Eye Typing Using Word and Letter Prediction and a Fixation Algorithm

I. Scott MacKenzie & Xuang Zhang

Dept. of Computer Science and Engineering
York University
Toronto, CANADA
{mack, xuang}@cse.yorku.ca

Abstract

Two eye typing techniques and a fixation algorithm are
described. Similar to word prediction, letter prediction chooses
three highly probable next letters and highlights them on an on-
screen keyboard. Letter prediction proved promising, as it was
as good as word prediction, and in some cases better. The
fixation algorithm chooses which button to select for eye-over
highlighting. It often chooses the desired button even if another
button is closer to the fixation location. Error rates were reduced
when using the fixation algorithm combined with letter
prediction; however, the algorithm was sensitive to the
correctness of the first several letters in a word.

ACM Classification: H.5.2
Presentation]: User Interfaces

[Information Interfaces and

Keywords: Eye tracking, eye typing, word prediction, letter
prediction, fixation algorithm, button size

1 Introduction

Humans obtain considerable information through their eyes. For
example, we attend to many on-screen regions and targets while
interacting with graphical user interfaces (GUIs). Compared
with a mouse, eye movement is fast. It consists of fixations
(pausing to acquire information) and saccades (rapid jumps to
another location). Fixations can be long or as short as 200 ms
[Collins and Blackwell 1974], while saccades are inherently
quick, taking about 30-120 ms [Majaranta and Réihd 2002].

Using the eye, selection techniques include dwelling on a target
or separately pressing a hardware button while looking at a
target. Dwelling too long hinders performance as users become
impatient while waiting for selection; too short and inadvertent
selection occurs. For example, with a brief dwell time of around
200 ms, selection may occur even when the user fixates on the
object only to obtain information. Dwell times typically range
from as low as 400 ms [Ware and Mikaelian 1987] to over 1000
ms [Spakov and Miniotas 2004].

2 Eye Typing

Research on entering text via the eye — eye typing — extends
over 25 or so years, as reviewed in several sources [Collins and
Blackwell 1974; Hutchinson et al. 1989; Lankford 2000;
Majaranta and Rdihd 2002; Salvucci 1999]. However, none of
the techniques reviewed uses next-letter prediction and
highlighting combined with a fixation algorithm to improve eye
typing speed and accuracy.

Copyright © 2008 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.

ETRA 2008, Savannah, Georgia, March 26—28, 2008.

© 2008 ACM 978-1-59593-982-1/08/0003 $5.00

55

We now describe and rationalize our fixation algorithm and
implementation, and follow with tentative late breaking results
of an experiment to test our algorithm and interaction technique.

2.1 Fixation algorithm

Our fixation algorithm determines which button on the keyboard
receives "eye-over" highlighting. It has several components,
including the keyboard geometry, the current fixation location,
knowledge of previous characters, and a language model (a
word-frequency list). The algorithm works such that the button
with eye-over highlighting is not necessarily the button closest
to the measured fixation location. This is described as follows.

First, we define tolerantDrift, a radius distance from the fixation
location. For each button having its center point within
tolerantDrift, the algorithm builds a word stem, given the letters
already entered. For each word stem, a weighting factor is
computed and the button associated with the highest weighting
appears with eye-over highlighting (gray). Four weighting
methods were considered:

0 None (always choose the closest button)

1 Weighting = word stem frequency divided by the squared
distance to the center of the button

2 Weighting = word stem frequency divided by the distance
to the center of the button

3 Weighting = word stem frequency

The algorithm may err if fixation is near a high probability
letter. For example, it would often take "a" instead of "z". To
prevent this, a fixation within half the radius of the center of a
button is always considered on that button.

Figure 1 gives an example. After inputting "th", the user wants
to fixate on "e"; however, the computed fixation has drifted to
the edge of "d". (This is shown as a crosshair to illustrate the
algorithm. Neither the crosshair nor the tolerantDrift circle is
visible to the user.) The algorithm considers weightings for word
stems "thd", "thr", "ths", and "the". "the" wins. The eye-over
highlighting is on "E" instead of the "D". In other words, the
user thinks he/she is fixating on the correct letter.

We developed a model to calculate error rates given the button
size, the fixation drift, the tolerantDrift, the weighting method,
and the number of previously entered characters considered. Our
model assumes English text input on a keyboard with a
QWERTY layout. Button diameters of 76 and 100 pixels were
considered along with a fixation drift of 40, 50, 60, 70, 80 or 90
pixels from the center of a desired button, and tolerantDrift of
55, 60, 65, 70, 75, 80, 85, and 90 pixels.

Figure 2 shows the model's output for small buttons, considering
0 previously entered letters. The lowest error rate was 35.5%,
coincident with tolerantDrift = 70 pixels and weighting method
1, where the weighting was the word stem frequency divided by

the squared distance to the center of the button. The results were
similar for large buttons.

hi plug does not fit the socket

Figure 1. Fixation algorithm (see text for discussion)

Of course, the error rate drops as more previously entered — and
presumably correct — letters are considered. This is shown in
Figure 3. The left of the figure uses weighting method 0 (i.e.,
the algorithm is not used). Each bar shows the average of the
error rates over the range of fixation drifts noted above,
assuming such drift occurs after 0, 1, 2, or 3 letters of correct
input at the beginning of a word. The right of the figure uses
weighting method 1 with tolerantDrift = 70 pixels. This time,
however, where fixation drift occurs, the fixation algorithm
kicks in to help choose the correct button for eye-over
highlighting. The improvement is clearly seen. After correctly
entering one letter, the predicted error rate dropped to below
15%. The error rate was only 4% after three letters of input. This
is a promising result.

50% - W tolerantDrift = 55
B tolerantDrift = 60

Y [] [| B

o tolerantDrift = 65
300 . m tolerantDrift = 70
W tolerantDrift = 75
20% - i __ W tolerantDrift = 80
tolerantDrift = 85
10% — m tolerantDrift = 90

0% o i

i 2 3

Error Rate (3)

L

a
‘Weighting Method

Figure 2. Predicted error rates vs. weighting method and
tolerantDrift radius in pixels.

60% B 4 of correct letters =
B 4 of correct letters =

50% #of correct letters =
m # of correct letters =

40%

30%

Error Rate (%)

20%

10%

not using fixation algorithm using fixation algorithm

Figure 3. Predicted error rates vs. algorithm
settings for small buttons

Clearly, the fixation algorithm's success is predicated on the
correctness of the first few letters in a word. If a user enters a
wrong first letter, the rest of the word could be wrong. This
might cause users to select the wrong letter. The extent this
occurs in practice requires empirical testing in an experiment.

56

2.2 Word Prediction

For decades, researchers have sought to improve eye typing
speed and accuracy using, for example word prediction and
word completion. As entry proceeds, a list of candidate words is
produced [MacKenzie et al. 2006; Wang et al. 2001] (Figure 4)
and the user selects the desired word, if present. These
techniques can reduce the number of keystrokes per character
(KSPC) of text entered [MacKenzie 2002], and may increase
text entry speed.

It is tricky to predict the word after a SPACE. While some
systems use semantic information from previously entered text
[Hansen et al. 2002], we used a simple approach. Following
SPACE, candidates are chosen from the most frequent words in
English, such "the", "of", and "an".

Increasing the size of the candidate word list reduces KSPC, but
increases the visual scan time, since there are more words to
consider. We used a list size of five, as there is little
improvement in KSPC for larger lists [MacKenzie 2002;
MacKenzie et al. 2006]. Another consideration for eye tracking
is the need for large buttons: a large candidate list is simply not
practical.

Figure 4. On-screen keyboard with word prediction (a) big
buttons (100 pixels) (b) small buttons (76 pixels)

2.3 Letter prediction

Similar to word prediction, letter prediction may accelerate eye
typing by highlighting a few highly probable next letters on the
on-screen keyboard (Figure 5). Our implementation highlights
three letters. If the desired letter is highlighted, users can select
faster since the number of stimuli is reduced from 26 to 3.
However, the highlighting is distracting if the desired letter is
not among them. In fact, users might need more time to find the
desired letter.

Figure 5. On-screen keyboard with letter prediction. The text
phrase at the top is presented to the user for input.

2.4 Implementation details

Since there is no tactile feedback, visual and audio feedback are
important for eye typing. Our system used four distinct neon-
glow buttons, from left to right, normal, letter-predict, eye-over,
and clicked (Figure 6).

Figure 6. Button highlighting

A window of six seconds was allowed to select a button,
otherwise a time-out error was recorded.

Our testing system presented users with text phrases to enter.
As entry proceeds, the next letter to enter is shown in reverse
video. With correct entry, highlighting simply progresses
through the phrase, letter by letter. If a timeout occurs, an "X"
with a gray background is shown (Figure 7). If there is a typing
mistake, the inputted letter with a gray background is shown. It
was anticipated that gaze shifts would be minimized since the
presented and transcribed text are superimposed.

a big scrtXch on t

tabletop

Figure 7. Text area

Our system also used beep-on-error for a typing error. For
correct keystrokes, we also added a click sound similar to a key
press on a mechanical typewriter.

We next describe an experiment to empirically test our system.
3 Methodology

3.1 Participants

We used ten paid participants (8 male, 2 female; 19-34 years; 3-
10 hours per day computer usage). Half had prior experience
with eye tracking. All had normal vision. Eight were right-eye
dominant, two left-eye dominant, as determined using the test
described by Collins and Blackwell [1974].

3.2 Apparatus

We used an Arrington Research ViewPoint™ head-fixed eye
tracker with the camera focused on a participant’s dominant eye
(Figure 8). The monitor was a 19" 1280%1024 LCD at a distance
of ~60 cm. The eye tracker sampled at 30 Hz with accuracy of
0.25°-1.0° visual arc (~10-40 pixels). Calibration was performed

57

initially with re-calibration as needed. Software screen snaps are
shown in Figures 4, 5, and 8. The fixation algorithm used
weighting method 1 and tolerantDrift = 70 pixels.

Figure 8. Head-fixed eye tracking system

3.3 Procedure

Participants were briefed on the goal of the experiment and on
the eye tracker and software. They were seated in front of the
apparatus and calibrated, and then given a few practice phrases
before testing. For input, participants "pointed" with the eye and
"selected" with the CONTROL key. A key press was used for
selection since it is fast and offers an interesting variation to
dwell-time selection [Ware and Mikaelian 1987].

Text was generated from a set of 500 phrases [MacKenzie and
Soukoreff 2003]. For each trial, a popup window presented a
phrase to enter. Participants viewed and memorized the phrase,
then entered it as quickly and accurately as possible. Time
started upon pressing an OK button and stopped with the last
letter in a phrase. Ten phrases were entered for each test
condition.

3.4 Design
There were eight test conditions organized ina 2 x 2 x 2 within
subjects design. There were three independent variables:

Prediction mode: W - Word prediction
L - Letter prediction
Fixation algorithm: O - On (weighting method 1)
F - Off
Button size: B - Big
S - Small

Letter codes are used to identify test conditions (e.g., WOS =
Word prediction, algorithm On, Small buttons; or W-S = Word
prediction, Small buttons). Conditions were assigned using
nested counterbalancing to offset learning effects.

The total number of phrases entered was 800 (10 participants x
2 prediction modes x 2 fixation algorithms x 2 button sizes X
10 sentences per condition).

As typical of eye tracking experiments, considerable raw data
were collected. These were filtered, reduced, and aggregated
into sixteen dependent variables, of which only entry speed
(words per minute) and error rate (%) are presented here.

4 Results and Discussion

4.1 Entry speed

Entry speed ranged from 10.8 wpm to 12.3 wpm (see Figure 9).
These rates are reasonable for eye input. They lie between the
7 wpm reported by Marajanta et al. [2006] and the 25 wpm
reported by Ward and MacKay [2002].

In comparing entry speeds, letter prediction was about 10%
faster than word prediction with small buttons (W-S vs. L-S in

Figure 9) and similar to word prediction with large buttons (L-B
vs. W-B). This suggests that letter prediction is useful if the
screen size is small.

15
12.0 121 123
12 112

Entry Speed (wpm)

WOS WFS LFS LOS LOB LFB

Test Condition
Figure 9. Entry speed vs. test condition

Entry speeds were about 10% faster with big buttons when using
word prediction (W-S vs. W-B). The bigger size made it easier
to recognize predicted words, which resulted in a faster entry
speed. However, there was little or no improvement in entry
speed when using letter prediction, likely because all conditions
used the QWERTY layout. Letter prediction would likely be
better with an unfamiliar layout, such OPTI [MacKenzie and
Zhang 1999] or Metropolis [Zhai et al. 2000].

Contrary to expectations, entry speeds when using the fixation
algorithm were lower than not using the algorithm for both letter
and word prediction, except LOB vs. LFB. The parameters in
the algorithm clearly need further consideration and refinement.

4.2 Errorrate
Error rates (Figure 10) were lower with big buttons. There was a
near 35% improvement for letter prediction using our fixation
algorithm (LOB vs. LOS). Evidently, big buttons helped
participants fixate near the center. Even with minor drift or
calibration error, participants’ fixation point did not tend to
move outside the big button.

18

15

12

Error Rate (%)

9
6
3
0

WOSs WFS LFS LOS LOB LFB

WFB WOB

) Test Condition o
Figure 10. Error rates vs. test condition

The fixation algorithm yielded an improvement in error rate of
about 10% to 30% when using letter prediction (LO- vs. LF- in
Figure 10). However with word prediction, error rates were
higher. If the first letters of a word were wrong, the fixation
algorithm was more likely to choose the wrong letter, unless
fixation was in the central region of the button. Participants
exhibited some calibration problems and minor fixation drift
during the experiment. From our observations, incorrect entry of
the first few letters in a word was a significant problem for these
participants, and in these cases there was little or no benefit in
the use of the fixation algorithm. An implementation variation
might be to turn on letter prediction only after, say, the second
letter in a word. This would fully enlist the user in getting the
first few letters correct.

58

Letter prediction was hoped to maintain the same entry speed
and error rate as word prediction, while avoiding the distraction
of candidate words. Although error rates for letter prediction
were higher than with word prediction when the button size was
small, entry speeds were faster. Thus, letter prediction through
highlighting of highly-probable next letters holds promise.

Time-out errors were under 2% for all test conditions.

5 Conclusion

Letter prediction was as good as word prediction, and in some
cases better. Our fixation algorithm proved sensitive to the
correctness of the first letters in a word. It reduced error rates,
but only in letter prediction mode.

More work is planned to develop a dynamic fixation algorithm
to better adapt to different situations.

References

CoLLINS, J. F. & BLACKWELL, L. K. 1974. Effects of eye
dominance and retinal distance on binocular rivalry, Perceptual
Motor Skills, 39, 747-754.

HANSEN, D. W., HANSEN, J. P., NIELSEN, M., JOHANSEN, A. S., &
STEGMANN, M. B. 2002. Eye typing using Markov and active
appearance models, Proc 6th Workshop App Computer Vision
(IEEE) 132-136.

HuTcHINSON, T. E., WHITE JR., K. P., MARTIN, W. N., REICHERT,
K.C., & FrEy, L.A. 1989. HCI using eye-gaze input, /[EEE
Trans Systems Man Cybernetics, 19, 1527-1534.

LANKFORD, C. 2000. Effective eye-gaze input into Windows,
ETRA 00 (ACM) 23-27.

MACKENZIE, 1. S. 2002. KSPC as a characteristic of text entry
techniques, Proc MobileHCI 02 (Springer-Verlag) 195-210.

MACKENZIE, L. S., CHEN, J., & ONISZCZAK, A. 2006. Unipad:
Single-stroke text entry with language-based acceleration,
NordiCHI 06, (ACM), 78-85.

MACKENZIE, 1. S. & SOUKOREFF, R. W. 2003. Phrase sets for
evaluating text entry techniques, Proc CHI 03 (ACM) 754-755.

MACKENZIE, 1. S. and ZHANG, S. X. 1999. The design and
evaluation of a high-performance soft keyboard, Proc CHI 99
(ACM) 25-31.

MAJARANTA, P., MACKENZIE, 1.S., AULA, A., & RAIHA, K.-J.
2006. Effects of feedback and dwell time on eye typing speed
and accuracy, UAIS, 5, 199-208.

MAJARANTA, P. & RAMHA, K.-J. 2002. Twenty years of eye
typing, Proc ETRA 02 (ACM) 15-22.

Spakov, O. & MINIOTAS, D. 2004. On-line adjustment of dwell
time for target selection by gaze, Proc NordiCHI 04 (ACM)
203-206.

SarLvuccl, D. D. 1999. Inferring intent in eye-based interfaces,
Proc CHI 99 (ACM) 254-261.

WANG, J., ZHAL, S., & Su, H. 2001. Chinese input with keyboard
and eye-tracking, Proc CHI 01 (ACM) 349 - 356.

WARD, D. J. & MACKAY, D. J. C. 2002. Fast hands-free writing
by gaze direction, Nature, 418, 838.

WARE, C. & MIKAELIAN, H. H. 1987. Evaluation of eye tracker
for computer input, Proc CHI+GI 87 (ACM) 183-188.

ZHAL, S., HUNTER, M., & SMITH, B. A. 2000. Metropolis
keyboard, Proc UIST 00 (ACM) 119-128.

