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ABSTRACT 

We designed a low-cost arm-mounted wearable 3D input device 
that uses inertial measurement units. The device is an alternative 
to tracking systems requiring fixed frames of reference. The 
device employs two inertial sensors mounted on the arm to derive 
a 3D cursor position through natural arm movement. We also 
explore three methods of selection, one entirely software based 

(dwell, holding the cursor in the target), one using a twist gesture, 
and one using a button. To address the paucity of research 
reporting human performance metrics, we quantify the 
performance of the device through a point-select experiment. 
Results indicate that throughput was 1.05 to 1.12 bits/s. In 
contrast, similar studies using conventional 3D trackers (e.g., 
NaturalPoint OptiTrack) report throughput ranging from 2.5 to 3.5 
bits/s. However, error rates for the wearable input device were 

lower than with the OptiTrack system at 6.8% vs. 13.5%, 
respectively. A detailed analysis of system performance issues is 
provided along with design suggestions for future gyro-based 
input devices. 

Keywords: Point selection. Gyro controller. Inertial measurement 
units. 3D selection interface. Fitts' law.  

Index Terms: H.5.2.1 [User Interfaces]: Human-centered 
computing—User studies; H.5.2.1 [User Interfaces]: Human-
centered computing—Pointing devices 

1 INTRODUCTION 

With the advent of a new generation of commodity virtual reality 
(VR) head-mounted displays, such as the Oculus Rift, Samsung 
Gear VR, HTC Vive, and others, there is great potential for new 

applications in 3D interaction. Never before has this technology 
been so accessible to so many people. Yet interacting in 3D 
remains challenging. One problem is the availability of input 
devices.  
   While the mouse is ubiquitous in desktop computing, as yet, no 
standard universally accepted input device exists for 3D user 
interfaces. This is not for lack of trying on the part of researchers 
and hardware manufacturers, as numerous 3D input devices have 

emerged over the years. We group these (roughly) into in-air 
tracker-based devices and desktop devices. Tracker-based devices 
employ some form of tracking technology, e.g., electromagnetic, 
optical, or mechanical. In general, they are prohibitively 

expensive for end users, although recent entries like the Razer 
Hydra1 challenge this notion. 

Common tracker devices include electromagnetic sensors such 
as the Polhemus Patriot2 and the NDI Aurora3 (descended from 

the well-known Ascension family of trackers), optical trackers 
like the NaturalPoint OptiTrack4 family of trackers, or VICON’s 
optical trackers5. A major limitation of trackers (aside from cost) 
is the tendency to offer only a fixed frame of reference – tracking 
space is limited. Most also suffer from interference effects, 
notably occlusion with optical technologies. 

Desktop devices such as the 3DConnexion SpaceMouse6, and 
the Logitech AirMouse7 leverage user familiarity with devices like 

a mouse. Despite employing mechanical tracking technology, 
devices like the Geomagic Touch8 (formerly the Phantom Omni) 
and the Novint Falcon9 – both haptic devices – are also desktop 
devices, or 3D mouse analogs. These devices ultimately yield a 
single 3D cursor position, with the addition of force feedback. 
While in some cases they offer superior performance to 3D 
trackers [4,48], they still require a supporting surface to operate 
on, much like a mouse. Desktop devices are thus unsuitable for 
VR scenarios where the user is standing or walking. Head-

mounted displays also occlude the device; thus, the user often 
cannot see the device. A comprehensive overview of 3D input 
devices is provided elsewhere [32]. 

 

Figure 1: The wearable input device used in our study. 
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Table 1. An overview of research on inertial measurement units (IMUs) 

1st Author [ref] User 
Study 

Task Summary Device Modality 

Jain [16] yes 2D pointing Comparison of distal pointing 
techniques 

Phone Hand held 

Rico [39] yes 1D Fitts Body based gesturing Head, foot, wrist 
sensors 

Wearable 

Lazewatsky [20] yes 2D pointing Human robot interaction Google glass Wearable 
Raya [38] yes 2D Fitts Mouse for children with 

cognitive physical impairments 

Forehead sensor Wearable 

Hincapie-Ramos 
[14] 

yes 2D pointing Raycasting for self-contained 
AR HMD 

GyroWand Handheld 

Prayudi [37] no  N/A Design of an arm motion 
capture system 

- - 

Oakley [31] yes 2D Fitts Pointing with hands, wrist, 

fingers comparison 

Handheld, wrist Wearable, 

handheld 
Yun [53] no  N/A Design, Kalman filter - - 
Bachmann [3] no  N/A Design; MARG sensor - - 

Burstyn [7] yes  1D Fitts Pose dependent display device Wrist sensor Wearable 
Jung [18] no  N/A Motion capture system design 

based on smart shoes 
Full body Wearable 

Yun [54] no  N/A Position tracking, gait analysis Foot sensor Wearable 

Pietroszek [36] [35] yes 3D pointing Raycasting, SmartCasting Phone Handheld 
Calvo [8] yes 2D Fitts Remote finger based pointing Ring Wearable 
Teather [45] yes 2D Fitts Tilt position vs velocity control Tablet Handheld  

Skogstad [40] no N/A Comparison between optical 
and inertial tracking 

Xsens, OptiTrack Wearable, camera 

Solberg [41] no N/A Comparison between optical 
and inertial tracking 

Qualisys, Axivity Wearable, camera 

 
We note that inertial measurement units (IMUs) – input devices 
based on accelerometers and gyros – can overcome the limitations 
of both tracker-based and desktop-based devices. They are 
inexpensive, require little setup, operate without supporting 
surfaces, and theoretically support unlimited space sizes if the 
user carries the device with them and relative motion is all that is 

required. If mounted on the body (Figure 1 depicts the setup used 
in our study), occlusion is not a problem either.  

However, the input potential of such devices has been 
underexplored in 3D contexts compared to the mouse and 3D 
trackers [4,48]. Although there is extensive research in the design 
of inertial-based human tracking devices, there are comparatively 
few empirical studies on their performance in fundamental tasks 
like point-and-select. To our knowledge, no previous study has 

evaluated 3D point-select performance of wearable IMU-based 
input devices. 

Our input device uses a combination of six-degree-of-freedom 
gyro and accelerometer sensors. Each sensor reads its orientation 
and any acceleration experienced in three-dimensional space. The 
sensors are worn on the forearm and upper arm. Rotations in three 
dimensions about the shoulder and elbow are registered. The 
system is self-contained and unobtrusive. However, the device 

itself provides no means to indicate selection. Thus, we present a 
study evaluating the effectiveness of the device combined with 
three methods of selection. 

Our contribution is threefold: 
1) We present the design and implementation of a low-cost 

wearable input device for 3D point-select tasks. 
2) We evaluate and quantify performance of the device using 

a 3D Fitts’ law task. 

3) We provide a detailed analysis of performance issues and 
design considerations for future reference. 

To our knowledge, our study is the first to study performance of 
wearable IMU-based input devices in the context of fundamental 
point-select tasks in a 3D environment. We employ a 3D 
extension of a standardized ISO methodology for evaluating 
pointing devices [15,43]. The principle advantage of this approach 
is the consistency in Fitts’ throughput between studies following 

the ISO standard, and this enables comparisons among studies 
[42]. Throughput also incorporates speed and accuracy into a 
single metric, and thus characterizes pointing performance better 
than metrics like speed or accuracy alone (between which there is 
a clear tradeoff) [26]. It is our hope that the results reported herein 
will provide a global sense of the relative performance of IMU-
based devices in 3D environments. 

2 RELATED WORK 

2.1 Inertial Motion Tracking 

There has been significant interest in inertial measurement devices 
by researchers in the design of tracking systems and in their 

implementation for user interfaces. Table 1 presents an overview 
of previous work in several areas of interest. Many of the studies 
use IMUs in smartphone or similar devices [16,36,45], or 
wearable devices [7,9,20,38,39]. Others look at the use of IMUs 
for full body motion capture [18]. As seen in the table, some 
studies evaluate performance in 2D Fitts’ law contexts. While this 
invites comparisons with other 2D studies (for reasons described 
in Section 2.4), these results do not translate directly to 3D 
contexts [49]. We extend this body of research by providing (to 

our knowledge) the first experiment on 3D point-select tasks in a 
Fitts’ law context using an IMU-based wearable device. 
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2.2 3D Selection 

There is a large body of work on object selection techniques in 
virtual 3D environments [2,13,17]. Most selection techniques can 
be roughly grouped into ray-based or virtual-hand. Our gyro-

based device falls under the latter category, as it supports 1:1 
control of a 3D depth cursor through arm motions, rather than ray-
based remote pointing. However, unlike most virtual hand 
implementations, our cursor is decoupled (i.e., offset) from the 
physical position of the hand. This occurs because we use a 
desktop stereo monitor with the cursor “inside” the 3D scene; 
hence, the screen prevents physically touching objects. 
Implementations using a head-mounted display could instead 

couple the cursor position to the physical hand, but we note that 
previous evidence suggests little performance difference [44]. 

Liu et al. [21] compared aimed movements in the real world 
with movements in virtual reality. They observed significant 
temporal differences in both the ballistic and control phases. 
Movements in virtual reality were less efficient and on average 
twice as long compared to real-world movements. The correction 
phase in virtual reality was substantially longer, taking on average 

6 longer than real-world corrections. Improvements in the 

correction phase in virtual reality were more efficient, but that 

was attributed to the inherent need for less correction in the real 
world. This speaks to a need for highly precise input devices and 
effective visual feedback, since the correction phase is guided by 
visual feedback. 

Teather and Stuerzlinger conducted several studies 
[48,47,49,50] on 3D selection in a Fitts’ law context, first 
extending and validating the methodology for use in 3D contexts 
[48]. They applied their framework in studying the influence of 

visual aids [50], and pointing at screen-space projections of 
targets [47]. Other researchers have employed the methodology in 
studying selection in HMD contexts [22] and touching stereo 
displays [6,11]. Based on these results, we modeled our task after 
previous work [47], which improves comparability with past 
results. This provides a better idea of the relative performance of 
IMU-based input compared to the mouse and 3D trackers. 

2.3 Jitter and Latency 

Latency is known to impact the effectiveness of pointing 
interfaces [27,34]. Jitter, when significantly present, is also known 
to impact effectiveness [46]. We expect a similar impact on 
performance with our device (which exhibits noticeably higher 

latency than a mouse); hence, we discuss these effects briefly 
here. The effect of lag on human performance was investigated by 
MacKenzie and Ware [27]. It was observed that at the highest lag 
tested (225 ms) movement times and error rates increased by 64% 
and 214%, respectively, while throughput decreased by 46.5%. 
The effect was modeled as a multiplicative factor added to Fitts’ 
Index of Difficulty (ID). Lag and frame rate in VR displays have 
also been studied previously [52], confirming the multiplicative 
factor. It was observed that low frame rates degrade performance 

and that error rates and movement times increase in depth 
movements as opposed to movements orthogonal to the axis of 
viewing.  

In another study, latency and spatial jitter on object movement 
were examined using a NaturalPoint OptiTrack compared to a 
baseline optical mouse [29]. End-to-end latencies were 35 ms for 
the mouse and 70 ms for the OptiTrack. Latency had a much 
stronger effect than jitter. Large spikes in jitter significantly 

impacted 3D performance, particularly when jitter levels are 
approximately half the target size or greater [41].  

2.4 Fitts’ Law and Throughput 

Selection tasks that involve rapid-aimed movements to a target are 
well-modeled by Fitts’ law. Our experiment employs a 3D 
interpretation of the Fitts’ law task described in the ISO 9241-9 

standard [15,43]. We now describe the evaluation protocol and 
calculation of the dependent variable called throughput. The ISO 
standard’s reciprocal targeting task is depicted in Figure 2. The 
task ensures consistent difficulty within a circle of targets, as 
target distance and size are the same within a circle. The task can 
be further presented at varying depths for 3D pointing [48]. 
  

  

Figure 2: Two-dimensional Fitts’ law task in ISO 9241-9. 

The primary dependent variable of interest is throughput 
[23,24], previously known as Fitts’ index of performance [12]. 
Throughput incorporates selection speed and accuracy into a 
single metric through a post-experiment correction to the error 
rate (see below) and has been shown to compensate for the speed-
accuracy trade-off [26]. Throughput (TP, in bits per second) is 

computed as the ratio of the index of difficulty (ID, in bits) and 
the movement time (MT, in seconds) computed over a sequence of 
trials (Eq. 1): 
 

𝑇𝑃 =
𝐼𝐷

𝑀𝑇
 (1) 

 
ID is calculated using movement distance, A (for amplitude), 

and target width, W. The Shannon formulation of ID is given as:  
 

 𝐼𝐷 = 𝑙𝑜𝑔2 (
𝐴

𝑊
+ 1) (2) 

 
The ISO 9241-9 standard specifies calculating throughput using 

IDe rather than ID. This better accounts for the variability in target 
selections [23]. IDe is calculated as:  

 

 𝐼𝐷𝑒 = 𝑙𝑜𝑔2 (
𝐴𝑒

4.133×𝑆𝐷𝑥
+ 1) (3) 

 
The Ae term is the effective distance a participant actually 

moved between targets, i.e., the average of the actual movement 

distances over a sequence of trials for a particular A-W condition. 
SDx is the standard deviation of selection coordinates projected 
onto the task-axis over a sequence of trials. Multiplying by 4.133 
yields the so-called effective width (We), and adjusts the 
experimental error rate to a nominal value of 4%. This effectively 
normalizes error rates and strengthens comparisons of results 
between studies. Figure 3 depicts the calculation of Ae and We. 
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Figure 3: The effective index of difficulty (IDe) is calculated using 

the effective distance or amplitude (Ae) and the effective width of 

the target (We). 

Fitts’ law has been extended to two dimensions (see Figure 2) 
[25,29] and three dimensions [10,30]. In the 3D case, a direction 
parameter is included as a practical extension for common 2D 
tasks on a computer display [30]. We note that adding extra 

parameters in a regression analysis inherently improves the model 
fit for a given dataset [33]. Care must be taken to ensure that 
extensions to the model generalize to other results. The principle 
advantage of the approach proposed by Teather and Stuerzlinger 
[48] is that it “collapses” to a 2D task equivalent to mouse 
pointing and allows comparisons with a large body of 2D 
literature. It has also demonstrated consistent 3D pointing 
performance [22,47,50]. Thus, by employing this methodology, 

we not only ensure comparability of our results with other 3D 
pointing literature, but also with 2D literature employing ISO 
9241-9.  

3 THE WEARABLE INPUT DEVICE 

The IMU sensors were based on the Invensense MPU6050 chip 
running on an 8 MHz Arduino FIO host microcontroller and 
communicating over an I2C bus. The MPU6050 chip was selected 
due to its many features including run-time calibration firmware, 
the ability to output quaternions, and sensor fusion. It integrates a 
three-axis accelerometer and a three-axis gyroscope. The chip 

utilizes these MEMS sensors to help compensate for both short 
term jitter and long term drift and can provide gravity 
compensation in its measurements. The MPU6050 was observed 
to compensate for drift when held stationary, likely a property of 
Invensense’s proprietary MotionFusion algorithms. After device 
initialization – a period of several seconds – drift in the yaw axis 
was observed to zero out. Thus, upon device initialization we 
enforced a 10-second period of motionlessness for output 
stabilization and drift compensation. 

The device must also be initialized in a specific orientation with 
regards to the gravity vector, which is required by Invensense’s 
proprietary run-time calibration function. Initialization in other 
orientations yielded fluctuations without converging to a solution. 
Throughout the trials in our user study, we observed errors when 
returning to a known reference position. We compensated by 
measuring the quaternion offset and applying this as a correction 
to subsequent movements. This was required because the 

MPU6050 does not utilize a magnetometer, thus drift around the 
yaw axis was significant. The MPU6050 refresh rate was set at 25 
samples per second, although higher rates are theoretically 
possible. The FIO modules communicated wirelessly with the 
host computer through DigiKey Xbee radios transmitting in the 

900 MHz and 2.4 GHz bands at 57600 bits/sec. The Xbee 
receivers connected to the host computer’s USB 2.0 and 3.0 ports.  

 Precomputed quaternion orientations provided by the sensors 
were used to calculate the 3D cursor position. We used the public 
source ToxicLibs Quaternion class for these operations and 

applied the quaternion rotations to a wireframe model that 
included an upper arm segment, a forearm segment, and shoulder 
and elbow joints. Thus, our implementation approximates a virtual 
hand, or, more accurately, behaves as a 3D cursor. With two 
sensors, measuring both shoulder and elbow rotation, the wearer 
can reach almost any point in the volume of a hemisphere with its 
base anchored at and in front of the shoulder. The upper arm 
segment and the forearm segments were represented by the 

vectors V1 (Eq. 4) and V2 (Eq. 5) respectively and were formed 
thus: 
 

V1 = [0, upper arm length, 0]   (4) 
 
  V2 = [0, forearm length, 0]    (5) 
 

The received quaternions were QS (a quaternion representing 

rotation of the arm about the shoulder) and QE (a quaternion 
representing rotation of the forearm about the elbow). We 
calculated the position of the hand by rotation of V1 and V2 about 
the shoulder and elbow respectively. The elbow position in 3D 
space was calculated by quaternion rotation of our model’s upper 
arm segment:  
 
  V1' = QS * V1 * QS-1   (6) 

 
The hand position was then calculated by quaternion rotation of 

our model’s forearm segment: 
 
   V2' = QE * V2 * QE-1   (7) 

 
and calculated as V1' + V2'. These coordinates were then scaled to 
match the size of the virtual scene, which was 51 cm wide, 29 cm 
tall, and 30 cm deep (based on monitor dimensions). After 

scaling, reaching the hand to a comfortable extent either left or 
right (roughly orthogonal to the body) moved the cursor to the 
corresponding side of the virtual scene. Based on pilot tests, we 
additionally multiplied the coordinates by a gain factor of 1.5 in 
the x and y directions, as cursor movement felt too slow. Because 
in/out arm movement has the shortest range, we further applied a 

3 gain factor to z-axis movements, allowing participants to 

comfortably and quickly reach the deepest targets in our scene. 
These gain factors could be investigated in future work, but were 

deemed suitable for initial testing. 
Overall, motion of our virtual arm in the screen was analogous 

to motion of the physical arm in real space, with an offset applied. 
Note that we did not draw the virtual wireframe arm in the 
display; we only showed the final 3D cursor position. The upper 
arm length and forearm length were given representative values 
for the average dimensions of a human arm. Although our 
implementation was designed for right-handed users, adaptation 
for left-hand use is possible.  

3.1  Selection Indication 

While accelerometer/gyroscopes are ubiquitous in modern 
devices, they often lack convenient buttons. Reflecting this, our 

input device does not include a button, and necessitates an 
alternative method for selection. While one option is to add a 
physical button, we also investigated alternative software-based 
approaches: dwell and twist. For dwell selection, the cursor must 

Effective
Distance

origin

Vector of
movement

Effective
Width

destination
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enter a target volume and remain within that volume for a 
prescribed time. Past work on similar dwell selection techniques 
revealed that 350 to 600 ms felt neither too fast nor too slow [28], 
so we chose a dwell time of 500 ms. Note that dwell imposes an 
upper limit on performance, since it directly influences movement 

time and hence throughput. It also eliminates the possibility of 
“missing” a target, since all trials must end in selection (and hence 
error rates are 0% with dwell selection). 

The other selection method is “twist” (Figure 4) and requires 
the user to twist their wrist, similar to motion described in other 
studies [19]. To activate twist selection, the user moves the cursor 
within the target volume, then supinates the wrist and forearm. 
Based on pilot tests, we chose a threshold of 40° rotation 

clockwise within 100 ms, necessitating a very deliberate twist 
gesture by the user. This helps avoid accidental activation. Since 
the twist gesture involves moving the lower arm, it may introduce 
additional cursor motion due to sensor movement. This is the so-
called “Heisenberg Effect” [5]. To avoid this, we included a 
“sticky” function. Without the sticky function, the twist motion 
often moved the cursor outside the target volume, thus resulting in 
an error for all but the largest of target sizes. With the sticky 

function, cursor motion is suspended for 100 ms when the cursor 
enters the target volume. If the participants hand is rotated in a 

clockwise direction exceeding 40, then a selection event is 

registered at the end of the 100-ms interval and the trial ends. If 
little or no twist is measured, then cursor motion tracking 
resumes. Note that the twist method requires an additional hand-
mounted inertial sensor. The third sensor is seen mounted on the 
hand in Figure 1 and Figure 4.  

 

Figure 4: Extra IMU used for the twist selection method. 

As a baseline condition, we included a button-select method 
called “click”. For click selection, participants simply held an 
ergonomic controller similar to a Wii Nunchuk and pressed the 
button to select targets. This was intended to provide a “best-case” 
performance scenario, using a reliable and low-latency button for 
selection. The controller was held in the active hand rather than 
the offhand to remove a potentially confounding variable.  

For both the click and dwell selection methods, the sticky 

function is unnecessary. The button-press action with the click 
method introduces minimal motion and the Heisenberg effect was 
not observed. The dwell method does not require the sticky 
function since selection is only possible when the cursor is in the 
target volume. 

4 METHODOLOGY 

We conducted an experiment to evaluate the effectiveness of the 
wearable gyro-based input device in 3D point-select tasks. For 
consistency with previous work, we used the software framework 
from previous 3D selection studies conducted by Teather and 

Stuerzlinger [47,48,49]. See Figure 5. 

 

Figure 5: Fitts’ law 3D task. 

4.1 Participants 

Twelve participants (four female) were recruited from the local 
university including undergraduate students, graduate students, 
and alumni. Ages ranged from 19 to 40 (µ = 25.8, σ = 5.1 years). 
Based on participants’ self-reporting, three had moderate 

experience with 3D controllers, three had low experience, and six 
had no experience. All participants had normal stereo acuity as 
determined by testing on the 3D system. All were right-handed.  

4.2 Apparatus 

4.2.1 Hardware 

The wearable input device consisted of the three IMUs described 

in Section 3. One sensor was mounted on each of the upper and 
lower arms. The third device was mounted on the hand, 
exclusively for the twist selection method (detailed in Section 
3.1). Participants wore stereo 3D LCD shutter glasses (NVIDIA 
3D Vision 2 Wireless Glasses) throughout the experiment. The 
host computer included an AMD Athlon II X4 635 CPU running at 
2.90 GHz with 4.00 GB RAM, a Microsoft 64 bit Windows 7 
Enterprise SP1 operating system, and an NVIDIA GTX 560 TI 

video card. The display monitor was a BenQ XL240T running at 
120 Hz. The click selection method utilized an after-market clone 
of the Nintendo Wii Nunchuk with the switch connected to a 
digital input on one of the sensors (Figure 6). The controller was 
held in the dominant hand as consistent with the dwell and twist 
selection methods, thus avoiding a potential confound. The twist 
selection method required a third inertial sensor worn on the hand 
to detect rotation about the roll axis. No extra hardware was 

needed for the dwell selection method. 
 

 

Figure 6: A participant using the click selection method. 
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4.2.2 Software 

The scene depicted a 30 cm deep box. The width and height of the 
box were 51 cm and 29 cm, respectively, matching the dimensions 
of the LCD monitor. Target volumes were placed at three 

different depths: screen depth (0 cm), 5 cm “into” the screen, and 
10 cm into the screen. Each target volume was placed on a 
support cylinder as a visual aid (Figure 5). The scene was 
displayed in stereo 3D, providing participants with additional 
depth information about the target positions. Head-tracking was 
not used. A three-dimensional cursor shaped like a jack was used 
as the selection tool.  

The software automatically recorded and calculated movement 

time, error rate, and throughput. Both the twist and dwell selection 
methods were implemented in software. 

4.2.3 Task and Target Parameters 

The reciprocal tapping task required participants to select thirteen 
targets arranged in a circle. The target to select was red (see 
Figure 5) and turned blue upon cursor entry to provide user 
feedback. As the task was 3D, the targets were spheres and 

required 3D selection precision. The software to control the task 
was provided by Teather and Stuerzlinger and modified from their 
previous work [50]. 

There were three target amplitudes, A = 3.5 cm, 5.5 cm, and 7.5 
cm, three target diameters, W = 0.5 cm, 1.0 cm, and 1.5 cm, and 
three target depths, D = 0 cm (at screen depth), -5.0 cm, and -10.0 
cm (behind the screen). Thus, there were 27 A-W-D combinations. 
The presented IDs ranged from 2.17 bits to 4.00 bits, as calculated 

with Equation 2.  
Each selection method was used for an entire session, with each 

session consisting of the 27 A-W-D combinations organized in 
sequences of 13 trials (individual target selections). Timing 
started with the first selection in each sequence. Hence each 
sequence consisted of 12 recorded trials. For each trial, the 
movement time was recorded. An error was logged if selection 
occurred with the cursor outside the target, except for the dwell 

selection method, as noted in Section 3.1.  

4.3 Procedure 

Upon arrival and after providing informed consent, participants 
were introduced to the experiment task using each of the three 

selection methods. For each session, participants were seated in a 
comfortable position away from the target surface with enough 
room to move their arms. Each participant was given roughly two 
to five minutes of practice trials with each selection method and to 
assess stereo acuity. They were instructed to maximize both 
movement speed and accuracy, emphasizing accuracy. After each 
session with each selection method (consisting of 324 selection 
trials), participants rated their level of physical comfort. At the 

end of the study, participants completed a questionnaire with 
ratings for mental effort, physical comfort, and ease of use for 
each selection method. 

4.3.1 Design 

The experiment used a within-subjects design with the following 
independent variables and levels: 
 

 Selection Method:  Click, Dwell, Twist 
 A:   3.5 cm, 5.5 cm, 7.5 cm 
 W:   0.5 cm, 1.0 cm, 1.5 cm 
 D:   0 cm, -5 cm, -10 cm 

 
Note that target depths are relative to the screen, hence -5 cm 

indicates a target was 5 cm behind the screen surface. A Latin 

square was designed consisting of 3 selection methods and 3 
target depths yielding 9 combinations. With 12 participants split 
up into groups of three, the 4th group repeated the sequence from 
the 1st group. Target size and amplitude within each session were 
randomly ordered (without replacement). The duration of the 

experiment was roughly 1.5 hours per participant. In total, each 
participant completed 3 selection methods × 3 amplitudes × 3 

widths × 3 depths  12 trials = 972 trials. Over twelve 

participants, this yielded 11,664 recorded trials.  
The dependent variables were movement time (ms), error rate 

(% of missed targets), and throughput (bits/s). 

5 RESULTS 

Movement times for the three selection methods were in the 3 – 4 
second range. See Figure 7. A Shapiro-Wilk test indicted that 
movement time was normally distributed (w = 0.987, p > .01). 
One-way ANOVA indicated significant differences in movement 
time between the selection methods (F2,11 = 3.83, p < .05). 

However, Bonferroni-Dunn post-hoc tests at the α = .05 level 
failed to detect pairwise differences. We speculate that dwell and 
twist may be significantly different, as their movement times were 
most different. 

 

Figure 7: Movement time (ms) by selection method. Error bars 

show ±1 SE. 

Mean error rates for the click, dwell, and twist selection 
methods are seen in Figure 8. Note that the error rate for dwell is 

always 0% since each trial ends with the cursor inside the target 
volume. A Shapiro-Wilk test indicated that error rate data were 
not distributed normally (w = 0.855, p < .01), thus we followed 
with a non-parametric Friedman test. Results indicate significant 
differences in the mean error rate by selection method (χ2 = 19.5, 
p < .0005, df = 2). Post hoc pairwise tests using Conover’s F at 
the α = .05 level revealed significant differences between all three 
selection methods. 

 

Figure 8: Error rate (%) by selection method. Error bars show ±1 

SE. 
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Throughput was calculated as described in Section 2.4. The 
mean throughputs for the click, dwell, and twist selection methods 
were 1.12 bits/s, 1.08 bits/s, and 1.05 bits/s, respectively (Figure 
9). A Shapiro-Wilk test indicated that the data were not 
distributed normally (w = 0.875, p < .01), so we again used a non-

parametric Friedman test for analysis. The Friedman test revealed 
no significant differences in throughput by selection method 
(χ2 = 0.500, p > .05, df = 2). 

 

Figure 9: Throughput (bits/s) by selection method. Error bars show 

±1 SE. 

6 DISCUSSION 

6.1 Performance Results 

The grand mean for throughput was roughly 1.08 bits/s. A few 
previous studies have looked at similar “touch”-based 3D 
interaction techniques. For example, Teather and Stuerzlinger [48] 
report throughputs between 2.5 and 3.5 bits/s, depending on target 
depth, and throughput around 3.8 – 4.0 bits/s in subsequent work 

using a NaturalPoint OptiTrack tracker [47]. Movement times 
ranged from roughly 1.0 s to 2.4 s while the movement times from 
this experiment were roughly 3.0 s. Bruder et al. [6] report 
throughputs of 3 – 4 bits/s, depending on target depth, with a 
direct touch 3D technique implemented with a WorldViz optical 
tracker. Because these studies used the same experimental 
methodology, we conclude that our device offered substantially 
lower performance than these studies using optical trackers.  

There were no significant differences in movement times or 
throughputs between selection methods. Moving the cursor 
between targets required the same motions consisting of a ballistic 
phase and a corrective phase. However, we expected some 
difference between the selection methods, since dwell required a 
500-ms delay, twist used a 100-ms sticky interval, and click 
required no timing interval. We note that dwell had the highest 
overall movement time, as expected. However, we can only 

speculate that this was significantly higher than twist, since our 
statistical tests failed to detect significant differences. This 
suggests that there are other factors more significant than the 
dwell time. Latency is a candidate, discussed in detail below. 

Error rates were significantly different between all three 
selection methods. This is unsurprising as dwell always has a 0% 
error rate. We suspect the better accuracy with the twist method is 
due to the aforementioned “sticky” cursor feature. It is possible 

that a sticky cursor feature could also benefit the click method. 
However, the influence of the Heisenberg effect on click was 
deemed minimal, since only one finger moves to activate the click 
button. In contrast, movement of the whole hand as well as the 
forearm is required with the twist method. 

It is surprising that despite substantial differences in error rate, 
and slight (potentially significant) differences in movement time, 

throughput was roughly the same across the three selection 
methods. Given the low error rate of twist, and the fact that it had 
the lowest movement time, one would expect throughput to be 
highest with twist. As seen in Equation 3, throughput is calculated 
using the standard deviation in the selection coordinates about the 

targets. Since missing was impossible with dwell, this distribution 
was small, and the average distance from target centre was 
0.38 cm (well below the average target size of 0.50 cm). While 
such accurate selections would yield a correspondingly higher 
throughput (see Equation 3), the higher movement time also 
contributed to reducing throughput for dwell. However, the twist 
selection method did not offer such accurate selections due to the 
“sticky” function. We note here the difference between error rate 

(percentage of trials that missed) and error magnitude (i.e., the 
range of the selections relative to target centre). While the sticky 
function likely improved the twist error rate relative to click, it 
also ensured that selection coordinates were only possible on or 
near the surface of the target volumes since further motion is 
suspended upon immediate entry. Hence error magnitude (which 
directly influences throughput) was higher with twist than the 
other selection methods. With twist, selection coordinates were, 

on average, 0.49 cm from the target centre – on average, on or 
near the surface of the targets. We believe that this higher error 
magnitude is what yielded proportionally worse throughput scores 
with twist.  

6.2 Fatigue 

In-air unsupported pointing is a physically demanding task. Over 
time, it was observed that participants experienced increasing 
levels of fatigue and both error rates and movement times 
increased. Each block of trials consisted of 351 target selections. 
Prior to running the study, pilot testing revealed that very few 
participants could consecutively perform all 27 sequences (even 
with only 9 trials per sequence). Fewer achieved acceptable error 

rates which approached 50% in some sequences. The experiment 
parameters were changed considering the excessive fatigue 
participants experienced in the pilot study. 

For the experiment, we employed CD gain as described in 
Section 3. This provided a reasonable balance between fatigue 
reduction and error. Additionally, prior to clicking the first target 
in each circle (which started the timing for each sequence), 
participants were encouraged to rest for ten to twenty seconds. 

This rest greatly mitigated fatigue and, with this, all participants 
could complete the study with minimal errors. Incidentally, during 
this rest period the drift of the device was also zeroed out, as 
described in Section 3. 

6.3 3D vs 2D Movement 

For cursor movement, there was a direct mapping of real world 
coordinates to the virtual screen position. Cursor or pointer 
acceleration functions, such as those designed to maximize 
precision, were not implemented. It was observed that participants 
were initially not able to easily reach the targets. Although the 
stereo depth cues provide some notion of three dimensions, many 
participants moved their arms initially while not understanding 

that the trajectory of the cursor in three dimensions follows an arc 
rather than a straight line. This issue might be eliminated by using 
direct touch, that is, coupling the cursor position to the actual 
hand position. As noted earlier, this was not possible with our 
setup, but could be employed using, for example, a head-mounted 
display with targets presented in the same spatial frame of 
reference as the user (rather than “behind” the screen surface). 
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6.4 Physical Setup 

There were several issues in the experimental setup that warrant 
discussion. As noted previously, the CD gain settings were chosen 
to maximize comfort and performance. However, another factor is 

the physical location of the work area displayed in real world 
coordinates. Because the wearable input method uses a virtual 
hand (depth cursor) metaphor, the onscreen cursor mimics the 
motion and position of the user’s real hand. Thus, the participants 
in the study found that their real hand visually occluded the 
onscreen targets in certain circumstances. We note again that 
using a head-mounted display would prevent this (necessitating 
rendering of a virtual 3D hand, or similar). 

One possible solution was to offset the location of the work 
area either upwards or downwards, but this proved problematic. If 
the arm motions were lower, the user must compensate by moving 
their arms higher, thus causing more fatigue and discomfort. A 
higher offset was problematic as users compensated by moving 
their arms lower. Because users were seated, their arms would 
contact their legs in order to reach lower targets. Thus, proper 
gain settings and height offsets are required to avoid these 
problems. As previously discussed, increasing CD gain allows 

smaller arm movements to produce larger cursor movements, but 
accuracy and error rates suffer. This is a known problem which is 
potentially obviated through non-linear transfer functions like the 
pointer acceleration used in desktop operating systems, such as 
Microsoft Windows. However, a desktop context is inappropriate 
for a wearable input method. A large high resolution display or a 
CAVE where users stand up may be a more suitable application. 
Alternatively, such issues would not arise with a head-mounted 

display. 

6.5 Latency 

Latency was visually noticeable but not measured. We estimate it 
to be on the order of 200 ms. Studies measuring human neural 

response through magneto-encephalography have found that the 
time between the perception of visual stimulus to manual reaction 
is on the order of 150 to 200 ms [1, 51]. Response time is a factor 
in the correction phase of movement. The participant requires 
visual feedback to correct their arm position when placing the 3D 
cursor.  

Examining the overall system for possible sources of latency is 
complicated. Starting from the sensors, the sampling rate of each 

accelerometer/gyro unit was 25 Hz yielding one sample every 40 
ms. A lag of 40 ms is significant as determined by MacKenzie and 
Ware [27]. Higher sampling rates are possible, up to 100 Hz, but 
the FIFO buffer in combination with the Arduino FIO I2C 
communications bus was unstable. Communications with the 
sensors to the host computer were implemented through Digikey 
Xbee radios running at 57600 bps. Each packet containing 
quaternion data sent from the Arduino is approximately 150 bits 

for a data transfer rate of approximately 384 packets per second. 
Thus, the bottleneck in the sensor and communication system to 
the host computer is the 40 ms sampling rate. Increasing the 
wireless data rate would be futile. Each sensor communicates on 
its own wireless channel with the host computer to eliminate the 
risk of packet collisions and resends.  

The next step in the chain is the Java-based programming 
environment. The code imports the raw quaternion data from the 

sensors and performs calculations to determine the Cartesian 
coordinates of the depth cursor location in virtual space. The 
software must also detect the click, dwell, and twist selection 
events. The RxTx package for Java serial communications 
specifies a polling interval for serial/USB ports of 20 ms. This is 

less than half the sampling rate of the accelerometer/gyro sensors 
and is acceptable in the overall system. Should the sampling rate 
increase, the polling interval must shorten to accommodate the 
increased packet rate. The code does not use interrupts, but polls 
the serial ports in an infinite loop. It is unknown whether the host 

computer running at 2.9 GHz is able to generate and output data 
fast enough to keep pace with the packets coming from each 
sensor at 25 Hz. The code also draws a wire frame representation 
of the user's arm continuously in order to visually verify that 
calibration of each sensor is maintained throughout each block of 
trials. Performance of the Java Virtual Machine for real time 
applications is problematic as well.  

During the experiment, two monitors are used with the host 

computer. One of the monitors shows the wire frame motion of 
the sensors, while the 3D monitor depicts the fish tank VR 
working environment. This may be the source of a system 
bottleneck.  

The software outputs three-dimensional position information in 
the form of a text file which is then read by a modified version of 
the fish tank VR software provided by Teather and Stuerzlinger 
[48]. This software generates the log data for the user study. 

Transfer of data through a text file is another likely source of 
substantial system delay.  

Ultimately, with an improved implementation that minimizes 
latency, we expect the performance measures of the device to 
increase considerably. Based on MacKenzie and Ware [27] or 
Teather et al. [46], we anticipate that throughput would roughly 
double if latency were reduced to 40 ms or less (from the current 
~200 ms). While this would be more competitive with other 

results [6, 48], it is still rather low. Hence, future work will focus 
on reducing latency and further optimizing the design of the input 
device to improve performance. 

7 CONCLUSIONS 

The wearable input method achieved a low throughput of roughly 
1.08 bits/s as compared to the NaturalPoint OptiTrack system’s 
3.5 bits/s, and half the error rate at 6.82% for the baseline click 
selection method. The twist selection method had an error rate of 
3.59% while the dwell method disallowed errors, and surprisingly, 
did not adversely affect movement time significantly. 

Unsupported pointing with a user’s arm is physically 

demanding. Using a higher CD gain might offset some fatigue, as 
it shortens the required arm motions. However, higher CD gain 
levels also increase error rates, particularly for small targets. 
Hence an interesting prospect for future work is to investigate 
dynamic CD gain levels, i.e., “pointer acceleration” to leverage 
the benefits of both high and low CD gain. 

Designing an input system in general must consider sources of 
latency. In the case of a wearable inertial sensor system, the 

refresh rate of the sensors should be examined and the system 
must be kept in constant calibration due to potential gyro drift 
problems as well as physical slippage when worn on the body. We 
suspect that, with refinement, an improved gyro-based input 
device might offer more competitive performance levels by 
considering the optimizations described above. 
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