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ABSTRACT 
The conventional dwell-based methods for text entry by gaze 
are typically slow and uncomfortable. A swipe-based method 
that maps gaze path into words offers an alternative. However, 
it requires the user to explicitly indicate the beginning and 
ending of a word, which is typically achieved by tedious gaze-
only selection. This paper introduces TAGSwipe, a bi-modal 
method that combines the simplicity of touch with the speed 
of gaze for swiping through a word. The result is an efficient 
and comfortable dwell-free text entry method. In the lab study 
TAGSwipe achieved an average text entry rate of 15.46 wpm 
and significantly outperformed conventional swipe-based and 
dwell-based methods in efficacy and user satisfaction. 
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CCS Concepts 
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INTRODUCTION 
Eye tracking has emerged as a popular technology to enhance 
interaction in areas such as medicine, psychology, marketing, 
and human-computer interaction [32, 14]. In HCI, research 
has investigated using eye tracking as a text entry methodology, 
often termed eye typing or gaze-based text entry [19]. Gaze-
based text entry is useful for individuals who are unable to 
operate a physical keyboard. However, there is a need to 
make gaze-based text entry more usable to gain acceptance 
of eye tracking for typing. There are still challenges due to 
performance, learning, and fatigue issues. 
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Gaze-based text entry is usually accomplished via an onscreen 
keyboard, where the user selects letters by looking at them for 
a certain duration called a dwell-time [20]. However, this is 
slow since the dwell period needs to be sufficiently long to 
prevent unintentional selections. Researchers have proposed 
alternate dwell-free interfaces like pEYE [9] or Dasher [41] en-
compassing customized designs and layouts. Although novel, 
these approaches are difficult to deploy due to constraints 
such as requiring too much screen space or extensive learn-
ing. There are recent dwell-free approaches using the famil-
iar QWERTY interface which rely on word-level gaze input. 
This is achieved by predicting the word based on fixation se-
quences [26] or the gaze path shape [17]. These approaches 
are promising since users do not select each letter; however, 
entry still requires explicit gaze gestures (look up/down, in-
side/outside of the key layout) for select and delete operations, 
and this hampers the efficacy and user experience. 

A usability challenge of current approaches is the learning re-
quired to achieve reasonable text entry speed, since users need 
to adapt to faster dwell-times, a customized typing interface, 
or specific gaze gestures. This is evident from the methodol-
ogy and results reported in the gaze-based text entry literature. 
Most approaches report the entry rate after several sessions 
and hours of training. For example, the text entry rate using 
dwell selection is about 10 wpm after 10 training sessions [19, 
34]. Continuous writing using Dasher was reported as 6.6 
wpm in the initial session, and reaches 12.4 wpm after eight 
sessions [34]. In addition to learnability, another challenge 
is discomfort and fatigue in continuous text entry using eye 
gaze. The reason is that the eye is a perceptual organ and is 
normally used for looking and observing, not for selecting. 
It is argued that if gaze is combined with manual input for 
interaction (gaze to look and observe and a separate mode for 
selection), the whole interaction process can become more 
natural and perhaps faster [16]. It would also take less time to 
learn and may be less tiring for the eyes. 

Previous work has shown that adding touch input to gaze-
based system allows faster pointing and selecting [5, 16, 44, 
13]. However, integrating gaze and touch for text entry is 
unexplored. The straightforward approach of replacing dwell 
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selection with touch selection for each letter (Touch+Gaze) 
amounts to a corresponding keystroke-level delay and adds 
an interaction overhead. Hence, to optimize the interaction, 
we propose TAGSwipe, a word-level text entry method that 
combines eye gaze and touch input: The eyes look from the 
first through last letter of a word on the virtual keyboard, with 
touch demarking the gaze gesture. In particular, the act of 
press and release signals the start and end of a word. The 
system records and compares the user’s gaze path with the 
ideal path of words to generate a top candidate word which 
is entered automatically when the user releases the touch. If 
the gaze point switches to the predicted word list, a simple 
touch gesture (left/right swipe) provides options for the user 
to select an alternate word. 

Our experiment, conducted with 12 participants, assessed 
TAGSwipe’s efficacy compared to gaze-based text entry ap-
proaches. The result yielded a superior performance with 
TAGSwipe (15.46 wpm) compared to EyeSwipe (8.84 wpm) 
and Dwell (8.48 wpm). Participants achieved an average entry 
rate of 14 wpm in the first session, reflecting the ease of use 
with TAGSwipe. Furthermore, the qualitative responses and 
explicit feedback showed a clear preference for TAGSwipe as 
a fast, comfortable, and easy to use text entry method. 

To the best of our knowledge, TAGSwipe is the first approach 
to word-level text entry combining gaze with manual input. 
In the experiment, a touchscreen mobile device was used 
for manual input; however, the TAGSwipe framework can 
work with any triggering device; and, so, TAGSwipe also 
stands for “Tag your device to Swipe for fast and comfortable 
gaze-based text entry”. The framework is feasible for people 
who lack fine motor skills but can perform coarse interaction 
with their hands (tap) [33, 27]. A majority of such users 
already use switch inputs and this can be used to support 
gaze interaction. Additionally, TAGSwipe could be effective 
for elderly users who cannot move their fingers fast enough 
on a physical keyboard or control a mouse cursor precisely. 
Furthermore, if the frequency of use is low, able-bodied users 
may also opt for a gaze-supported approach of text entry. 

BACKGROUND AND RELATED WORK 
This work was inspired by previous research on gaze-based 
text entry, hence we discuss the relevant dwell-based and 
dwell-free eye typing methods. In TAGSwipe we aim to map 
gaze gestures for word prediction, hence we discuss similar 
word-level text entry techniques. Our review includes multi-
modal approaches for gaze-based interaction, especially in the 
context of text entry using gaze and manual input. 

Dwell-based Methods 
Using dwell-time to select virtual keys letter by letter is a well 
established gaze-based text entry approach. Users enter a word 
by fixating on each letter for a specific duration [19, 38]. The 
method is intuitive but imposes a waiting period on the user 
and thereby slows the text entry process. Shorter dwell-times 
allow faster text entry rates, but this increases the risk of errors 
due to the “Midas Touch problem” [22]. Alternatively, there 
are adjustable or cascading dwell-time keyboards that change 
the dwell period according to the user’s typing rhythm [20]. 

Mott et al. [25] proposed a cascading dwell-time method using 
a language model to compute the probability of the next letter 
and adjust the dwell-time accordingly. In general, language 
models such as word prediction are effective in accelerating 
the text entry rate of dwell-time typing methods [40, 37, 4]. 

Dwell-free Methods 
An alternative to dwell-based methods is dwell-free typing. 
For dwell-free text entry, two kinds of gesture-based methods 
have been used: (i) gesture-based character-level text entry 
and (ii) gesture-based word-level text entry. For character-
level text entry, gaze gestures replace dwell-time selection of 
single characters [36]. Sarcar et al. [36] proposed EyeK, a 
typing method in which the user moves their gaze through 
the key in an in-out-in fashion to enter a letter. Wobbrock 
et al. [46] proposed EyeWrite, a stroke gesture-based system 
where users enter text by making letter-like gaze strokes based 
on the EdgeWrite alphabet [40] among the four corners of an 
on-screen square. Huckauf et al. [9] designed pEYEWrite, an 
expandable pie menu with letter groups; the user types a letter 
by gazing across the borders of the corresponding sections. 
Different variations of pEYEWrite approach were proposed 
using bi-gram model and word predictions [42]. Dasher [41] is 
a zooming interface where users select characters by fixating 
on a dynamically-sized key until the key crosses a boundary 
point. In a context-switching method [23], the keyboard in-
terface is replicated on two separate screen regions (called 
contexts), and character selection is made by switching con-
texts (a saccade to the other context). The duplication of con-
text requires extensive screen space, hence, further adaption 
of context switching method was proposed with the context 
being a single-line, a double-line, and a QWERTY layout with 
dynamically expanding keys [24]. 

The techniques just described are useful contributions in im-
proving gaze-based text entry. However, these systems are 
difficult to implement in practice due to screen space require-
ments and a steep learning curve. These issues may dissuade 
users from adopting the system. 

Word-level Text Entry 
Interfaces using a gaze gesture to type word-by-word have 
shown promise in eye typing. The Filteryedping interface 
asks the user to look at letters that form a word, then look at 
a button to list word candidates [26]. The user looks at the 
desired candidate and then looks back at the keyboard or at 
a text field. The system finds candidate words by filtering 
extra letters gazed at by the user. The words are subsets of 
the letter sequence and are sorted by length and frequency 
in a dictionary. Although Filteryedping handles extra-letter 
errors, it cannot handle other errors: If the user does not gaze 
at one or two letters of the intended word, the system fails to 
recommend the intended word. In practice, this is common in 
eye tracking due to issues with calibration and drift. Overshoot 
or undershoot in the saccades is another problem if the user 
does not precisely gaze at every letter in a word. In addition, 
an extra burden is imposed if the typing system requires users 
to gaze at all letters of a word. 

The word-path-based approach may overcome the limitations 
of the Filteryedping filter-based method, since it primarily 
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depends on the saccade pattern, rather than fixations on keys. 
The basic idea of word-path-based input is inspired from 
touch/pen/stylus text entry where gestures on a touch-screen 
virtual keyboard are mapped to words in a lexicon [12, 47]. 
With regard to eye typing, Kurauchi et al. [17] adapted this 
idea and proposed a gaze-path-based text entry interface, Eye-
Swipe. In EyeSwipe, words are predicted based on the trajec-
tory of a user’s gaze while the user scans through the keyboard. 
Users select the first and last letters of the word using a re-
verse crossing technique (when user looks at a key, a dynamic 
popup button appears above the key; the user looks at the 
button then looks back at the key), while just glancing through 
the middle characters. Words are selected from an n-best list 
constructed from the gaze path. Although promising, selec-
tion using reverse crossing is tedious. The frequent up-down 
gestures and the dynamic pop-up circle (action button) are a 
source of fatigue and confusion. It could also be difficult to 
select the action button because of eye tracking inaccuracy. 
Furthermore, for 1-character or 2-character words, multiple 
reverse-crossing selections is an interaction overload. 

Multimodal Methods 
Combining eye tracking with additional input has been used to 
enhance gaze-based interaction. In this regard, many studies 
explored the feasibility of adding manual input to gaze-based 
target acquisition [44]. Zhai et al. [5] presented MAGIC (Man-
ual And Gaze Input Cascade), which combined mouse and 
gaze input for fast item selection. In another method, Eye-
Point [16], used a keyboard hotkey to perform look-press-look-
release action for single target selection. Gaze+trigger [15] 
and look-and-shoot [3] use eye gaze to acquire a target and a 
physical button press to confirm the selection of each password 
digit. A more practical study by Pfeuffer et al. [29] combined 
gaze and touch in tablets to allow users to select by gaze and 
to manipulate by touching for map application. 

None of the above-mentioned multimodal approaches explored 
text entry. In fact, the multimodal approaches combining gaze 
with manual input for text entry are quite limited. There 
are some studies which substitute dwell-time with additional 
input for character-level selection. In this regard, Pfeuffer 
and Gellersen [30] demonstrated typing with one thumb while 
gazing at virtual keys on a tablet. However, there was no 
formal experiment or analysis of the text entry rate or accuracy. 
Hansen et al. [8] performed an experiment with Danish and 
Japanese text where participants entered characters using dwell 
and dwell+mouse. Multimodal dwell+mouse interaction was 
faster, 22 characters per minute (cpm) compared to 16.5 cpm 
for the dwell method. Meena et al. [21] conducted a character 
typing experiment for Indian language text using gaze and a 
soft switch. The gaze+switch method, at 13.5 cpm, performed 
better than the gaze-only method, at 10.6 cpm. 

There are further multimodal approaches for combining gaze 
with other modalities like voice [31, 43, 2], but the situations 
when these approaches may be used and when TAGSwipe may 
be used are so different that a comparison is not meaningful. 
For instance, using speech may be difficult with background 
noise or where the text should remain confidential in a shared 
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space. Furthermore, it is known that speech is adversely af-
fected in patients with motor neuron-diseases. 

TAGSWIPE 
In TAGSwipe we pursue the following basic principles to 
provide a fast, comfortable, and easy to learn, gaze-based text 
entry approach: 

• Natural interaction: Using the eyes for their normal be-
havior to look and observe; manual input (touch) to confirm. 

• Minimal effort: Using word-level input (rather than select-
ing each letter) to reduce the effort. 

• Traditional design: Using the familiar QWERTY layout 
to avoid learning a novel interface. 

It is natural for eyes to look at objects on a computer screen 
before selection [28]. In word-level text entry – words being 
the object for selection – the user passes her gaze over the 
letters of the target word. In this regard, Kristensson and Verta-
nen [11] conducted a simulation of dwell-free gaze-path based 
typing and found that word-level techniques have the poten-
tial to significantly improve text entry rates. However, their 
results are based on simulations, so it remains to be seen what 
performance gains might occur in practice. EyeSwipe [17] 
is a practical implementation of gaze-path-based word-level 
text entry, where user glances through the letters of a word. 
However, it uses an unnatural gaze gesture (reverse crossing) 
for selection, thus hampering the potential of word-level text 
entry. The interaction process involves explicit eye movements 
for two different purposes in a short time span. 

Our aim is to not overload the eyes, yet maximize the benefit of 
word-level text entry. Hence, we propose using a touch press-
release gesture to signal the start and end of a word, which 
is essential for word-level input. To further minimize user 
effort, we use simple touch gestures (left/right/down swipe) for 
selecting alternate predicted words or for the delete operation. 
In summary, the design of TAGSwipe aims at combining the 

Figure 1: TAGSwipe main functionality system design 
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Figure 2: TAGSwipe text entry interface. a) Fixate on the first letter of the desired word. b) Activate swipe mode by touch press on 
the connected device. c) Glance through the intermediate letters. d) Fixate on the last letter and select the top-level candidate by 
touch release, or select other candidates by swiping to right or left, or swipe down to cancel. e) If desired, change the last inserted 
word. f) Delete the last inserted word by looking at the backspace key along with a touch tap (swipe down is also used to remove 
the typed word). 

simplicity and accuracy of touch gestures with the speed of 
natural eye movement. 

The TAGSwipe system design is shown in Figure 1. As 
sketched in the figure, TAGSwipe has three states: idle, swipe, 
and selection. When the system detects a touch press while 
the user’s gaze is on a letter, swipe mode is activated. Letters 
are collected according to the user’s gaze path. The word 
gesture recognition stage calculates candidate words based on 
the gaze path. Results appear on top of the letter, showing the 
top-level word choice and candidates. A final touch gesture 
either selects the top-level candidate (release) or deactivates 
swipe mode (swipe down). The system then returns to the idle 
state waiting for the entry of the next word, or de-selection or 
replacement of the last word with other candidates. 

Interface Design 
The TAGSwipe interface is composed of a text field and a 
virtual QWERTY keyboard. See Figure 2.1 With reference to 
the figure, a word is typed as follows. First, the user fixates 
on the first letter and confirms the action by a touch-press. 
The user then glances through the middle letters of the word. 
Upon reaching the last letter, the gaze gesture is terminated 
with a touch-release. Even if the user misses some of the 
intermediate letters, the system may still find the intended 
word. The first and last letters are used by the system to filter 
the lexicon. The corresponding gaze path is used to compute 
the candidate words. A candidate list containing the top three 
ranked words pops up above the last letter key. See Figure 3. 

1The QR code at the top-left of the interface is used to authenticate 
an external device for touch input. This could be a mobile phone or 
any other detachable device having press-release capability. 
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Figure 3: a) Suggested candidates appear above the last letter. 
b) Selection of punctuation is performed by simple touch 
gestures. 

The most probable candidate is placed at the center of the list, 
with the second most probable on the left and the third on the 
right. On touch-release, the most probable word is added to 
the written text. Alternatively, the user can select one of the 
other candidates by swiping to the right or left. This method 
helps address ambiguity in swipe-typing for words having 
similar paths. Swipe down deletes a typed word or cancels a 
gaze path. If the desired word is not in the candidate list, the 
user can check an alternate candidate list appearing below the 
input text field. This list contains the five most probable words 
sorted left to right. The alternative candidates can be selected 
by look and tap. 

In the QWERTY interface, keys are shown without borders for 
two reasons. First, in the prototype evaluation we found that 
borders around keys give the impression of clickable buttons 
and, hence, users tried to fixate on keys rather than just glance 
on them. Second, borderless keys drive the user’s gaze toward 
the center of the letter detection area, which helps in recording 
a more accurate gaze path. The sensitive area for a key is not 
limited to the key size and is larger, using all the free space 
between the letters. 

Word Gesture Recognition 
TAGSwipe utilizes gaze paths to compute candidate words. 
There are several methods for using gaze paths to generate can-
didate words. Dynamic time warping (DTW) is widely used in 
gesture and input pattern recognition for comparing two time 
sequences [45]. The DTW algorithm has a time and space 
complexity of O (M*N), where M and N are the lengths of 
each time sequence. There are alternative techniques to com-
pare the distance between the user’s gaze path and candidate 
words, for example, the Fréchet distance [7]. However, we 
implemented the gesture-word recognition following Kurauchi 
et al. [17]. This is described below. 

To compute DTW, a dynamic programming algorithm was 
used. See Algorithm 1. The algorithm was adopted from 
Sakoe and Chiba [35]. Two time series are used, X = (x1, x2, 
...xn ) and Y = (y1, y2, ...ym). X is the user-swiped path and Y 
is the path of a possible candidate. We get a list of candidates 
after filtering the lexicon by the first and last letter of the 
swiped path. The algorithm builds the distance matrix with 
the dimensions of X and Y. The algorithm output represents 
the DTW distance between X and Y. After the calculation 

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

of DTW distances for each candidate, the filtered candidates 
from the lexicon are sorted according to their score. The top n 
candidates are then ranked and represented in the interface. 

Algorithm 1 Dynamic Time Warping 

1: procedure DTW(X ,Y) . X and Y are sequences of 
direction points 

2: dtw ← New [m ∗ n] . m = |X| and n = |Y| 
3: dtw[1,1] ← 0 
4: for i ← 1 to m do 
5: for j ← 1 to n do 
6: dtw[i, j] ← distance(xi,y j) + min(dtw[i, j − 

1], dtw[i− 1, j], dtw[i− 1, j − 1]) 
7: return dtw[m,n] 

EXPERIMENTAL EVALUATION 
The main focus of this paper is to enhance the efficacy of 
gaze-based text entry. We now discuss our methodology to 
assess the performance and usability of the TAGSwipe method 
against other methods for gaze-based text entry. Three input 
methods were compared: 

1. Dwell – a traditional gaze-only character-level method 
(baseline). 

2. EyeSwipe – a gesture-based word-level method [17]. 

3. TAGSwipe – our method. 

Participants 
Twelve participants (5 males and 7 females; aged 21 to 36, 
mean = 28.83, SD = 4.26) were recruited. All were university 
students. Vision was normal (uncorrected) for seven partic-
ipants, while one wore glasses and four used contact lenses. 
Four participants had previously participated in studies with 
eye tracking, but these studies were not related to text entry. 
The other eight participants had never used an eye tracker. All 
participants were familiar with the QWERTY keyboard (mean 
= 6, SD = 1.12, on the Likert scale from 1 = not familiar to 7 
= very familiar) and were proficient in English (mean = 6.08, 
SD = 0.9, from 1 = very bad to 7 = very good) according to 
self-reported measures. The participants were paid 25 euros 
for participating in the study. To motivate participants, we 
informed them that the participant with the best performance 
(measured by both speed and accuracy of all three methods 
together) would receive an additional 25 euros. 

Apparatus 
Testing employed a laptop (3.70 GHz CPU, 16GB RAM) 
running Windows 7 connected to a 24" LCD monitor (1600 × 
900 pixels). Eye movements were tracked using a SMI REDn 
scientific eye tracker with tracking frequency of 60 Hz. The 
eye tracker was placed at the lower edge of the screen. See 
Figure 4. No chin rest was used. The eye tracker headbox as 
reported by the manufacturer is 50 cm × 30 cm (at 65 cm). 

The keyboard interfaces were implemented as graphical 
Web application in Javascript NodeJs2 using the Express.js 
2https://nodejs.org/ 
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Figure 4: Experimental setup: A participant performing the 
experiment using TAGSwipe on a laptop computer equipped 
with an eye tracker and touch-screen mobile device. 

framework3. The Web application was run in GazeTheWeb 
browser [22]. All keyboards shared the same QWERTY lay-
out. EyeSwipe interaction was implemented using the method 
described by Kurauchi et al. [17]. We used DTW for word-
gesture recognition in both EyeSwipe and TAGSwipe imple-
mented in the Django REST framework4. The dwell-time key-
board word suggestion algorithm was built on top of a prefix-
tree data structure. The lexicon was the union of Kaufman’s 
lexicon [10] and the words in the MacKenzie and Soukoreff 
phrase set [18]. The dwell-time for Dwell method was 600 ms, 
following Hansen et al. [8]. Selection of suggestion/letter was 
confirmed by filling the key area, no audio/tactile feedback 
was included. 

Procedure 
The study was conducted in a university lab with artificial 
illumination and no direct sunlight. Figure 4 shows the experi-
mental setup. Each participant visited the lab on three days. To 
minimize learning or fatigue bias, only one input method was 
tested each day. Upon arrival, each participant was greeted and 
given an information letter as part of the experimental protocol. 
The participant was then given a pre-experiment questionnaire 
soliciting demographic information. Before testing, the eye 
tracker was calibrated. 

For each method, participants first transcribed five practice 
phrases to explore and gain familiarity with the input method. 
The phrases were randomly sampled from the MacKenzie 
and Soukoreff phrase set [18] and shown above the keyboard. 
After transcribing a phrase, participants pressed the “Space” 
key to end the trial. 

For formal testing, participants transcribed 25 phrases, five 
phrases in each of five sessions. They were allowed a short 
break between sessions. The instructions were to type fast and 
accurately, at a comfortable pace. 

3https://expressjs.com/ 
4https://www.django-rest-framework.org/ 
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After completing the trials, participants completed a ques-
tionnaire to provide subjective feedback on perceived speed, 
accuracy, comfort, learnability, and overall preference. The 
questions were crafted as, for example, “how would you rate 
the accuracy of the method” with responses on 7-point Likert 
scale. There was also space for additional feedback for im-
provement of the three methods and open-ended remarks. The 
experiment took about 45-55 minutes each day (per method) 
for each participant. 

Design 
The experiment was a 3 × 5 within-subjects design with the 
following independent variables and levels: 

• Input Method (TAGSwipe, EyeSwipe, Dwell) 

• Sessions (1, 2, 3, 4, 5) 

The variable Session was included to capture the participants’ 
improvement with practice. 

The dependent variables were entry rate (wpm), error rate (%), 
and backspace usage (number of backspace events / number 
of characters in a phrase). Error rate was measured using the 
MSD metric for the character-level errors in the transcribed 
text [39]. 

To offset learning effects, the three input methods were coun-
terbalanced with participants divided into three groups as per 
a Latin square. Thus, “Group” was a between-subjects in-
dependent variable with three levels. Four participants were 
assigned to each group. 

The total number of trials was 2,160 (=12 participants × 3 
input methods × 5 sessions × 5 trials/session). 

Results 
The results are provided organized by dependent variable. For 
all the dependent variables, the group effect was not significant 
(p > .05), indicating that counterbalancing had the desired 
result of offsetting order effects between the three methods. 

Entry Rate 
Text entry rate was measured as words per minute (wpm), 
with a word defined as five characters. The grand mean for 
entry rate was 10.9 wpm. By input method, the means were 
15.4 wpm (TAGSwipe), 8.82 wpm (EyeSwipe), and 8.48 wpm 
(Dwell). Using an ANOVA, the differences were statistically 
significant (F2,18 = 86.66, p < .0001). Importantly, the entry 
rate for TAGSwipe was more than 70% higher than the entry 
rates for the other two methods. 

Participant learning was evident with the session means in-
creasing from 9.51 wpm in session 1 to 11.7 wpm in session 
5. The improvement with practice was also statistically sig-
nificant (F4,36 = 12.89, p < .0001). The entry rates for the 
three input methods over the five sessions are shown in Fig-
ure 5. There was no significant Input Method × Session 
effect (F8,72 = 1.03, p > .05), however, indicating that train-
ing did not provide an advantage for one method over the 
other. TAGSwipe remained significantly faster method across 
all sessions. 
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Figure 5: Entry rate (wpm) by input method and session. Error 
bars indicate Standard Error. 

Every participant reached an average text entry rate of 15 wpm 
using TAGSwipe in at least one of the sessions (indicating 
the potential of TAGSwipe with every individual). In com-
parison, some of the participants only reached 7 wpm using 
EyeSwipe and Dwell. The maximum entry rates achieved in a 
session were 20.5 wpm for TAGSwipe (P12), 14.2 wpm for 
EyeSwipe (P12), and 11.7 wpm for Dwell (P6). 

There is a considerable drop in entry rate during session 3 for 
the EyeSwipe method. Detailed analyses revealed that some 
participants in session 3 removed many words to correct a 
mistake at the beginning of a sentence. This is also reflected 
in the EyeSwipe error rate, and in selection accuracy of the 
first and last letter, described in the following section. 

Error Rate 
The grand mean for error rate was 4.94%. By input method, 
the means were 2.68% (TAGSwipe), 5.64% (EyeSwipe), and 
6.53% (Dwell). Although TAGSwipe was more accurate 
on average, the differences were not statistically significant 
(F2,18 = 3.137, p > .05). The error rates for the three input 
methods over the five sessions are shown in Figure 6. There 
was no significant reduction of errors over the five sessions, 
as the effect of session on error rate was also not statistically 
significant (F4,36 = 2.223, p > .05). There was no significant 
Input Method × Session effect (F8,72 = 0.767, ns). 

Backspace 
Backspace usage indicates the number of corrections per-
formed per character before confirming a sentence. It reflects 
the corrections participants needed to make when they acciden-
tally selected a wrong letter or wrong word. The grand mean 
for backspace usage was 0.05, implying about 1 correction 
every 20 characters. By input method, the means were 0.02 
(TAGSwipe), 0.04 (EyeSwipe), and 0.10 (Dwell). The differ-
ences were statistically significant (F2,18 = 4.686, p < .05). 
There was no significant Input Method × Session effect 
(F8,72 = .997, ns), however. Again, TAGSwipe revealed supe-
rior performance compared to EyeSwipe and Dwell, this time 
with the backspace dependent variable. 

Figure 6: Error rate (%) by input method and session. Error 
bars indicate Standard Error. 

The significantly high backspace usage in Dwell is due to its 
character-level methodology, as backspace only removes one 
letter at a time; however, for TAGSwipe and EyeSwipethe use 
of backspace removes the last inserted word. Therefore, the 
rate of backspace activation is not a good metric to compare 
word-level text entry, and hence we discuss the specific inter-
action behaviour concerning TAGSwipe and EyeSwipe in the 
following section. 

Word-level Interaction Statistics 
Word-level interaction was examined for the TAGSwipe and 
EyeSwipe methods. (Recall that the Dwell method operated at 
the character-level.) For word-level text entry, the correction 
rate reflects the number of times words were deleted [17]. Sit-
uations where this occurred include a wrong last letter or no 
candidates matching the gaze path. Correction rate was calcu-
lated for each phrase as: the number of deleted words divided 
by the number of entered words. The average correction rate 
was 11.9% with TAGSwipe and 21.6% with EyeSwipe. The 
correction rates over the five sessions are shown in Table 1. 

The selection of the first and last letters imposes hard con-
straints on word candidates and is a critical factor for word-
level entry. In our experiment, when the user selected the first 
and last letter correctly the top 3 candidates comprised the 
desired word 98% of times. Unintentionally selecting a wrong 
first or last letter of a word was the most common cause of 
errors with TAGSwipe and EyeSwipe. Bear in mind that the 
main issue is not the participants’ spelling skill, but, rather, 
the system’s accuracy in recording the letter corresponding to 
the participant’s intention. We computed selection accuracy 
as: the number of correctly selected first and last characters 
divided by total number of selections. The overall selection ac-
curacy for the first and last letter in a word by reverse crossing 
with EyeSwipe was 82.9%. For TAGSwipe, which uses touch 
select, the corresponding selection accuracy was 89.9%. The 
mean selection accuracy by session is also shown in Table 1. 

TAGSwipe also provides the possibility to choose second- and 
third-ranked candidate words using left/right swipe gestures. 
Of the total word-level entries using press-release, participants 
used the swipe gesture 3% of the time while releasing the touch 
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Table 1: Means over five sessions for correction rate and selection accuracy (of first and last letters of words) 

1 2 3 4 5 

Correction rate TAGSwipe 
EyeSwipe 

16.25 
27.15 

12.09 
16.24 

10.87 
25.9 

10.1 
16.2 

10.15 
22.3 

Selection accuracy TAGSwipe 
EyeSwipe 

85.26 
80.86 

90.85 
84.49 

90.70 
76.16 

89.87 
86.01 

92.76 
87.14 

(70% of those were swipe left). Such low usage we attribute 
to two reasons: (i) the top candidate often appeared, and (ii) 
participants sometimes forgot to use the specific left/right 
gesture. 

Subjective Feedback 
We solicited participants’ feedback on their overall perfor-
mance, comfort, speed, accuracy, and ease of use. Question-
naire responses were on a 7-point Likert scale. Higher scores 
are better. See Figure 7. 

Participants believed TAGSwipe had a better overall perfor-
mance (mean = 6.41) than the EyeSwipe (mean = 4.83) and 
Dwell (mean = 3.75). On all other measures of speed, accuracy, 
comfort, and ease of use, TAGSwipe was judged significantly 
better than other two methods. As shown in Figure 7, partic-
ipants evaluated TAGSwipe better, faster and more accurate 
than the EyeSwipe and Dwell methods, which is also aligned 
with the quantitative measures. Dwell was considered a bit 
easier to learn in comparison with EyeSwipe. 

We also asked participants their overall preference on which 
method they would like to use for text entry. Ten participants 
selected TAGSwipe as their preferred method, two opted for 
EyeSwipe. The preference of TAGSwipe was primarily based 
on efficacy, less fatigue, and the inherent experience of touch – 

Figure 7: Subjective response (1 to 7) by input method and 
questionnaire item. Higher scores are better. Error bars indi-
cate Standard Error. 

looking across the keys – and lift. This was evident from the 
feedback about TAGSwipe . Participant 10 (P10) stated “a 
great idea using a secondary device to activate swipe mode, 
being able to freely look around in the screen is very relax-
ing. Even for people with disability. A secondary form of 
activation may vary. It would be nice to see experiments with 
exotic activation forms like foot switches etc.”. P4 commented 

“TAGSwipe was forgiving more errors, even if the letters weren’t 
hit correctly the word was still in the suggestions”. P7 (who 
chose EyeSwipe as her preferred text entry method) was criti-
cal for TAGSwipe method “It is hard to find the right timing 
to synchronize your gaze with the touch interaction”. How-
ever the text entry rate of P7 was still better using TAGSwipe 
compared to EyeSwipe. 

There were also some specific feedback about EyeSwipe. Par-
ticipant P11 commented that "Up and down movement on the 
key takes effort and causes errors too". Also, P11 noted that 

“it is difficult to swipe over some words when the letter you need 
is behind the pop up”. P9 stated that “deleting a word should 
be easier”. 

Regarding Dwell, most comments related to the dwell interval. 
Three participants mentioned that 600 ms was too fast for 
them to react in time and caused them to repeat letters uninten-
tionally. Two participants had a contrary opinion, noting that 
a shorter dwell interval would allow them to type faster. P1 
suggested that “When entering a letter hearing some sound 
feedback will be a nice feature to have”. 

DISCUSSION 
The proposed TAGSwipe method, showed commendable per-
formance with the average entry rate of 15.4 wpm. This was 
74% faster than the recently proposed gaze-based word-level 
method known as EyeSwipe, and 82% faster than the com-
monly used Dwell method. Figure 5 also shows the consis-
tency in entry rate of TAGSwipe with low standard deviations; 
that is, all participants consistently achieved good speed with 
TAGSwipe. More importantly, there was no extensive learn-
ing required to adapt to the interface and the interaction with 
TAGSwipe. Notably, participants achieved a mean text en-
try rate of 14 wpm in the first session! Usually to achieve 
such speed, extensive training is required in a gaze-based 
text entry [34, 26, 42]. The average uncorrected error rate of 
2.68% with TAGSwipe was 52% lower than EyeSwipe and 
58% lower than Dwell. Participants learned to make fewer 
errors using TAGSwipe as the error rate in the final session 
was only 1.9% compared to 4.7% in the first session. On 
average, the error rates in the entire experiment (4.68%) are a 
bit high. This could be due to factors such as participant and 
device characteristics. All participants were non-native En-
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glish speakers. The precision and accuracy of the eye tracking 
device itself also contributes to errors, as experienced in most 
gaze interactive applications [6, 19]. 

Although both TAGSwipe and EyeSwipe are gaze-path-based 
word-level methods, EyeSwipe performance was significantly 
poorer due to several reasons. Two kinds of eye gestures are 
needed in EyeSwipe: natural gestures to look over the keys, 
and explicit eye gestures for input actions (up/down). This 
requires additional participant attention and causes potential 
confusion due to the dynamic appearance of pop-up action 
buttons. This is evident in the word-level interaction statistics: 
The correction rates were higher for EyeSwipe compared to 
TAGSwipe. Additionally, the selection accuracy of the first 
and last letters (critical for word-path input) was also affected 
in EyeSwipe and was lower than with TAGSwipe. Also, the 
subjective feedback highlighted participants dissatisfaction 
with reverse crossing. Furthermore, EyeSwipe only presents 
the top candidate word (shown on the pop-up action button); 
however, TAGSwipe offers three candidate words above the 
key. The lower performance of Dwell was mainly due to 
the dwell period imposing interaction constraints. For some 
participants it was slow and limited their typing speed, and for 
others it was too fast and impacted their accuracy, as evident 
from the high error rates and backspace events. 

It is interesting to note that in the original EyeSwipe paper [17] 
a higher text entry rate was reported for EyeSwipe compared 
to our experiment. The difference could be attributed to ex-
perimental settings including the participant characteristics, 
apparatus, and ambience. We had non-native English speak-
ers (in the EyeSwipe study, 8 of 10 participants were native 
speakers). Furthermore, the eye tracker device and monitor 
size were notably different. If these variables affected the 
performance of EyeSwipe, it would also limit the TAGSwipe 
potential since the mentioned conditions were constant across 
methods. The experimental settings might cause the average 
reported results to vary somewhat, but the difference between 
methods should be comparable. Furthermore, in our experi-
ment the differences between EyeSwipe and Dwell were not 
that significant (in comparison to original EyeSwipe study). 
This could be due to Kurauchi et al.’s Dwell method [17] not 
having a text prediction feature, which makes the comparison 
somewhat unfair since all keyboards in practice include a pre-
diction engine. In the Dwell method of our experiment, 66% 
of the words were selected from the word suggestions. 

The subjective results were aligned with the reported quantita-
tive measures: All participants rated TAGSwipe significantly 
faster and more accurate compared to EyeSwipe or Dwell. 
More importantly, participants found TAGSwipe more com-
fortable and easier to learn than EyeSwipe or Dwell. The 
continuous gaze-based writing with EyeSwipe was tiring, as 
reflected in participant comments. During the experiment ses-
sions, participants were observed to take longer breaks with 
EyeSwipe or Dwell. However, for TAGSwipe they appreci-
ated the possibility to look freely on the screen and do explicit 
selections with touch. They also enjoyed the playful experi-
ence of swiping with eyes bracketed by press-release touch 
interaction. 

The experiment results indicate that TAGSwipe achieved sub-
stantially better performance in comparison to EyeSwipe and 
Dwell. Furthermore, the reported performance of TAGSwipe 
is on par with other state-of-the-art gaze-based text entry ap-
proaches. In Table 2 we briefly summarize the most prominent 
approaches of the last decade, providing a comparison of text 
entry rates achieved and the training required. To assess ease 
of use, we include the entry rate in the first session. It is evi-
dent that users quickly learn TAGSwipe (14 wpm in the first 
session) compared to other methods. To achieve an average 
entry rate of 14-15 wpm, most of the methods require subtan-
tial training. In comparison, TAGSwipe achieves 15.46 wpm 
merely after five practice phrases. 

Assessing the Multimodal Aspect 
Besides the comparison with gaze-based text entry, we ar-
gue that TAGSwipe’s multimodal approach (combining gaze 
and touch for word-level input) is more effective than a con-
ventional multimodal approach (Touch+Gaze) for character-
level entry [30, 8, 15]. Touch+Gaze imposes a constraint on 
end users by requiring a confirmation signal at the character-
level; this limits the typing speed. The hand-eye coordina-
tion required for each letter is also a factor, affecting and 
limiting the performance of Touch+Gaze. As discussed in 
Section 2.3, none of the multimodal approaches reported the 

Table 2: Summary of text entry rates from the eye typing 
literature of the last decade. Some results are inferred from 
the figures and other data available in the original papers, 
this is indicated by the ∼ symbol. Avg. WPM is the mean 
text entry rate reported over all sessions (some papers only 
reported the mean of last session/s and hence are mentioned 
in parentheses). Practice time correlates with the approximate 
training effort required by participants to achieve the Avg/ 
WPM in the second column. The third column indicates text 
entry rate achieved in the first session 

Method Avg. WPM 1st WPM Practice Time 

Context switching 
(CS) (2010) [23] 12 ∼ 7 5 min 

pEYEWrite (2010) 
[42] 

7.34 
(last 3 session) 6 5 min + 51 phrases 

pEYEWrite with Bi-
grams and Word pre-
diction (2010) [42] 

13.47 
(last 3 session) - 15 min + 153 phrases 

EyeK (2013) [36] 6.03 - 45 min 

Dasher (2014) [34] 12.4 
(last session) 6.6 90 min 

Dasher with ad-
justable dwell 
(2014) [34] 

14.2 
(last session) 8.2 120 min 

Filteryedping 
(2015) [26] 

15.95 
(last session) - 100 min 

AugKey (2016) [4] 15.31 
(last 3 session) ∼ 11.8 5 phrases + 36 min 

EyeSwipe 
(2016) [17] 11.7 9.4 2 phrases 

Cascading dwell-
time (2017) [25] 12.39 ∼ 10 20 phrases 

CS with dynamic 
targets - QWERTY 
layout (2018) [24] 

13.1 11.87 5 min 

TAGSwipe 15.46 14 5 phrases 
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text entry rate in a formal experiment. Therefore, to confirm 
the preeminence of TAGSwipe, we conducted a small-scale 
study with four participants (four sessions each) comparing 
TAGSwipe with Touch+Gaze. As expected, the results indi-
cated that the alliance of gaze and touch with an optimized 
word-level approach in TAGSwipe can provide better perfor-
mance. TAGSwipe achieved 30% faster text entry rate than 
Touch+Gaze. Average error rate was 1.15% with TAGSwipe, 
and 2.04% with Touch+Gaze. All four participants appreci-
ated the automated word-level support in TAGSwipe compared 
to the manual effort required in Touch+Gaze to select each 
character. 

For real-world deployment of TAGSwipe, it is feasible to have 
Touch+Gaze as a fall-back option for character-level input 
when new words do not appear in the candidate list. Once 
the word is entered using Touch+Gaze, it would be added in 
the dictionary for future candidate generation. However, it 
is noteworthy that for other word-level dwell free methods 
such as EyeSwipe and Filteryedping the only fall-back option 
for new words could be the Dwell method for character-level 
input, which would be a different interaction, and potentially 
confusing. 

CONCLUSIONS AND FUTURE WORK 
Performance, learning, and fatigue issues are the major ob-
stacles in making eye tracking a widely accepted text entry 
method. We argue that a multimodal approach combining gaze 
with touch makes the interaction more natural and potentially 
faster. Hence, there is a need to investigate how best to com-
bine gaze with touch for more efficient text entry. However, 
currently there are no optimized approaches or formal exper-
iments to quantify multimodal gaze and touch efficiency for 
text entry. 

In this paper, we presented TAGSwipe, a novel multimodal 
method that combines the simplicity and accuracy of touch 
with the speed of natural eye movement for word-level text 
entry. In TAGSwipe, the eyes look from the first through 
last letters of a word on the virtual keyboard, with manual 
press-release on a touch device demarking the word. The 
evaluation demonstrated that TAGSwipe is fast and achieves 
significantly higher text entry rate than the popular gaze-based 
text entry approach of Dwell, and the gaze-path-based word-
level approach of EyeSwipe. Participants found TAGSwipe 
easy to use, achieving 14 wpm in the first session. TAGSwipe 
was the preferred choice of participants and received higher 
scores on the subjective measures. 

We showcased the potential of word-level text entry using eye 
gaze and touch input. However, the applicability of TAGSwipe 
goes beyond input on the touchscreen mobile device used in 
our experiments. The underlying notion is to assist gaze swipe 
via manual confirmation, which can be performed by other 
means of physical movement or trigger devices. Foot-based 
interaction could be a natural extension of TAGSwipe. This 
was tested with an eager volunteer who performed five ses-
sions with TAGSwipe, substituting the foot (using the same 
experimental setup) for the touch function. The participant 
achieved an average entry rate of 14.6 wpm with 2.3% errors. 
This indicates the feasibility of using TAGSwipe with other 

physical modalities; however a formal study with more par-
ticipants is required to confirm the hypothesis. This is also 
aligned with our future work, which is to investigate the feasi-
bility of TAGSwipe in supporting text entry for people with 
a motor impairment who perform input via a physical input 
device, such as a switch, foot pedal, joystick, or mouthstick. 

Considering the practical applications, there are a wide variety 
of user groups operating touch-screen tablets with eye-gaze 
control5. We envision that TAGSwipe could be deployed as 
a text entry mechanism in such gaze and touch supported 
interaction. Eye tracking technology is continuously evolving 
for mobile devices. If precise tracking is possible, end users 
can use the gaze swipe gesture, and confirm it with a simple 
touch in the corner of the mobile screen. Gaze and touch 
inputs are also common in virtual reality and augmented reality 
systems [1], where the proposed use of gaze path and touch 
interaction can be applied. 

ACKNOWLEDGMENTS 
We would like to thank our colleague Raphael Menges (Uni-
versity of Koblenz-Landau) for his technical advises during 
the implementation phase. We would also like to thank all 
the participants for their effort, time, and feedback during the 
experiment. 

REFERENCES 
[1] Sunggeun Ahn and Geehyuk Lee. 2019. Gaze-assisted 

typing for smart glasses. In Proceedings of the ACM 
Symposium on User Interface Software and Technology 
(UIST ’19). ACM, New York, 857–869. DOI: 
http://dx.doi.org/10.1145/3332165.3347883 

[2] Tanya René Beelders and Pieter J Blignaut. 2012. 
Measuring the performance of gaze and speech for text 
input. In Proceedings of the ACM Symposium on Eye 
Tracking Research and Applications (ETRA ’12). ACM, 
New York, 337–340. 

[3] Alexander De Luca, Roman Weiss, and Heiko Drewes. 
2007. Evaluation of eye-gaze interaction methods for 
security enhanced PIN-entry. In Proceedings of the 19th 
Australasian Conference on Computer-Human 
Interaction (OzCHI ’07). ACM, New York, 199–202. 
DOI:http://dx.doi.org/10.1145/1324892.1324932 

[4] Antonio Diaz-Tula and Carlos H. Morimoto. 2016. 
AugKey: Increasing foveal throughput in eye typing 
with augmented keys. In Proceedings of the ACM 
SIGCHI Conference on Human Factors in Computing 
Systems (CHI ’16). ACM, New York, 3533–3544. DOI: 
http://dx.doi.org/10.1145/2858036.2858517 

[5] Heiko Drewes and Albrecht Schmidt. 2009. The 
MAGIC touch: Combining MAGIC-pointing with a 
touch-sensitive mouse. In IFIP Conference on 
Human-Computer Interaction. Springer, Berlin, 
415–428. 

[6] Anna Maria Feit, Shane Williams, Arturo Toledo, Ann 
Paradiso, Harish Kulkarni, Shaun Kane, and 

5https://www.tobiidynavox.com/products 

Paper 190 Page 10

http://dx.doi.org/10.1145/3332165.3347883
http://dx.doi.org/10.1145/1324892.1324932
http://dx.doi.org/10.1145/2858036.2858517
https://www.tobiidynavox.com/products


 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Meredith Ringel Morris. 2017. Toward everyday gaze 
input: Accuracy and precision of eye tracking and 
implications for design. In Proceedings of the ACM 
SIGCHI Conference on Human Factors in Computing 
Systems (CHI ’17). ACM, New York, 1118–1130. DOI: 
http://dx.doi.org/10.1145/3025453.3025599 

[7] M Maurice Fréchet. 1906. Sur quelques points du calcul 
fonctionnel. Rendiconti del Circolo Matematico di 
Palermo (1884-1940) 22, 1 (1906), 1–72. 

[8] John Paulin Hansen, Anders Sewerin Johansen, 
Dan Witzner Hansen, Kenji Itoh, and Satoru Mashino. 
2003. Command without a click: Dwell time typing by 
mouse and gaze selections. In Proceedings of 
Human-Computer Interaction–INTERACT. Springer, 
Berlin, 121–128. 

[9] Anke Huckauf and Mario Urbina. 2007. Gazing with 
pEYE: New concepts in eye typing. In Proceedings of 
the 4th Symposium on Applied Perception in Graphics 
and Visualization (APGV ’07). ACM, New York, 
141–141. DOI: 
http://dx.doi.org/10.1145/1272582.1272618 

[10] Josh Kaufman. 2015. Google 10000 english. (2015). 

[11] Per Ola Kristensson and Keith Vertanen. 2012. The 
potential of dwell-free eye-typing for fast assistive gaze 
communication. In Proceedings of the ACM Symposium 
on Eye Tracking Research and Applications (ETRA ’12). 
ACM, New York, 241–244. 

[12] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK 2: 
a large vocabulary shorthand writing system for 
pen-based computers. In Proceedings of the ACM 
Symposium on User Interface Software and Technology 
(UIST ’04). ACM, New York, 43–52. 

[13] Chandan Kumar, Daniyal Akbari, Raphael Menges, 
Scott MacKenzie, and Steffen Staab. 2019. 
TouchGazePath: Multimodal interaction with touch and 
gaze path for secure yet efficient PIN entry. In 2019 
International Conference on Multimodal Interaction 
(ICMI ’19). ACM, New York, 329–338. DOI: 
http://dx.doi.org/10.1145/3340555.3353734 

[14] Chandan Kumar, Raphael Menges, and Steffen Staab. 
2016. Eye-controlled interfaces for multimedia 
interaction. IEEE MultiMedia 23, 4 (Oct 2016), 6–13. 
DOI:http://dx.doi.org/10.1109/MMUL.2016.52 

[15] Manu Kumar. 2007. USER INTERFACE DESIGN. May 
(2007). 

[16] Manu Kumar, Andreas Paepcke, Terry Winograd, and 
Terry Winograd. 2007. EyePoint: practical pointing and 
selection using gaze and keyboard. In Proceedings of the 
ACM SIGCHI Conference on Human Factors in 
Computing Systems (CHI ’07). ACM, New York, 
421–430. 

[17] Andrew Kurauchi, Wenxin Feng, Ajjen Joshi, Carlos 
Morimoto, and Margrit Betke. 2016. EyeSwipe: 
Dwell-free text entry using gaze paths. In Proceedings 
of the ACM SIGCHI Conference on Human Factors in 

Computing Systems (CHI ’16). ACM, New York, 
1952–1956. DOI: 
http://dx.doi.org/10.1145/2858036.2858335 

[18] I Scott MacKenzie and R William Soukoreff. 2003. 
Phrase sets for evaluating text entry techniques. In 
Extended Abstracts of the ACM SIGCHI Conference on 
Human Factors in Computing Systems (CHI ’03). ACM, 
New York, 754–755. 

[19] Päivi Majaranta. 2012. Communication and text entry by 
gaze. In Gaze interaction and applications of eye 
tracking: Advances in assistive technologies. IGI Global, 
63–77. 

[20] Päivi Majaranta, Ulla-Kaija Ahola, and Oleg Špakov. 
2009. Fast gaze typing with an adjustable dwell time. In 
Proceedings of the ACM SIGCHI Conference on Human 
Factors in Computing Systems (CHI ’09). ACM, New 
York, 357–360. DOI: 
http://dx.doi.org/10.1145/1518701.1518758 

[21] Yogesh Kumar Meena, Hubert Cecotti, K Wong-Lin, 
and Girijesh Prasad. 2016. A novel multimodal 
gaze-controlled hindi virtual keyboard for disabled users. 
In 2016 IEEE International Conference on Systems, 
Man, and Cybernetics (SMC ’16). IEEE, New York, 
3688–3693. 

[22] Raphael Menges, Chandan Kumar, and Steffen Staab. 
2019. Improving user experience of eye tracking-based 
interaction: Introspecting and adapting interfaces. ACM 
Transactions on Computer-Human Interaction 26, 6, 
Article 37 (Nov. 2019), 46 pages. DOI: 
http://dx.doi.org/10.1145/3338844 

[23] Carlos H. Morimoto and Arnon Amir. 2010. Context 
Switching for Fast Key Selection in Text Entry 
Applications. In Proceedings of the 2010 Symposium on 
Eye-Tracking Research Applications (ETRA ’10). 
Association for Computing Machinery, New York, NY, 
USA, 271–274. DOI: 
http://dx.doi.org/10.1145/1743666.1743730 

[24] Carlos H. Morimoto, Jose A. T. Leyva, and Antonio 
Diaz-Tula. 2018. Context switching eye typing using 
dynamic expanding targets. In Proceedings of the 
Workshop on Communication by Gaze Interaction 
(COGAIN ’18). ACM, New York, Article 6, 9 pages. 
DOI:http://dx.doi.org/10.1145/3206343.3206347 

[25] Martez E Mott, Shane Williams, Jacob O Wobbrock, 
and Meredith Ringel Morris. 2017. Improving 
dwell-based gaze typing with dynamic, cascading dwell 
times. In Proceedings of the ACM CHI Conference on 
Human Factors in Computing Systems (CHI ’17). ACM, 
New York, 2558–2570. 

[26] Diogo Pedrosa, Maria da Graça Pimentel, and Khai N. 
Truong. 2015. Filteryedping: A dwell-free eye typing 
technique. In Extended Abstracts of the ACM SIGCHI 
Conference on Human Factors in Computing Systems 
(CHI ’15). ACM, New York, 303–306. DOI: 
http://dx.doi.org/10.1145/2702613.2725458 

Paper 190 Page 11

http://dx.doi.org/10.1145/3025453.3025599
http://dx.doi.org/10.1145/1272582.1272618
http://dx.doi.org/10.1145/3340555.3353734
http://dx.doi.org/10.1109/MMUL.2016.52
http://dx.doi.org/10.1145/2858036.2858335
http://dx.doi.org/10.1145/1518701.1518758
http://dx.doi.org/10.1145/3338844
http://dx.doi.org/10.1145/1743666.1743730
http://dx.doi.org/10.1145/3206343.3206347
http://dx.doi.org/10.1145/2702613.2725458


 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[27] Thies Pfeiffer. 2018. Gaze-based assistive technologies. 
In Smart Technologies: Breakthroughs in Research and 
Practice. IGI Global, 44–66. 

[28] Ken Pfeuffer, Jason Alexander, and Hans Gellersen. 
2015. Gaze + touch vs. touch: What’s the trade-off when 
using gaze to extend touch to remote displays?. In 
Proceedings of the IFIP Conference on 
Human-Computer Interaction (INTERACT ’15). 
Springer, Berlin, 349–367. DOI: 
http://dx.doi.org/10.1007/978-3-319-22668-2_27 

[29] Ken Pfeuffer, Jason Alexander, and Hans Gellersen. 
2016. Partially-indirect bimanual input with gaze, pen, 
and touch for pan, zoom, and ink interaction. In 
Proceedings of the 2016 CHI Conference on Human 
Factors in Computing Systems (CHI ’16). ACM, New 
York, 2845–2856. DOI: 
http://dx.doi.org/10.1145/2858036.2858201 

[30] Ken Pfeuffer and Hans Gellersen. 2016. Gaze and touch 
interaction on tablets. In Proceedings of the 29th Annual 
Symposium on User Interface Software and Technology 
(UIST ’16). ACM, New York, 301–311. DOI: 
http://dx.doi.org/10.1145/2984511.2984514 

[31] Ondrej Polacek, Adam J Sporka, and Pavel Slavik. 2017. 
Text input for motor-impaired people. Universal Access 
in the Information Society 16, 1 (2017), 51–72. 

[32] Alex Poole and Linden J Ball. 2006. Eye tracking in 
HCI and usability research. In Encyclopedia of human 
computer interaction. IGI Global, 211–219. 

[33] Amy Roman. 2013. Maintain ability to type, swipe 
point with hand weakness in ALS. (Nov 2013). 

[34] Daniel Rough, Keith Vertanen, and Per Ola Kristensson. 
2014. An evaluation of Dasher with a high-performance 
language model as a gaze communication method. In 
Proceedings of the 2014 International Working 
Conference on Advanced Visual Interfaces. ACM, New 
York, 169–176. 

[35] H. Sakoe and S. Chiba. 1978. Dynamic programming 
algorithm optimization for spoken word recognition. 
IEEE Transactions on Acoustics, Speech, and Signal 
Processing 26, 1 (February 1978), 43–49. DOI: 
http://dx.doi.org/10.1109/TASSP.1978.1163055 

[36] Sayan Sarcar, Prateek Panwar, and Tuhin Chakraborty. 
2013. EyeK: An efficient dwell-free eye gaze-based text 
entry system. In Proceedings of the 11th Asia Pacific 
Conference on Computer-Human Interaction. ACM, 
New York, 215–220. 

[37] Korok Sengupta, Raphael Menges, Chandan Kumar, and 
Steffen Staab. 2017. GazeTheKey: Interactive keys to 
integrate word predictions for gaze-based text entry. In 
IUI Companion, George A. Papadopoulos, Tsvi Kuflik, 
Fang Chen, Carlos Duarte, and Wai-Tat Fu (Eds.). ACM, 
New York, 121–124. http://dblp.uni-trier.de/db/conf/ 
iui/iui2017c.html#SenguptaMKS17 

[38] Korok Sengupta, Raphael Menges, Chandan Kumar, and 
Steffen Staab. 2019. Impact of variable positioning of 
text prediction in gaze-based text entry. In Proceedings 
of the 11th ACM Symposium on Eye Tracking Research 
& Applications (ETRA ’19). ACM, New York, Article 
74, 9 pages. DOI: 
http://dx.doi.org/10.1145/3317956.3318152 

[39] R. William Soukoreff and I. Scott MacKenzie. 2003. 
Metrics for text entry research: An evaluation of MSD 
and KSPC, and a new unified error Mmtric. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI ’03). ACM, New 
York, 113–120. DOI: 
http://dx.doi.org/10.1145/642611.642632 

[40] Keith Trnka, John McCaw, Debra Yarrington, 
Kathleen F McCoy, and Christopher Pennington. 2009. 
User interaction with word prediction: The effects of 
prediction quality. ACM Transactions on Accessible 
Computing (TACCESS) 1, 3 (2009), 17. 

[41] Outi Tuisku, Päivi Majaranta, Poika Isokoski, and 
Kari-Jouko Räihä. 2008. Now Dasher! Dash away!: 
longitudinal study of fast text entry by eye gaze. In 
Proceedings of the 2008 Symposium on Eye Tracking 
Research & Applications (ETRA ’08). ACM, New York, 
19–26. 

[42] Mario H Urbina and Anke Huckauf. 2010. Alternatives 
to single character entry and dwell time selection on eye 
typing. In Proceedings of the 2010 Symposium on 
Eye-Tracking Research Applications (ETRA ’10). 
Association for Computing Machinery, New York, 
315–322. DOI: 
http://dx.doi.org/10.1145/1743666.1743738 

[43] Keith Vertanen and David J C MacKay. 2010. Speech 
dasher: Fast writing using speech and gaze. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems. ACM, New York, 
595–598. 

[44] Roel Vertegaal. 2008. A Fitts’ law comparison of eye 
tracking and manual input in the selection of visual 
targets. In Proceedings of the 10th international 
conference on Multimodal interfaces. ACM, New York, 
241–248. 

[45] Alex Waibel and Kai-Fu Lee (Eds.). 1990. Readings in 
Speech Recognition. Morgan Kaufmann Publishers Inc., 
San Francisco, CA, USA. 

[46] Jacob O Wobbrock, James Rubinstein, Michael W 
Sawyer, and Andrew T Duchowski. 2008. Longitudinal 
evaluation of discrete consecutive gaze gestures for text 
entry. In Proceedings of the 2008 ACM Symposium on 
Eye Tracking Research & Applications (ETRA ’08). 
ACM, New York, 11–18. 

[47] Shumin Zhai and Per Ola Kristensson. 2012. The 
word-gesture keyboard: Reimagining keyboard 
interaction. Commun. ACM 55, 9 (2012), 91–101. 

Paper 190 Page 12

http://dx.doi.org/10.1007/978-3-319-22668-2_27
http://dx.doi.org/10.1145/2858036.2858201
http://dx.doi.org/10.1145/2984511.2984514
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dblp.uni-trier.de/db/conf/iui/iui2017c.html##SenguptaMKS17
http://dblp.uni-trier.de/db/conf/iui/iui2017c.html##SenguptaMKS17
http://dx.doi.org/10.1145/3317956.3318152
http://dx.doi.org/10.1145/642611.642632
http://dx.doi.org/10.1145/1743666.1743738

	Introduction
	Background and Related Work
	Dwell-based Methods
	Dwell-free Methods
	Word-level Text Entry

	Multimodal Methods

	TAGSwipe
	Interface Design
	Word Gesture Recognition

	Experimental Evaluation
	Participants
	Apparatus
	Procedure
	Design
	Results
	Entry Rate
	Error Rate
	Backspace
	Word-level Interaction Statistics
	Subjective Feedback


	Discussion
	Conclusions and Future work
	Acknowledgments
	References 



