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We present EarEOG, a real-time wheelchair control system using around-ear electrooculogram (EOG) signals.
Electrodes are placed in standard over-the-ear headphones to improve user comfort. By detecting around-
the-ear signals from eye gestures and jaw clenching, EarEOG offers a non-invasive and intuitive approach to
low-latency wheelchair control. We describe the methods for signal acquisition, as well as the algorithms used
for signal processing and classification. The feasibility, robustness, and low latency of EarEOG were confirmed
through two experiments. The algorithm demonstrated a classification accuracy of 94.1% for all motion signals,
which further improved to 97.3% when personalized models were applied. To ensure stability, we examined
electrode impedance and algorithm accuracy across multiple trials where participants operated simulated
wheelchairs while wearing EarEOG. The results indicated that when the electrode impedance was below
1 MQ, all participants successfully controlled the simulated wheelchair. Furthermore, EarEOG demonstrated
low latency, with recognition delays of less than 125 ms.
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1 Introduction

Recently, there is an increase in the number of individuals diagnosed with severe physical disabilities
due to conditions such as amyotrophic lateral sclerosis (ALS) [22], multiple sclerosis (MS), high
paraplegia, spinal cord injuries (SCI) [15], and strokes. These conditions often lead to significant
motor impairments, restricting independent mobility. However, many patients retain control over
facial, eye, and jaw movements, which can be utilized in computing interfaces to enhance mobility.

This research focuses on individuals who can control jaw and eye movements, aiming to develop
a wheelchair control system using biological signals to enhance independence and quality of
life. Controlling electronic wheelchairs traditionally involves a joystick, which is challenging for
individuals with severe motor impairments, such as tetraplegia. Advanced assistive technologies
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offer alternative control methods using gaze, voice, or biological signals to enhance the mobility and
independence of these users. Various approaches are explored, including voice-based control [16],
eye tracking [8], Electroencephalogram (EEG)-based [24], and Electrooculography (EOG)-based
systems [12]. While effective, each method has limitations. Voice-based systems are unsuitable for
users with speech impairments; vision-based eye tracking struggles in varying lighting conditions
and requires extensive data processing, increasing hardware costs. Compared with traditional
functions, EEGs record the brain’s electrical activity with millisecond resolution, making them
ideal for studying rapid neural processes. However, the low spatial resolution of EEGs presents
challenges for identifying the precise location of electrical brain activity.

Like EEG, EOG offers a high temporal resolution, enabling precise recordings of the timing
of eye movements. An example application is wheelchair control. Huang et al. [11] used a three-
channel device to collect EOG signals to control a wheelchair. The user viewed viewed a screen
with different arrows in a graphical user interface (GUI). Since the user was required to focus
on the GUI, they could not observe their surroundings while driving. To address this, Choudhari
et al. [3] used different blink durations for control commands. Although direct viewing of the
surroundings was possible, the use of blink commands could be uncomfortable. Rusydi et al. [21]
placed electrodes around the eye to classify up-down directions and blinks for moving, steering, and
stopping, thereby achieving full wheelchair control. However, these traditional EOG, EEG, and other
biological methods require electrodes around the eyes or wearing a complex EEG collection device,
which may cause discomfort to users, particularly during prolonged use. Furthermore, traditional
biological signal devices are cumbersome and require electrodes on the face, creating a perception
that users are distinct from others, which can lead to stigmatization and social distress. Integrating
traditional equipment with EOG signal acquisition presents opportunities for new applications
using everyday wearable devices like glasses and headsets. Kosmyna et al. [13] combined EOG and
EMG electrodes in glasses to monitor both EEG and EOG in real-time. Manabe and Fukumoto [14]
designed a headset with four electrodes on the sides to monitor EOG signals. Ang et al. [1] used the
commercial NeuroSky MindWave!' EOG headset for cursor control. Customized EOG setups are
another method to collect EOG signals; these focus on specific electrode placements for designated
tasks. For example, Bastes et al. [2] designed such a system using just three electrodes above the eye
to classify movements for a speech-assistive communication system. Chugh et al. [4] introduced a
method utilizing ear-IMU sensors for classifying different eye gestures, highlighting a promising
research direction for alternative eye-tracking techniques.

Based on these prior works we propose EarEOG, a system using EOG signals around the ear
to detect eye movements and jaw clenching for wheelchair control.? One of the main benefits of
EarEOG is its seamless integration into wearable devices like headphones, allowing for low-power
signal acquisition that is unaffected by ambient light conditions. Furthermore, EarEOG enables
hands-free interaction without requiring a computer interface, allowing users to stay fully focused
on their surroundings while operating the wheelchair.

2 System Description

We now describe how EarEOG captures data and stores signals from eye gestures and jaw clenching,
forming the basis for subsequent processes. We then use these signals and an offline system to
train and evaluate machine-learning models to classify different movements. Once optimized, these

Ihttps://store.neurosky.com/
2EarEOG uses "around-ear" signal detection with sensors in the headphone cushion around the ear. This is distinct from
"on-ear" which simply refers to a style of headphones that sit on top of a user’s ear.
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models are used in a real-time system to detect and classify movements. The movements are used
to control a virtual wheelchair, enabling real-time interaction.

2.1 Data Collection

2.1.1  Electrode Position. Six silver threaded conductive tapes without gel (dry) were used as the
electrodes (see Fig. 5a and Fig. 5b). All electrodes are positioned around the ear, making it possible
to integrate their placement in a headset or hearing aid. For example, the electrodes could be
attached to the foam cushion of a typical headset, allowing for convenient and non-intrusive signal
acquisition. The reference electrode is located in the opposite direction of the measuring electrode.
The electrode for Channel 1 is placed behind the ear at the mastoid bone to assist in measuring
and differentiating signals from various muscle regions. The electrode for Channel 2 is positioned
above and behind the ear, near the temporal bone and muscle attachment points, allowing it to
capture signals from the facial muscles and eyes while reducing interference from other muscle
groups, ensuring signal stability. The electrode for Channel 3 is placed near the zygomatic arch in
front of the ear, close to the facial muscles, to measure signals related to eye gestures and facial
muscle activity. The ground electrode is placed below the earlobe or near the jaw to ensure signal
stability and reduce noise interference. The reference electrode is positioned on the opposite side
of the head, symmetrically aligned with Channel 3, to provide a stable reference signal. The sample
rate is 250 Hz, so data are transferred to the host computer every 4 ms.

2.1.2  Eye Gesture Signal Collection. Our procedure requires participants to focus on a white circle
in animation to capture different eye gesture signals. The animation shows a small white ball
sequentially moving horizontally across five positions: center, left, center, far left, center, right,
center, far right. See Fig. 1a. Participants were instructed to not move any other body part, including
their neck, and not to anticipate the circle’s next position. When the small white ball moves at a
slight angle, its speed is 150 pixels per second, and when moving over a larger angle, the speed
increases to 300 pixels per second. Each time the ball reaches a predetermined position, it pauses
for 1.2 s before continuing its movement. With a screen resolution of 640 X 480, the ball takes
0.19 s to cover the small angle and 0.38 s to cover the larger angle. Participants sat 25 cm from a 26"
(16:9) screen, maintained a straight posture, and kept their gaze fixed on the moving circle without
moving their heads or anticipating the ball’s next position. The five positions correspond to 26° left,
45° left, 0°, 26° right, and 45° right. Each animation iteration includes three sets of these movements.
The speed of the circle’s movement is based on Pierce’s study, where horizontal saccades lasted
between 30 ms and 50 ms, with speeds often exceeding 300° per second [19]. Therefore, a 26°
movement takes 30 ms, and a 45° movement takes 50 ms.

2.1.3 Jaw Clenching Signal Collection. The collection of jaw-clenching data is also directed by
visual instruction. A sizeable green circle appears in the centre of the screen. See Fig. 1b. While
the green circle is visible, the participant clenches their jaw and continues to bite until the circle
disappears. Each participant will perform seven instances of jaw-clenching during three rounds
of data collection, providing 21 data sets per participant. During the tasks while collecting eye
gestures and jaw clenching, participants were allowed to blink naturally. Unlike intentional eye
blinking, natural eye blinks do not influence the EOG signal.

2.2 Offline Analysis for Signal Pre-processing

There are two frequency bands in the EarEOG system: 0-10 Hz and 10-30 Hz. The first band is
0-10 Hz wherein the main components of eye gestures and jaw clenching are present. The shape of
eye gestures and jaw clenching signals in this frequency band is shown in Fig. 2a and Fig. 2b. In the
second band, 10 to 30 Hz, eye gestures have no discernible effect on the amplitude. The amplitude
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Fig. 1. Signal collection. (a) White circle interface for eye gestures. (b) Green circle for jaw clenching.

range remains constant at -10 uV to 10 pV. However, during jaw clenching, the amplitude range
in the time domain notably increases, reaching 40 pV to 60 pV. This contrasts with the observed
behavior during no-action and eye-gesture conditions. The jaw clenching and eye gesture signals
in 10-30 Hz are shown in Fig. 3a and Fig. 3b.

Jaw Movement Signal Collection (0-10 Hz) Eye Movement Signal Collection (0-10 Hz)

Jaw Clenching Movement = 26-degree eye movement to left
Jaw Muscle Relax mm 45-degree eye movement to right
200

(@) 2 200 (o)

Amplitude (V)
Amplitude (V)

-400

-600

00 044 089 133 178 222 267 311 356 40 00 024 048 072 096 12 144 168 192 216
Time (s) Time (s)

Fig. 2. Demonstration of frequency band 0-10 Hz in Channel 3 (a) Jaw clenching. (b) Eye gestures.

Jaw Movement Signal Collection (10-30 Hz) Eye Movement Signal Collection (10-30 Hz)
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Fig. 3. Demonstration of frequency band 10-30 Hz in Channel 3. (a) Jaw clenching. (b) Eye gestures.

2.3 Offline Analysis for Feature Extraction

2.3.1 Signal Windowing. During machine learning, the signal is segmented using an overlapping
window. Each window is 0.5 s long (125 sample points) with a 0.48 s overlap. This overlaps closely
approximates the 0.496 s overlap in the real-time system (see Section 2.5.3), ensuring consistency
between training and deployment. Additionally, the overlap was chosen to balance the KNN model’s
sensitivity to sample size with the need for robust performance.

2.3.2  Features in 0-10 Hz. In the 0-10 Hz range, the eye and jaw classifications are characterized
by amplitude changes in a small window, with the amplitude change of the eye gestures smaller
than jaw-clenching. In order to extract the feature in 0-10 Hz, the “difference between the first and
last value in the window” is effective. The equation for the difference feature is

Difference = signal_window[0] — signal_window[n]. (1)
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2.3.3 Features in 10-30 Hz. In the 10-30 Hz frequency band, there is a pronounced disparity between
the jaw and eye, with the amplitude range in the time domain, jaw-clenching considerably larger
than that of the eye gestures. However, no distinction is evident between the left and right eye
gestures, that observation comes from the data-driven statistical conclusion (see Fig. 3). Therefore,
in the 10-30 Hz range, the range of the time domain is employed. The equation for the range is

Range = max(signal_window) — min(signal_window). (2)

2.4 Offline Analysis for Machine Learning

2.4.1 Partitioning of Training Data and Test Data. Our procedure uses two cross-validation methods:
personal K-fold validation and general validation, each with distinct data partitioning strategies.
Personal K-fold validation: training and test data come from the same participant, with K-fold
analysis ensuring no data leakage. General validation: training and test data are from different
participants, such as using one participant’s data for testing while training on the data from all
other participants. Label division is also a key part of dataset handling, allowing for different signal
analyses based on task-specific category combinations. Universal label divisions group similar eye
gestures under common labels. For example, mid2left and right2mid are grouped as small angle
to the left, while mid2right and left2mid are small angle to the right. Categories of interest are left,
right, stop, and jaw clenching. This categorization results in states like eye gestures in small/large
angle to the left/right, eyes and jaw still, and jaw clenching. Based on the control logic (See Fig. 4),
we combine the small and large eye gestures; therefore, the classification task has four classes: two
eye gestures (see right, see left), jaw-clenching, and stop.

2.4.2  KNN Algorithm. Two different models are trained based on two different data partitioning
methods. See Section 2.4.1. Euclidean distance is selected for its simplicity, effectiveness in medium-
dimensional spaces, and ability to differentiate data points. We used an interval test with an interval
of 1 to 100 to identify the optimal K-value. For the general model, we used the mean of the optimal
values. This resulted in a K-value of 37. For the personal model, each participant was assigned their
individual optimal K-value.

2.5 Real-time System

2.5.1 Control State Machine. The state machine of the system is illustrated in Fig. 4. The entire
system is in three sections: straight-line speed control, stop control, and turning control. During
straight-line speed control, the wheelchair is operated by jaw-clenching. When the user clenches
their jaw, the state of straight-line speed is flipped, either from 0 m/s to 1 m/s or from 1 m/s to
0 m/s. Turning control uses eye gestures. When the wheelchair is oriented towards the center, a
rightward gesture of the eyes causes the wheelchair to turn right; when the eyes return to the mid
position (i.e., the eye moves left), the wheelchair stops turning. Similarly, a leftward gesture of the
eyes causes the wheelchair to turn left; turning stops when the eyes return to the midpoint (i.e., the
eye moves right). Restoring the default state addresses errors because the system cannot capture
every eye gestures or jaw-clenching. Therefore, jaw-clenching is employed to restore the default
setting. During wheelchair driving, the system restores the wheelchair to a midpoint position, a
speed of 0 m/s, and a direction of travel that does not change.

2.5.2  Control Commands. The commands to control the wheelchair are determined by the clas-
sification results of a series of overlapping time windows. In this research, the duration of each
overlapping window is 4 ms with each overlapping window given a classification result. For relia-
bility, the system only issues a new control command to the wheelchair if 10 consecutive windows
(40 ms) have the same classification results. After detecting that the jaw-clenching has ended, the
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Stop turn left Stop g Stop turn right
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Look Right or Jaw movement Look Left or Jaw movement

Fig. 4. Wheelchair control state machine.

system continues to output jaw-clenching signals for 100 ms to prevent the machine learning model
from mis-classifying the muscle relaxing signal. Finally, during signal classification, a change signal
is sent to the wheelchair simulator only when a signal different from the previous signal is detected.

2.5.3 Real-time Signal Processing and Machine Learning. In the real-time system, the signal is
filtered in each sample with the memory of the previous signal. Gesture classification uses an
overlapping window of duration 500 ms with an overlap of 496 ms. After windowing the filtered
signal, the system extracts the feature and uses the model from the offline training to classify the
features. After getting the result, the classification result is transferred to the control command
generator. In the real-time wheelchair control experiment, both the general model and the personal
model are used to validate the performance of the system feasibility.

3 Experiment
3.1 Participants

The system feasibility experiment engaged 19 participants. The system robustness experiment
engaged 8 participants. All participants in the robustness experiment had participated in the
feasibility experiment. Among the participants, 4 were female, 15 were male, and they came
from diverse professional backgrounds. The age of the participants ranged from 22 to 50 years.
Participants were required to have normal control of their eye and jaw muscles. Wearing glasses
was not a requirement or limitation. We made a verbal agreement with each participant to ensure
that the participant’s personal information and their signals would only be used for the experiment
and would not be disclosed.

3.2 Apparatus

The foam in the EarEOG apparatus is shown in Fig. 5¢ and Fig. 5d. Signals are collected using
six sliver-based dry electrodes positioned under over-the-ear headphones. Our lab designed the
electrode; however, the details of the material are not described in this paper. Commercial silver
threaded conductive tapes can be an alternative material for reproducing the experiment. The
signal collection microcontroller is a Cyton Biosensing Board made by OpenBCI. ® The earEOG
signal is derived from the potential difference between the reference and measuring electrodes.
During the experiment, the screen was a 26-inch screen with a resolution of 1920 X 1080 pixels.
We extend the work presented by Uyanik et al. [23], which is a Unity wheelchair simulator. The
interface image for wheelchair navigation is shown in Fig. 6. As seen in part b, the space includes a
living and eating area (left), a bathroom (top-right), and a bedroom (bottom-right).

Shttps://shop.openbci.com/products/cyton-biosensing-board-8-channel
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(@)

Fig. 6. Overview of the wheelchair simulator. (a) View from inside. (b) Top view.

3.3 Procedure

3.3.1 Experiment 1: System Feasibility. The system feasibility experiment tested the feasibility of
the whole system. The experiment proceeded in two phases: data collection (during different eye
gestures and jaw clenching) and real-time wheelchair control.

For the data collection phase, participants sat 25 cm from the display. They put on EarEOG and
waited for the impedance to drop to between 100 kQ and 900 kQ, which normally takes 10-20
minutes. However, by wetting the ear area with water, the impedance can be reduced to 100 kQ
within five minutes and maintained during the testing. This occurs since moist skin establishes
a connection with the dry electrodes faster. Once the impedance is stable, participants watched
an animation, as described in sections 2.1.2 and section 2.1.3. The data collection phase lasted 10
minutes, including the time waiting for the impedance to decrease under 100 kQ (5 minutes) and
watching the data collection animation (5 minutes). After the data collection phase, we trained the
general model and personal model for the real-time tasks. The general model is trained by using
the signal from ten other participants, and the personal model is trained by using the signal from
the participant self.

Then, participants used the system for real-time wheelchair control. They sat 50 cm from the
display. We first introduced the operation of the wheelchair control logic to participants, then
participants used the EarEOG to try to control the wheelchair in the simulator. Once familiar with
the setup, they were given a task: Use the EarEOG apparatus with the trained general model and
the wheelchair simulator to move the wheelchair from the start position to the coffee machine and
then to the bathtub. And then using the personal model to control the wheelchair simulator to
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finish the same task. The positions of these locations are marked in Fig. 6b. A participant doing the
experiment task is shown in Fig. 7.

EarEOG
headset

Fig. 7. Real-time Experiment setup.

For wheelchair movement control, specific instructions were given: “You can change the direction
of the wheelchair by moving your eyes in the desired direction, and use a jaw clench to start or
stop the wheelchair. If a mistake occurs, look forward and clench your jaw to reset the system to its
default state, which is stopped and facing forward” While driving, the system collects the position
parameters and stores them for follow-on analyses. The real-time wheelchair control phase lasted
about five minutes.

3.3.2 Experiment 2: System Robustness. The second experiment followed the first experiment
(system feasibility). The goal was to determine how the impedance between the skin and the
electrode impacts system performance. Participants removed and re-fitted the EarEOG device and
repeated the eye and jaw-clenching whereupon the impedance between the electrode and skin was
logged. This was repeated three times. During the system robustness experiment, the participants
only used the general model to drive the wheelchair to test the real-time performance. Testing for
experiment 2 lasts about forty minutes per participant.

3.4 Performance Metrics

3.4.1  Validation Methods. Two validation methods are used in this paper: sample-based and event-
based. For the sample-based performance metrics, the trained model assesses the outcome of each
sampling window. Any errors that occur are recorded in the sample-based metrics. In contrast,
event-based performance metrics tolerate errors. In this project, the following error situations are
allowed: (i) the error point is not continuous, which means the error only occurs in one sampling
window, and (ii) there is a time shift in the result, which means the window is not a perfect fit for
the true label, but the time period is correct.

3.4.2  Offline Metrics. To validate offline performance, we measured precision, recall, F1-score,
and accuracy, described as follows. In the multi-classification task, “positive instance” refers to a
sample that belongs to a specific target category, while “negative instance” is a sample that does
not belong to that category. Precision: The ratio of correctly predicted positive instances to all
predicted positives, indicating the accuracy of positive predictions. Recall: The ratio of correctly
predicted positive instances to all actual positives, reflects the model’s ability to identify true
positives. F1-Score: The harmonic mean of precision and recall, balancing false positives and false
negatives. Accuracy: The proportion of correctly predicted instances (both positives and negatives)
to the total instances, measuring overall prediction correctness.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA08. Publication date: May 2025.
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3.4.3 Real-time Metrics. We gathered four measurements for real-time wheelchair control: De-
viation: How closely (in meters) the user follows the reference trajectory or optimal path. The
reference trajectory is established by averaging the wheelchair paths of five users who controlled
it using a keyboard. Key presses “A” and “D” simulate left and right eye gestures, respectively,
and “W” simulates jaw-clenching. This averaged trajectory serves as a baseline for comparing
the performance of other users. For each user point, the closest point on the reference path is
identified, and the distance between these points is calculated. The sum of all distances is nor-
malized by the number of points to obtain an average deviation. Mathematically, for user points
U = {u1,uy,...,uy} and reference points R = {ry,7s,...,rn,}, where D is the average deviation,
reflecting the user’s path accuracy compared to the optimal path:

1S
(D=~ ;ggg luag =1 )

Time: The time to find the coffee machine or bathtub. Stop Count, Stop Time: The number of
stops and the total time stopped while participants navigate the wheelchair to different apartment
locations.

3.4.4 System Latency Calculation. In real-time systems, calculations inevitably introduce latency.
This latency can be divided into three components: the system’s response time to the signal, the
human response time to the animation, and the calculation latency (both software and hardware).
Consequently, the delay, based on the data collection animation, is the difference between the
animation changes and the system’s classification of different classes. Added to the system delay
is the human reaction time. Figure 8 illustrates the calculation of system latency. The latency is
determined by the difference between the control command change (red point) and the EOG signal
change (green point). The blue dashed line represents the animation change time (when the white
ball starts to move), and the green line shows the animation time plus the minimum human reaction
time. The red line indicates the control command signal, adjusted to match the EOG signal for clear
comparison. The system’s eye movement delay is measured between the reaction point (green line)
and the control signal change point (red line).

This method calculates system latency for five participants during the data collection animation.
The human reaction point is judged visually, so only clean signals, where changes are visible before
filtering (green line), are analyzed.

Sub01 Eye Movement Delay Anaylze

4161
416100,

1204 animation change point g ;
—— human reaction point

_ 1001 — £0G signal
E g0l — control signal
(0]
el
2 60
g
£ 4 /\/\«\/\/\

20

0 4129.0
4000 4050 4100 4150 4200

Sample Point(sample rate=250Hz)

Fig. 8. Example system latency calculation using eye movement for Sub01.
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4 Results
4.1 Data Collection

In the system feasibility experiment, data were recorded for each participant for 62 s, excluding
non-movement states (no eye movement and relaxed jaw). Each movement lasted about 0.5 s on
average. For eye movements, each participant performed 35 large-angle movements to the left,
35 to the right, and 35 small-angle movements in both directions. For jaw clenching, 21 signals
were recorded per participant. After data cleaning, slight variations may occur. In the system
robustness experiment, eight participants collected three sets of data, each set matching the scale of
the first experiment. Each set included 35 large-angle eye movements left and right, 35 small-angle
movements in both directions, and 21 jaw-clenching signals. Data were collected at different times
and with varying electrode impedance, which could lead to slight differences after cleaning. The
results in each iteration were consistent with the first.

4.2 Offline Performance

Based on the offline analysis system, four scenarios were tested to evaluate the performance of the
general model. The scenarios included two types of data — sample and event - See Section 3.4.1 and
were conducted under both general and personal scenarios. Table 1 shows the average performance
of the model in terms of precision, recall, F1-score, and accuracy across four different classes
for each setting. The values in Table 1 are all above 90%, indicating that the model can classify
not only when trained on the user’s own data, but also when trained on data from other users,
demonstrating flexibility across different participants. Figure 9 shows a plot of each class in the
event-based validation.

Table 1. Offline Model Performance

Precision (%) | Recall (%) | F1-score (%) | Accuracy (%)
General, Sample 90.8 93.0 91.0 93.6
General, Event 94.5 94.3 93.8 94.1
Personal, Sample 96.3 94.0 95.3 97.3
Personal, Event 94.8 94.5 94.5 96.8
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Fig. 9. Box plot for each class across different models using event-based validation.
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4.3 Real-time Wheelchair Control

Figure 10 is an example trajectory to the bathtub, shown in green, representing the path while
driving the wheelchair. The red line indicates the optimal path. The "x" marks show the stop
positions while driving. Purple boundaries represent furniture, with rectangles indicating tables,
and a gap showing the room participants were to enter.

=== Room Boundaries
7.5 = Table Boundaries
—— Optimal Trajectory
—— Driving Trajectory

Deviation area
D x  Stop During Driving

5.0

2.5

z Axes

0.0
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-7.5

-15 -10 -5 0 5 10 15 20
X Axes

Fig. 10. Trajectory example showing movement, stops, and room boundaries.

The performance results for 18 participants during wheelchair control are presented in Table 2.
The results are compared between the general model and the personal model across two different
scenarios: Drive the wheelchair to find the coffee machine and the bathtub. The results in Table
2 indicate that the overall performance is satisfactory across both tasks. The last two lines show
the performance of each reference path compared to the average of the reference paths. Notably,
the average deviation for the coffee machine task is higher than for the bathtub task, which we
speculate is due to the presence of a table along the path to the coffee machine.

Table 2. Real-time System Performance

Deviation (m) | Time (s) | Stop Count | Stop Time (s)
Coffee - General Model 1.35 41.0 5.22 2.26
Coffee - Personal Model 2.05 52.0 5.33 2.16
Bathtub - General Model 0.97 61.4 6.89 2.03
Bathtub - Personal Model 0.92 70.9 7.11 2.15
Coffee - Keyboard Control 0.98 20.0 24 1.25
BathTub - Keyboard Control 0.25 31.5 4.4 1.44

Note: One participant was unable to complete the tasks, so the participant’s results are not included in the table.

4.4 Impedance Influence in Offline System

After testing the feasibility and performance of the system, we analyzed robustness by asking
participants to take off and put on EarEOG to test the performance of the different impedances.
Fig. 11 shows offline performance accuracy by impedance. “x” is accuracy for the offline signal,
with red for the general model and blue for the personal model. The line is the average accuracy of
the general and personal models. The “x” corridor shows the average impedance during the signal
collection. The impedance in the table is the average of the four electrode impedances. For each
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«_ %

electrode impedance, the impedance at the beginning and end is collected, with “x” in the figure
showing the average of these two values. In the offline analysis, each personal model and general
model was evaluated to find the relationship between impedance and classification accuracy.
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Fig. 11. Relationship between impedance and accuracy.

4.5

To test the real-time performance of EarEOG, participants drove the wheelchair to again find the
coffee machine and bathtub. The performance metrics of the real-time system also include the
time and deviation of the trajectories between participants. To simplify the procedure and prevent
mistakes due to fatigue, in the real-time analysis, participants only used the general model for the
system robustness test. The relationship between real-time performance and impedance is shown
in Table 3. As seen in the table, participants had difficulty controlling the wheelchair when the
impedance was too high. An example is Sub04’s Round 3 performance where the impedance was
17.5 MQ and "Fail" was recorded for both the coffee machine and bathtub. In fact, all 14 instances
of "Fail" in the table are coincident with impedance greater that 1 MQ. This suggests that high
impedance hinders correct commands, while lower impedance improves performance.

Impedance Influence in Real-time Wheelchair Driving

Table 3. Impedance and Real-time Performance per Round

Participant Impedance (MQ) Performance Deviation (m)
Round 1 | Round 2 | Round 3 | Coffee Deviation Bath Deviation
Sub01 5.00 0.31 0.17 Fail | 4.43]0.70 Fail | 0.70 | 1.02
Sub02 0.27 7.00 0.13 | 1.17|Fail|0.25 2.97 [Fail | 0.39
Sub03 7.50 0.34 034 | Fail|2.40]143 Fail | 1.21 | 0.19
Sub04 0.24 0.28 175 | 0.900.29 | Fail 2.62 [ 0.54 | Fail
Sub05 0.21 038 7.00 | 0.86]0.21 | Fail 0.91 [ 0.66 | Fail
Sub06 0.37 0.33 0.36 1.15]0.96 | 0.44 1.02]0.25]0.48
Sub07 0.48 0.17 2.00 1.35 | 2.88 | Fail 0.51 | 0.64 | Fail
Sub14 0.34 2.00 0.12 | 1.98]|Fail|2.86 1.05 | Fail | 0.40

Note: “Fail” means the system could not present the right command to the wheelchair.
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4.6 System Latency

Five participants were tested to measure system latency. This required a clear signal for the observer
to mark the signal change point; therefore, not every participant was tested. The average of these
participants was 119 ms for eye movement and 120 ms for jaw-clenching movement. These five
participant system latencies are shown in Table 4.

Table 4. Eye and Jaw Latency

Sub01 | Sub02 | Sub03 | Sub04 | Sub05 | Mean SD
Eye Movement Latency | 128 ms | 132 ms | 108 ms | 116 ms | 112 ms | 119 ms | 9.26 ms
Jaw Clenching Latency | 136 ms | 104 ms | 108 ms | 136 ms | 116 ms | 120 ms | 13.6 ms

4.7 Comparison Among Functions

Table 5 compares the performance of several existing algorithms with the results from this research.
It is important to note that the existing methods only classify eye movements, whereas our work
addresses a more complex classification task that includes both eye and jaw movements. Because
the beginning of the jaw-clenching signal has the same trend as the eye movement signal(See
Fig 2), which will lead the mistakes in real-time application, this comparison illustrates the compet-
itive performance of the proposed method, especially in personalized settings, showing that it is
comparable to or exceeds the performance of existing algorithms for the given task.

Table 5. Comparison with Existing Algorithm

Algorithm Accuracy (%) | Classification Task
CNN [20] 94.5 4 eye movements
DTCWT [5] 95.6 4 eye movements
SVM [18] 95.8 6 eye movements
KNN* [17] 96.9 6 eye movements
Our function, General 94.1 eye and jaw

Our function, Personal 96.8 eye and jaw

4.8 Qualitative analysis of user experience

Task load was evaluated using the NASA-TLX scale [9], yielding an overall score of 3.69 (SD =
0.67). Among the six dimensions assessed, effort (4.76) and performance (4.59) received the highest
ratings, indicating that participants felt a significant need to exert effort but were able to achieve
satisfactory performance outcomes. Conversely, temporal demand (2.53) received the lowest rating,
suggesting that participants experienced minimal time pressure during the task. The relatively low
overall score suggests that the system is well-designed, imposing only moderate demands on users
and making it intuitive and user-friendly.

5 Discussion
5.1 Result Discussion

The classification accuracy of the algorithm for all motion signals reached 94.1%, with a further
improvement to 97.3% using personalized models. The system’s stability was confirmed through
multiple trials, where participants successfully operated the simulated wheelchair using EarEOG,

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA08. Publication date: May 2025.



ETRA08:14 Peichen Liu, Sadasivan Puthusserypady, I. Scott MacKenzie, Cihan Uyanik, & John Paulin Hansen

provided that electrode impedance was kept below 1 MQ. Additionally, EarEOG demonstrated low
latency, with recognition delays of less than 125 ms. A significant challenge encountered was the
time to achieve optimal electrode impedance. Participants had to wait for impedance levels to drop
to a range of 100 kQ to 900 kQ, a process that typically took 10 to 20 minutes. However, by wetting
the ear area with water, the impedance was reduced to the desired range within five minutes,
allowing for quicker operation. Importantly, the ability to continuously measure impedance levels
offers a substantial advantage. It allows the system to provide real-time feedback, advising them
to apply additional moisture if necessary and offering estimates on how long it will take for the
system to reach operational readiness. This feature enhances usability and minimizes downtime,
improving the overall experience for users.

5.2 System Limitation and Future Work

During testing, some participants observed that eye movement control exhibited an imbalance in
performance, with detection on one side more proficient than the other. This was not universal,
however, as not every participant exhibited this issue to the same extent. While this did not result in
a control error, it lead to a suboptimal user experience. This situation is likely caused by dominance
of one eye over the other, known as ocular dominance [7]. Ocular dominance can influence how
visual information is processed and prioritized by the brain, potentially affecting the sensitivity
and accuracy of eye movement-based controls. Another point to consider is the potential impact
of thick hair on electrode impedance, as noted in previous studies, such as Hou et al. [10], which
could pose challenges in reliably capturing EOG signals around the ear. Although none of our
participants had thick hair, and thus we encountered no related issues in our study, future work
might explore solutions for users with denser hair. Investigating alternative electrode materials or
configurations may improve signal quality across a more diverse range of users, enhancing both
usability and inclusivity. Additionally, the participants in this study were all healthy individuals,
and the system was tested in a simulated environment. Future research should focus on validating
the system in real-world settings, especially with individuals who have mobility impairments, and
consider variations such as the presence of thick hair.

Finally, a promising future topic is to extend EarEOG to detect additional movement types, such
as correlating EarEOG signals with eye movement angles. While Favre-Félix et al. [6] suggest
a potential relationship between in-ear-EOG signals and eye angles, applying similar methods
to EarEOG could allow the system to control the wheelchair solely through different eye angles.
Furthermore, a future version of this system could include a home facility interaction feature that
activates when the user is within 2 meters of a device, such as a coffee machine or door opener. By
pausing within this range for, for example, 3 seconds, the device could engage, allowing the user to
interact via eye movements. A jaw clenching motion could signal the system to exit, after which it
would remain inactive for, say, 10 seconds before reactivation becomes possible. These additions
would enhance accessibility and independence for users unable to move their hands.

Privacy and Ethics Statement

The EarEOG system developed in this study controls the wheelchair through EOG signals. The
biosignals collected will be anonymized in strict compliance with privacy protection regulations.
The system is only enabled when the user actively interacts, avoiding unintentional monitoring of
the user’s daily behavior, thereby ensuring privacy.
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