside the target volume, thus resulting in
an error for all but the largest of target sizes. With the sticky
function, cursor motion is suspended for 100 ms when the cursor
enters the target volume. If the participants hand is rotated in a
clockwise direction exceeding 40°, then a selection event is
registered at the end of the 100-ms interval and the trial ends. If
little or no twist is measured, then cursor motion tracking
resumes. Note that the twist method requires an additional hand-
mounted inertial sensor. The third sensor is seen mounted on the
hand in Figure 1 and Figure 4.

Figure 4: Extra IMU used for the twist selection method.

As a baseline condition, we included a button-select method
called “click”. For click selection, participants simply held an
ergonomic controller similar to a Wii Nunchuk and pressed the
button to select targets. This was intended to provide a “best-case”
performance scenario, using a reliable and low-latency button for
selection. The controller was held in the active hand rather than
the offhand to remove a potentially confounding variable.

For both the click and dwell selection methods, the sticky
function is unnecessary. The button-press action with the click
method introduces minimal motion and the Heisenberg effect was
not observed. The dwell method does not require the sticky
function since selection is only possible when the cursor is in the
target volume.

4 METHODOLOGY

We conducted an experiment to evaluate the effectiveness of the
wearable gyro-based input device in 3D point-select tasks. For
consistency with previous work, we used the software framework
from previous 3D selection studies conducted by Teather and
Stuerzlinger [47,48,49]. See Figure 5.
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Figure 5: Fitts’ law 3D task.
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Twelve participants (four female) were recruited from the local
university including undergraduate students, graduate students,
and alumni. Ages ranged from 19 to 40 (u = 25.8, 0 = 5.1 years).
Based on participants’ self-reporting, three had moderate
experience with 3D controllers, three had low experience, and six
had no experience. All participants had normal stereo acuity as
determined by testing on the 3D system. All were right-handed.

Participants

4.2 Apparatus

4.21

The wearable input device consisted of the three IMUs described
in Section 3. One sensor was mounted on each of the upper and
lower arms. The third device was mounted on the hand,
exclusively for the twist selection method (detailed in Section
3.1). Participants wore stereo 3D LCD shutter glasses (NVIDIA
3D Vision 2 Wireless Glasses) throughout the experiment. The
host computer included an AMD Athlon I X4 635 CPU running at
2.90 GHz with 4.00 GB RAM, a Microsoft 64 bit Windows 7
Enterprise SP1 operating system, and an NVIDIA GTX 560 TI
video card. The display monitor was a BenQ XL240T running at
120 Hz. The click selection method utilized an after-market clone
of the Nintendo Wii Nunchuk with the switch connected to a
digital input on one of the sensors (Figure 6). The controller was
held in the dominant hand as consistent with the dwell and twist
selection methods, thus avoiding a potential confound. The twist
selection method required a third inertial sensor worn on the hand
to detect rotation about the roll axis. No extra hardware was
needed for the dwell selection method.

Hardware

Figure 6: A participant using the click selection method.



4.2.2 Software

The scene depicted a 30 cm deep box. The width and height of the
box were 51 cm and 29 cm, respectively, matching the dimensions
of the LCD monitor. Target volumes were placed at three
different depths: screen depth (0 cm), 5 cm “into” the screen, and
10 cm into the screen. Each target volume was placed on a
support cylinder as a visual aid (Figure 5). The scene was
displayed in stereo 3D, providing participants with additional
depth information about the target positions. Head-tracking was
not used. A three-dimensional cursor shaped like a jack was used
as the selection tool.

The software automatically recorded and calculated movement
time, error rate, and throughput. Both the twist and dwell selection
methods were implemented in software.

4.2.3 Task and Target Parameters

The reciprocal tapping task required participants to select thirteen
targets arranged in a circle. The target to select was red (see
Figure 5) and turned blue upon cursor entry to provide user
feedback. As the task was 3D, the targets were spheres and
required 3D selection precision. The software to control the task
was provided by Teather and Stuerzlinger and modified from their
previous work [50].

There were three target amplitudes, 4 = 3.5 cm, 5.5 cm, and 7.5
cm, three target diameters, W = 0.5 cm, 1.0 cm, and 1.5 cm, and
three target depths, D = 0 cm (at screen depth), -5.0 cm, and -10.0
cm (behind the screen). Thus, there were 27 A-W-D combinations.
The presented /Ds ranged from 2.17 bits to 4.00 bits, as calculated
with Equation 2.

Each selection method was used for an entire session, with each
session consisting of the 27 A-W-D combinations organized in
sequences of 13 trials (individual target selections). Timing
started with the first selection in each sequence. Hence each
sequence consisted of 12 recorded trials. For each trial, the
movement time was recorded. An error was logged if selection
occurred with the cursor outside the target, except for the dwell
selection method, as noted in Section 3.1.

4.3 Procedure

Upon arrival and after providing informed consent, participants
were introduced to the experiment task using each of the three
selection methods. For each session, participants were seated in a
comfortable position away from the target surface with enough
room to move their arms. Each participant was given roughly two
to five minutes of practice trials with each selection method and to
assess stereo acuity. They were instructed to maximize both
movement speed and accuracy, emphasizing accuracy. After each
session with each selection method (consisting of 324 selection
trials), participants rated their level of physical comfort. At the
end of the study, participants completed a questionnaire with
ratings for mental effort, physical comfort, and ease of use for
each selection method.

4.31

The experiment used a within-subjects design with the following
independent variables and levels:

Design

Selection Method: Click, Dwell, Twist
A: 3.5cm, 5.5cm, 7.5 cm
w- 0.5cm, 1.0cm, 1.5 cm
D: 0 cm, -5 cm, -10 cm

Note that target depths are relative to the screen, hence -5 cm
indicates a target was 5 cm behind the screen surface. A Latin
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square was designed consisting of 3 selection methods and 3
target depths yielding 9 combinations. With 12 participants split
up into groups of three, the 4™ group repeated the sequence from
the 1% group. Target size and amplitude within each session were
randomly ordered (without replacement). The duration of the
experiment was roughly 1.5 hours per participant. In total, each
participant completed 3 selection methods x 3 amplitudes x 3
widths x 3 depths x 12 trials = 972 trials. Over twelve
participants, this yielded 11,664 recorded trials.

The dependent variables were movement time (ms), error rate
(% of missed targets), and throughput (bits/s).

5 RESULTS

Movement times for the three selection methods were in the 3 — 4
second range. See Figure 7. A Shapiro-Wilk test indicted that
movement time was normally distributed (w=0.987, p>.01).
One-way ANOVA indicated significant differences in movement
time between the selection methods (F211=3.83, p<.05).
However, Bonferroni-Dunn post-hoc tests at the o=.05 level
failed to detect pairwise differences. We speculate that dwell and
twist may be significantly different, as their movement times were
most different.

4500
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3500

500 -

Movement Time (ms)
\Q

N
i

Click Dwell
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Figure 7: Movement time (ms) by selection method. Error bars

show +1 SE.

Mean error rates for the click, dwell, and twist selection
methods are seen in Figure 8. Note that the error rate for dwell is
always 0% since each trial ends with the cursor inside the target
volume. A Shapiro-Wilk test indicated that error rate data were
not distributed normally (w= 0.855, p <.01), thus we followed
with a non-parametric Friedman test. Results indicate significant
differences in the mean error rate by selection method (> = 19.5,
p <.0005, df = 2). Post hoc pairwise tests using Conover’s F' at
the o = .05 level revealed significant differences between all three
selection methods.

Error Rate (%)
o B, N W b U1 O N 0 O
A\
N

Click Dwell Twist

Selection Method

Figure 8: Error rate (%) by selection method. Error bars show +1

SE.



Throughput was calculated as described in Section 2.4. The
mean throughputs for the click, dwell, and twist selection methods
were 1.12 bits/s, 1.08 bits/s, and 1.05 bits/s, respectively (Figure
9). A Shapiro-Wilk test indicated that the data were not
distributed normally (w = 0.875, p <.01), so we again used a non-
parametric Friedman test for analysis. The Friedman test revealed
no significant differences in throughput by selection method
(> =0.500, p > .05, df = 2).
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Figure 9: Throughput (bits/s) by selection method. Error bars show
+1 SE.

6 DiscussioN

6.1

The grand mean for throughput was roughly 1.08 bits/s. A few
previous studies have looked at similar “touch”-based 3D
interaction techniques. For example, Teather and Stuerzlinger [48]
report throughputs between 2.5 and 3.5 bits/s, depending on target
depth, and throughput around 3.8 — 4.0 bits/s in subsequent work
using a NaturalPoint OptiTrack tracker [47]. Movement times
ranged from roughly 1.0 s to 2.4 s while the movement times from
this experiment were roughly 3.0s. Bruder et al. [6] report
throughputs of 3 — 4 bits/s, depending on target depth, with a
direct touch 3D technique implemented with a WorldViz optical
tracker. Because these studies used the same experimental
methodology, we conclude that our device offered substantially
lower performance than these studies using optical trackers.

There were no significant differences in movement times or
throughputs between selection methods. Moving the cursor
between targets required the same motions consisting of a ballistic
phase and a corrective phase. However, we expected some
difference between the selection methods, since dwell required a
500-ms delay, twist used a 100-ms sticky interval, and click
required no timing interval. We note that dwell had the highest
overall movement time, as expected. However, we can only
speculate that this was significantly higher than twist, since our
statistical tests failed to detect significant differences. This
suggests that there are other factors more significant than the
dwell time. Latency is a candidate, discussed in detail below.

Error rates were significantly different between all three
selection methods. This is unsurprising as dwell always has a 0%
error rate. We suspect the better accuracy with the twist method is
due to the aforementioned “sticky” cursor feature. It is possible
that a sticky cursor feature could also benefit the click method.
However, the influence of the Heisenberg effect on click was
deemed minimal, since only one finger moves to activate the click
button. In contrast, movement of the whole hand as well as the
forearm is required with the twist method.

It is surprising that despite substantial differences in error rate,
and slight (potentially significant) differences in movement time,
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throughput was roughly the same across the three selection
methods. Given the low error rate of twist, and the fact that it had
the lowest movement time, one would expect throughput to be
highest with twist. As seen in Equation 3, throughput is calculated
using the standard deviation in the selection coordinates about the
targets. Since missing was impossible with dwell, this distribution
was small, and the average distance from target centre was
0.38 cm (well below the average target size of 0.50 cm). While
such accurate selections would yield a correspondingly higher
throughput (see Equation 3), the higher movement time also
contributed to reducing throughput for dwell. However, the twist
selection method did not offer such accurate selections due to the
“sticky” function. We note here the difference between error rate
(percentage of trials that missed) and error magnitude (i.e., the
range of the selections relative to target centre). While the sticky
function likely improved the twist error rate relative to click, it
also ensured that selection coordinates were only possible on or
near the surface of the target volumes since further motion is
suspended upon immediate entry. Hence error magnitude (which
directly influences throughput) was higher with twist than the
other selection methods. With twist, selection coordinates were,
on average, 0.49 cm from the target centre — on average, on or
near the surface of the targets. We believe that this higher error
magnitude is what yielded proportionally worse throughput scores
with twist.

6.2 Fatigue

In-air unsupported pointing is a physically demanding task. Over
time, it was observed that participants experienced increasing
levels of fatigue and both error rates and movement times
increased. Each block of trials consisted of 351 target selections.
Prior to running the study, pilot testing revealed that very few
participants could consecutively perform all 27 sequences (even
with only 9 trials per sequence). Fewer achieved acceptable error
rates which approached 50% in some sequences. The experiment
parameters were changed considering the excessive fatigue
participants experienced in the pilot study.

For the experiment, we employed CD gain as described in
Section 3. This provided a reasonable balance between fatigue
reduction and error. Additionally, prior to clicking the first target
in each circle (which started the timing for each sequence),
participants were encouraged to rest for ten to twenty seconds.
This rest greatly mitigated fatigue and, with this, all participants
could complete the study with minimal errors. Incidentally, during
this rest period the drift of the device was also zeroed out, as
described in Section 3.

6.3 3D vs 2D Movement

For cursor movement, there was a direct mapping of real world
coordinates to the virtual screen position. Cursor or pointer
acceleration functions, such as those designed to maximize
precision, were not implemented. It was observed that participants
were initially not able to easily reach the targets. Although the
stereo depth cues provide some notion of three dimensions, many
participants moved their arms initially while not understanding
that the trajectory of the cursor in three dimensions follows an arc
rather than a straight line. This issue might be eliminated by using
direct touch, that is, coupling the cursor position to the actual
hand position. As noted earlier, this was not possible with our
setup, but could be employed using, for example, a head-mounted
display with targets presented in the same spatial frame of
reference as the user (rather than “behind” the screen surface).



6.4 Physical Setup

There were several issues in the experimental setup that warrant
discussion. As noted previously, the CD gain settings were chosen
to maximize comfort and performance. However, another factor is
the physical location of the work area displayed in real world
coordinates. Because the wearable input method uses a virtual
hand (depth cursor) metaphor, the onscreen cursor mimics the
motion and position of the user’s real hand. Thus, the participants
in the study found that their real hand visually occluded the
onscreen targets in certain circumstances. We note again that
using a head-mounted display would prevent this (necessitating
rendering of a virtual 3D hand, or similar).

One possible solution was to offset the location of the work
area either upwards or downwards, but this proved problematic. If
the arm motions were lower, the user must compensate by moving
their arms higher, thus causing more fatigue and discomfort. A
higher offset was problematic as users compensated by moving
their arms lower. Because users were seated, their arms would
contact their legs in order to reach lower targets. Thus, proper
gain settings and height offsets are required to avoid these
problems. As previously discussed, increasing CD gain allows
smaller arm movements to produce larger cursor movements, but
accuracy and error rates suffer. This is a known problem which is
potentially obviated through non-linear transfer functions like the
pointer acceleration used in desktop operating systems, such as
Microsoft Windows. However, a desktop context is inappropriate
for a wearable input method. A large high resolution display or a
CAVE where users stand up may be a more suitable application.
Alternatively, such issues would not arise with a head-mounted
display.

6.5 Latency

Latency was visually noticeable but not measured. We estimate it
to be on the order of 200 ms. Studies measuring human neural
response through magneto-encephalography have found that the
time between the perception of visual stimulus to manual reaction
is on the order of 150 to 200 ms [1, 51]. Response time is a factor
in the correction phase of movement. The participant requires
visual feedback to correct their arm position when placing the 3D
cursor.

Examining the overall system for possible sources of latency is
complicated. Starting from the sensors, the sampling rate of each
accelerometer/gyro unit was 25 Hz yielding one sample every 40
ms. A lag of 40 ms is significant as determined by MacKenzie and
Ware [27]. Higher sampling rates are possible, up to 100 Hz, but
the FIFO buffer in combination with the Arduino FI/O 12C
communications bus was unstable. Communications with the
sensors to the host computer were implemented through Digikey
Xbee radios running at 57600 bps. Each packet containing
quaternion data sent from the Arduino is approximately 150 bits
for a data transfer rate of approximately 384 packets per second.
Thus, the bottleneck in the sensor and communication system to
the host computer is the 40 ms sampling rate. Increasing the
wireless data rate would be futile. Each sensor communicates on
its own wireless channel with the host computer to eliminate the
risk of packet collisions and resends.

The next step in the chain is the Java-based programming
environment. The code imports the raw quaternion data from the
sensors and performs calculations to determine the Cartesian
coordinates of the depth cursor location in virtual space. The
software must also detect the click, dwell, and twist selection
events. The RxTx package for Java serial communications
specifies a polling interval for serial/USB ports of 20 ms. This is
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less than half the sampling rate of the accelerometer/gyro sensors
and is acceptable in the overall system. Should the sampling rate
increase, the polling interval must shorten to accommodate the
increased packet rate. The code does not use interrupts, but polls
the serial ports in an infinite loop. It is unknown whether the host
computer running at 2.9 GHz is able to generate and output data
fast enough to keep pace with the packets coming from each
sensor at 25 Hz. The code also draws a wire frame representation
of the user's arm continuously in order to visually verify that
calibration of each sensor is maintained throughout each block of
trials. Performance of the Java Virtual Machine for real time
applications is problematic as well.

During the experiment, two monitors are used with the host
computer. One of the monitors shows the wire frame motion of
the sensors, while the 3D monitor depicts the fish tank VR
working environment. This may be the source of a system
bottleneck.

The software outputs three-dimensional position information in
the form of a text file which is then read by a modified version of
the fish tank VR software provided by Teather and Stuerzlinger
[48]. This software generates the log data for the user study.
Transfer of data through a text file is another likely source of
substantial system delay.

Ultimately, with an improved implementation that minimizes
latency, we expect the performance measures of the device to
increase considerably. Based on MacKenzie and Ware [27] or
Teather et al. [46], we anticipate that throughput would roughly
double if latency were reduced to 40 ms or less (from the current
~200 ms). While this would be more competitive with other
results [6, 48], it is still rather low. Hence, future work will focus
on reducing latency and further optimizing the design of the input
device to improve performance.

7 CONCLUSIONS

The wearable input method achieved a low throughput of roughly
1.08 bits/s as compared to the NaturalPoint OptiTrack system’s
3.5 bits/s, and half the error rate at 6.82% for the baseline click
selection method. The twist selection method had an error rate of
3.59% while the dwell method disallowed errors, and surprisingly,
did not adversely affect movement time significantly.

Unsupported pointing with a user’s arm is physically
demanding. Using a higher CD gain might offset some fatigue, as
it shortens the required arm motions. However, higher CD gain
levels also increase error rates, particularly for small targets.
Hence an interesting prospect for future work is to investigate
dynamic CD gain levels, i.e., “pointer acceleration” to leverage
the benefits of both high and low CD gain.

Designing an input system in general must consider sources of
latency. In the case of a wearable inertial sensor system, the
refresh rate of the sensors should be examined and the system
must be kept in constant calibration due to potential gyro drift
problems as well as physical slippage when worn on the body. We
suspect that, with refinement, an improved gyro-based input
device might offer more competitive performance levels by
considering the optimizations described above.
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