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Abstract 
Two eye typing techniques and a fixation algorithm are 
described. Similar to word prediction, letter prediction chooses 
three highly probable next letters and highlights them on an on-
screen keyboard. Letter prediction proved promising, as it was 
as good as word prediction, and in some cases better. The 
fixation algorithm chooses which button to select for eye-over 
highlighting.  It often chooses the desired button even if another 
button is closer to the fixation location. Error rates were reduced 
when using the fixation algorithm combined with letter 
prediction; however, the algorithm was sensitive to the 
correctness of the first several letters in a word.  
ACM Classification: H.5.2 [Information Interfaces and 
Presentation]: User Interfaces 
Keywords: Eye tracking, eye typing, word prediction, letter 
prediction, fixation algorithm, button size 

1 Introduction 
Humans obtain considerable information through their eyes. For 
example, we attend to many on-screen regions and targets while 
interacting with graphical user interfaces (GUIs). Compared 
with a mouse, eye movement is fast. It consists of fixations 
(pausing to acquire information) and saccades (rapid jumps to 
another location). Fixations can be long or as short as 200 ms 
[Collins and Blackwell 1974], while saccades are inherently 
quick, taking about 30-120 ms [Majaranta and Räihä 2002]. 
Using the eye, selection techniques include dwelling on a target 
or separately pressing a hardware button while looking at a 
target. Dwelling too long hinders performance as users become 
impatient while waiting for selection; too short and inadvertent 
selection occurs. For example, with a brief dwell time of around 
200 ms, selection may occur even when the user fixates on the 
object only to obtain information. Dwell times typically range 
from as low as 400 ms [Ware and Mikaelian 1987] to over 1000 
ms [Špakov and Miniotas 2004]. 

2 Eye Typing 
Research on entering text via the eye – eye typing – extends 
over 25 or so years, as reviewed in several sources [Collins and 
Blackwell 1974; Hutchinson et al. 1989; Lankford 2000; 
Majaranta and Räihä 2002; Salvucci 1999]. However, none of 
the techniques reviewed uses next-letter prediction and 
highlighting combined with a fixation algorithm to improve eye 
typing speed and accuracy.  

We now describe and rationalize our fixation algorithm and 
implementation, and follow with tentative late breaking results 
of an experiment to test our algorithm and interaction technique.  

2.1 Fixation algorithm 
Our fixation algorithm determines which button on the keyboard 
receives "eye-over" highlighting.  It has several components, 
including the keyboard geometry, the current fixation location, 
knowledge of previous characters, and a language model (a 
word-frequency list). The algorithm works such that the button 
with eye-over highlighting is not necessarily the button closest 
to the measured fixation location.  This is described as follows.  
First, we define tolerantDrift, a radius distance from the fixation 
location. For each button having its center point within 
tolerantDrift, the algorithm builds a word stem, given the letters 
already entered.  For each word stem, a weighting factor is 
computed and the button associated with the highest weighting 
appears with eye-over highlighting (gray). Four weighting 
methods were considered: 

0 None (always choose the closest button) 
1 Weighting = word stem frequency divided by the squared 

distance to the center of the button  
2 Weighting = word stem frequency divided by the distance 

to the center of the button 
3 Weighting = word stem frequency 

The algorithm may err if fixation is near a high probability 
letter. For example, it would often take "a" instead of "z". To 
prevent this, a fixation within half the radius of the center of a 
button is always considered on that button. 
Figure 1 gives an example.  After inputting "th", the user wants 
to fixate on "e"; however, the computed fixation has drifted to 
the edge of "d". (This is shown as a crosshair to illustrate the 
algorithm. Neither the crosshair nor the tolerantDrift circle is 
visible to the user.) The algorithm considers weightings for word 
stems "thd", "thr", "ths", and "the". "the" wins. The eye-over 
highlighting is on "E" instead of the "D". In other words, the 
user thinks he/she is fixating on the correct letter.  
We developed a model to calculate error rates given the button 
size, the fixation drift, the tolerantDrift, the weighting method, 
and the number of previously entered characters considered. Our 
model assumes English text input on a keyboard with a 
QWERTY layout. Button diameters of 76 and 100 pixels were 
considered along with a fixation drift of 40, 50, 60, 70, 80 or 90 
pixels from the center of a desired button, and tolerantDrift of 
55, 60, 65, 70, 75, 80, 85, and 90 pixels. 
Figure 2 shows the model's output for small buttons, considering 
0 previously entered letters. The lowest error rate was 35.5%, 
coincident with tolerantDrift = 70 pixels and weighting method 
1, where the weighting was the word stem frequency divided by 
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the squared distance to the center of the button. The results were 
similar for large buttons.  

 
Figure 1. Fixation algorithm (see text for discussion) 

Of course, the error rate drops as more previously entered – and 
presumably correct – letters are considered. This is shown in 
Figure 3.  The left of the figure uses weighting method 0 (i.e., 
the algorithm is not used).  Each bar shows the average of the 
error rates over the range of fixation drifts noted above, 
assuming such drift occurs after 0, 1, 2, or 3 letters of correct 
input at the beginning of a word.  The right of the figure uses 
weighting method 1 with tolerantDrift = 70 pixels.  This time, 
however, where fixation drift occurs, the fixation algorithm 
kicks in to help choose the correct button for eye-over 
highlighting.  The improvement is clearly seen.  After correctly 
entering one letter, the predicted error rate dropped to below 
15%. The error rate was only 4% after three letters of input. This 
is a promising result. 

 
Figure 2. Predicted error rates vs. weighting method and 

tolerantDrift radius in pixels. 

 
Figure 3. Predicted error rates vs. algorithm 

 settings for small buttons 

Clearly, the fixation algorithm's success is predicated on the 
correctness of the first few letters in a word. If a user enters a 
wrong first letter, the rest of the word could be wrong. This 
might cause users to select the wrong letter.  The extent this 
occurs in practice requires empirical testing in an experiment. 

2.2 Word Prediction 
For decades, researchers have sought to improve eye typing 
speed and accuracy using, for example word prediction and 
word completion. As entry proceeds, a list of candidate words is 
produced [MacKenzie et al. 2006; Wang et al. 2001] (Figure 4) 
and the user selects the desired word, if present. These 
techniques can reduce the number of keystrokes per character 
(KSPC) of text entered [MacKenzie 2002], and may increase 
text entry speed. 
It is tricky to predict the word after a SPACE. While some 
systems use semantic information from previously entered text 
[Hansen et al. 2002], we used a simple approach. Following 
SPACE, candidates are chosen from the most frequent words in 
English, such "the", "of", and "an". 
Increasing the size of the candidate word list reduces KSPC, but 
increases the visual scan time, since there are more words to 
consider. We used a list size of five, as there is little 
improvement in KSPC for larger lists [MacKenzie 2002; 
MacKenzie et al. 2006]. Another consideration for eye tracking 
is the need for large buttons: a large candidate list is simply not 
practical.  

 (a)  

(b)  
Figure 4. On-screen keyboard with word prediction (a) big 

buttons (100 pixels) (b) small buttons (76 pixels)  

2.3 Letter prediction 
Similar to word prediction, letter prediction may accelerate eye 
typing by highlighting a few highly probable next letters on the 
on-screen keyboard (Figure 5). Our implementation highlights 
three letters. If the desired letter is highlighted, users can select 
faster since the number of stimuli is reduced from 26 to 3. 
However, the highlighting is distracting if the desired letter is 
not among them. In fact, users might need more time to find the 
desired letter. 
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Figure 5. On-screen keyboard with letter prediction. The text 

phrase at the top is presented to the user for input. 

2.4 Implementation details 
Since there is no tactile feedback, visual and audio feedback are 
important for eye typing. Our system used four distinct neon-
glow buttons, from left to right, normal, letter-predict, eye-over, 
and clicked (Figure 6).  

 
Figure 6. Button highlighting 

A window of six seconds was allowed to select a button, 
otherwise a time-out error was recorded.  
Our testing system presented users with text phrases to enter.  
As entry proceeds, the next letter to enter is shown in reverse 
video. With correct entry, highlighting simply progresses 
through the phrase, letter by letter. If a timeout occurs, an "X" 
with a gray background is shown (Figure 7). If there is a typing 
mistake, the inputted letter with a gray background is shown. It 
was anticipated that gaze shifts would be minimized since the 
presented and transcribed text are superimposed. 

 
Figure 7. Text area 

Our system also used beep-on-error for a typing error. For 
correct keystrokes, we also added a click sound similar to a key 
press on a mechanical typewriter. 
We next describe an experiment to empirically test our system. 

3 Methodology 

3.1 Participants  
We used ten paid participants (8 male, 2 female; 19-34 years; 3-
10 hours per day computer usage). Half had prior experience 
with eye tracking. All had normal vision. Eight were right-eye 
dominant, two left-eye dominant, as determined using the test 
described by Collins and Blackwell [1974]. 

3.2 Apparatus 
We used an Arrington Research ViewPointTM head-fixed eye 
tracker with the camera focused on a participant’s dominant eye 
(Figure 8). The monitor was a 19" 1280×1024 LCD at a distance 
of ~60 cm. The eye tracker sampled at 30 Hz with accuracy of 
0.25°-1.0° visual arc (~10-40 pixels). Calibration was performed 

initially with re-calibration as needed. Software screen snaps are 
shown in Figures 4, 5, and 8. The fixation algorithm used 
weighting method 1 and tolerantDrift = 70 pixels. 

 
Figure 8. Head-fixed eye tracking system 

3.3 Procedure 
Participants were briefed on the goal of the experiment and on 
the eye tracker and software.  They were seated in front of the 
apparatus and calibrated, and then given a few practice phrases 
before testing. For input, participants "pointed" with the eye and 
"selected" with the CONTROL key. A key press was used for 
selection since it is fast and offers an interesting variation to 
dwell-time selection [Ware and Mikaelian 1987]. 
Text was generated from a set of 500 phrases [MacKenzie and 
Soukoreff 2003]. For each trial, a popup window presented a 
phrase to enter. Participants viewed and memorized the phrase, 
then entered it as quickly and accurately as possible. Time 
started upon pressing an OK button and stopped with the last 
letter in a phrase. Ten phrases were entered for each test 
condition. 

3.4 Design 
There were eight test conditions organized in a 2 × 2 × 2 within 
subjects design. There were three independent variables: 

Prediction mode: W -  Word prediction 
L -  Letter prediction 

Fixation algorithm: O -  On (weighting method 1) 
F -  Off 

Button size: B -  Big 
S -  Small 

Letter codes are used to identify test conditions (e.g., WOS = 
Word prediction, algorithm On, Small buttons; or W-S = Word 
prediction, Small buttons). Conditions were assigned using 
nested counterbalancing to offset learning effects. 
The total number of phrases entered was 800 (10 participants × 
2 prediction modes × 2 fixation algorithms × 2 button sizes × 
10 sentences per condition).  
As typical of eye tracking experiments, considerable raw data 
were collected. These were filtered, reduced, and aggregated 
into sixteen dependent variables, of which only entry speed 
(words per minute) and error rate (%) are presented here. 

4 Results and Discussion  

4.1 Entry speed 
Entry speed ranged from 10.8 wpm to 12.3 wpm (see Figure 9). 
These rates are reasonable for eye input.  They lie between the 
7 wpm reported by Marajanta et al. [2006] and the 25 wpm 
reported by Ward and MacKay [2002]. 
In comparing entry speeds, letter prediction was about 10% 
faster than word prediction with small buttons (W-S vs. L-S in 
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Figure 9) and similar to word prediction with large buttons (L-B 
vs. W-B). This suggests that letter prediction is useful if the 
screen size is small. 

 
Figure 9. Entry speed vs. test condition 

Entry speeds were about 10% faster with big buttons when using 
word prediction (W-S vs. W-B). The bigger size made it easier 
to recognize predicted words, which resulted in a faster entry 
speed. However, there was little or no improvement in entry 
speed when using letter prediction, likely because all conditions 
used the QWERTY layout. Letter prediction would likely be 
better with an unfamiliar layout, such OPTI [MacKenzie and 
Zhang 1999] or Metropolis [Zhai et al. 2000]. 
Contrary to expectations, entry speeds when using the fixation 
algorithm were lower than not using the algorithm for both letter 
and word prediction, except LOB vs. LFB. The parameters in 
the algorithm clearly need further consideration and refinement. 

4.2 Error rate 
Error rates (Figure 10) were lower with big buttons. There was a 
near 35% improvement for letter prediction using our fixation 
algorithm (LOB vs. LOS). Evidently, big buttons helped 
participants fixate near the center. Even with minor drift or 
calibration error, participants’ fixation point did not tend to 
move outside the big button. 

 
Figure 10. Error rates vs. test condition 

The fixation algorithm yielded an improvement in error rate of 
about 10% to 30% when using letter prediction (LO- vs. LF- in 
Figure 10). However with word prediction, error rates were 
higher. If the first letters of a word were wrong, the fixation 
algorithm was more likely to choose the wrong letter, unless 
fixation was in the central region of the button. Participants 
exhibited some calibration problems and minor fixation drift 
during the experiment. From our observations, incorrect entry of 
the first few letters in a word was a significant problem for these 
participants, and in these cases there was little or no benefit in 
the use of the fixation algorithm. An implementation variation 
might be to turn on letter prediction only after, say, the second 
letter in a word. This would fully enlist the user in getting the 
first few letters correct. 

Letter prediction was hoped to maintain the same entry speed 
and error rate as word prediction, while avoiding the distraction 
of candidate words. Although error rates for letter prediction 
were higher than with word prediction when the button size was 
small, entry speeds were faster. Thus, letter prediction through 
highlighting of highly-probable next letters holds promise. 
Time-out errors were under 2% for all test conditions. 

5 Conclusion 
Letter prediction was as good as word prediction, and in some 
cases better. Our fixation algorithm proved sensitive to the 
correctness of the first letters in a word. It reduced error rates, 
but only in letter prediction mode. 
More work is planned to develop a dynamic fixation algorithm 
to better adapt to different situations.  
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