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Abstract

The prediction of movement time in human-computer
interfaces as undertaken using Fitts' law is reviewed.
Techniques for model building are summarized and
three refinements to improve the theoretical and
empirical accuracy of the law are presented.
Refinements include (1) the Shannon formulation for
the index of task difficulty, (2) new interpretations of
“target width” for two- and three-dimensional tasks,
and (3) a technique for normalizing error rates across
experimental factors. Finally, a detailed application
example is developed showing the potential of Fitts'
law to predict and compare the performance of user
interfaces before designs are finalized.

Keywords human performance modeling, Fitts' law,
input devices, input tasks

Introduction

Movement is ubiquitous in  human-computer
interaction.  Our arms, wrists, and fingers busy
themselves on the keyboard and desktop; our head,
neck, and eyes move about attending to graphic details
recording our progress. Matching the movement limits
and capabilities of humans with interaction techniques
on computing systems, therefore, can benefit from
research in this important dimension of human
behaviour.

One focus in HCI research is in predicting and
modeling the time for humans to execute tasks.
Although encompassing a vast territory to be sure, one
dimension is the time invested in movement. In fact,
movement is an integral, seemingly innocuous
component of many research questions in HCI: Are
popup menus superior to menu bars? Which input
device affords the quickest and most accurate
interaction? Should a scroll bar in a text editor be on

the left or right side of the CRT display? Can gestures
replace commands in text editing?

In this review paper, we will explore Fitts' law, a
powerful model for the prediction of movement time in
human-computer interaction. We are motivated by (a)
apparent problems in previous work, (b) the difficulty
in interpreting and comparing published results, and
(c) the need to guide future research using Fitts' law.

We begin with a brief tour of Fitts' law, and follow by
describing some refinements to correct flaws or to
improve its prediction power. Finally, derived models
are used in an application example to illustrate the
potential of Fitts law in assessing and comparing
interface scenarios before they are finalized in
products.

A Brief Tour of Fitts' Law

The application of information theory to human
performance modeling dates to the 1950s when
experimental  psychologists (e.g., Miller, 1953)
embraced the work of Shannon, Wiener, and other
information theorists as a framework for understanding
human perceptual, cognitive, and motor processes.
Models, or “laws’, that persist today include the Hick-
Hyman law for choice reaction time (Hick, 1952;
Hyman, 1953) and Fitts’ law for movement time (Fitts,
1954; Fitts & Peterson, 1964).

According to Fitts, a movement tasks difficulty (ID,
the “index of difficulty”) can be quantified using
information theory by the metric “hits”. Specifically,

ID = log,(2A/ W) D)

where A is the distance or amplitude to move and Wis
the width or tolerance of the region within which the
move terminates. Because A and W are both measures
of distance, the term within the parentheses in
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Equation 1 is without units. The unit “bits’ emerges
from the somewhat arbitrary choice of base 2 for the
logarithm. From Equation 1, the time to complete a
movement task is predicted using a simple linear
equation, where movement time (MT) is a linear
function of 1D.

Figure 1 shows the seria tapping task used by Fitts
(1954). In this experiment, subjects alternately tapped
as quickly and accurately as possible between two
targets of width W at a distance A. Obviously, as
targets get farther away or as they get smaller, the tasks
get more difficult and more time is required to
complete the task. In Fitts' experiment A and W each
varied over four levels. The easiest task had A= 1 inch
and W = 1 inch for 1D = logp(2A/W) = loga(2) = 1 hit.
The hardest task had A = 16 inches and W = 0.25
inches for ID =10gp(128) = 7 hits.

Figure 1. The seria tapping task used by
Fitts (1954).

Thetask in Figure 1 can be implemented on interactive
graphics systems using targets displayed on a CRT and
a cursor manipulated by an input device. A common
variation is the discrete task — a single movement
toward a target from a home position (see Figure 2).
Target selection is usually accomplished by a button
push when the cursor is over the target.

The first use of Fitts' law in HCI research was the
work of Card, English, and Burr (1978) who applied
the model on data collected in a text selection task
using a joystick and a mouse. Subjects were required
to move the cursor from a home position to a target —
aword — and select it by pushing a button. Numerous
other HCI researchers have subsequently used Fitts'
law. Examples include Boritz, Booth, and Cowan
(1991); Gillan, Holden, Adam, Rudisill, and Magee
(1990); Card, Mackinlay, and Robertson (1990); Epps
(1986); MacKenzie, Sellen, and Buxton (1991);

Walker and Smelcer (1990); and Ware and Mikaelian
(1987).
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Figure 2. A discrete task using a cursor and a
target displayed on a CRT.

A movement model based on Fitts' law is an equation
predicting movement time (MT) from atask’s index of
difficulty (ID). Figure 3 shows the general idea.

Movement Time (seconds)

easy hard

Index of Difficulty (bits)

Figure 3. Movement time prediction.

As expected, movement time for hard tasks is longer
than for easy tasks. The prediction equation for the
linein Figure 3 is of the form

MT=bID 2

or

MT=a+bID ©)



depending on whether or not the line goes through the
origin. In both cases, b is the slope of the line.

Since task difficulty is analogous to information, the
rate of task execution can be interpreted as the human
rate of information processing. For example, if a task
rated at, say, ID = 4 bitsis executed in 2 seconds, then
the human rate of information processing is 4/2 = 2
bits/s. This is aso evident by examining Figure 3.
Since the vertical and horizontal axes carry the units
“seconds’ and “hits” respectively, the slope of the line
is in “seconds/bit”. The reciprocal of the slope is in
“hits/s’. The latter measure Fitts called the index of
performance (IP). Since IP is in bits/s, the term
“bandwidth” is also used.

Intuitively, the higher the bandwidth the higher the
rate of human performance since more information is
being articulated per unit time. One of the strengthsin
Fitts' law is that measures for IP, or bandwidth, can
motivate performance comparisons across factors such
as device, limb, or task. It follows that performance in
a human-computer interface can be optimized by
selecting and combining those conditions yielding high
bandwidths.

Equation 2 is idea since the prediction line goes
through the origin. This is important for the intuitive
reason that a movement task rated at ID = O bits is
predicted by Equation 2 to take zero seconds, as
desired. By Equation 3, however, a non-zero intercept
implies that a task rated at ID = O bits will take “a”
seconds to execute. (This point will surface again
later.)

Building a Fitts Law M odel

In building a Fitts' law model, the slope and intercept
coefficients in the prediction equation are determined
through empirical tests. The tests are undertaken in a
controlled experiment using a group of subjects and
one or more input devices and task conditions. On
interactive computing systems, this could range from
manipulating a cursor with a mouse and selecting
icons to manipulating a virtual hand with an input
glove and grabhing objectsin a 3D virtua space.

The design of experiments for Fitts' law studies is
simple. Tasks are devised to cover a range of
difficulties by varying A and W. For each task
condition, multiple trials are conducted and the time to
execute each is recorded and stored electronically for
statistical analysis. Errors are also recorded (and
analysed as discussed later). Generally, measurements
are aggregated across subjects resulting in one data
point for each task condition. A typical data set is
shown in Table 1 for a stylus in a seria point-select

task mimicking Fitts' seria tapping task (MacKenzie,
1991).
Tablel
Data From an Experiment Using a
Stylus in a Point-Select Task

ID MT  Errors P

A2 We  (hits) (ms) (%) (bits/s)
8 8 1 254 0.0 4.3
8 4 2 353 19 6.1
16 8 2 344 0.8 6.4
8 2 3 481 1.7 6.4
16 4 3 472 21 6.6
32 8 3 501 0.6 6.2
8 1 4 649 8.8 6.3
16 2 4 603 21 6.8
32 4 4 605 2.7 6.7
64 8 4 694 25 5.9
16 1 5 778 7.0 6.6
32 2 5 763 34 6.6
64 4 5 804 2.3 6.3
32 1 6 921 85 6.6
64 2 6 963 3.3 6.3
64 1 7 1137 9.9 6.3

Mean 645 3.6 6.3
SD 243 3.1 0.6
dexperimental units; 1 unit = 8 pixels

The first three columns contain the independent
variables target amplitude (A), target width (W), and
the associated index of difficulty (ID) calculated using
Equation 1. A and W each varied over four levels,
yielding IDs of 1 to 7 bits. In the last three columns
are the dependent variables movement time (MT), error
rate, and the index of performance (IP = ID/MT).
Each row entry is the mean of about 470 trials. The
grand means were 645 ms for movement time, 3.6%
for error rate, and 6.3 bits/s for the index of
performance, as shown in the second last row.

The next step in model building is to enter the 16 MT-
ID points in tests of correlation and linear regression.
The data in Table 1 yield a regression line with
movement time (ms) predicted as

MT =53 + 148 ID 4

with a correlation of r = .992. Correlations above .900
are considered very high for any experiment involving
measurements on human subjects. A high r suggests
that the model provides a good description of observed
behaviour.

The prediction equation has an intercept of 53 ms and
a slope of 148 mgbit. Converting the slope to its
reciprocal yields an index of performance, or
bandwidth, of 6.8 bits/s. Often the data points and



regression line are shown together in a scatter plot (see
Figure 4).
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Figure 4. Scatter plot and regression line for
the datain Table 1.

As just shown, the index of performance can be
calculated using a direct division of mean scores (IP =
ID/MT) or through linear regression (IP = 1/b, from
MT = a + b ID). The two methods yielded slightly
different results: 6.3 bits/s using the direct method vs.
6.8 bits/s using the slope reciprocal. Although the
disparity seems small, the correct method of
calculation isin doubt. Fitts used the direct method in
his 1954 paper and linear regression in a subsequent
study (Fitts & Peterson, 1964). Most (but not all)
current researchers use linear regression. Notably, the
disparity is systematic: If thelinein Figure 4 is rotated
counter-clockwise forcing it through the origin, the
slope increases and the slope reciprocal decreases, thus
reducing the disparity.

If the regression line intercept is small the difference
between the two bandwidth measures will be slight. If

appreciable. In the latter case, a consistent, additive
component of the task (such as a button push) may be
the source of the intercept.

An example is the model built by Card et a. (1978) for
the mouse in a text selection task:

MT = 1030 + 96 ID (5)

Although the fit was again very good (r = .91), this
equation has one of the largest intercepts in published
Fitts' law research. The implication, of course, is that
a movement task rated at ID = 0 bits will take 1.03
seconds.

The large intercept also casts doubt on the validity of
the slope reciprocal as a measure for bandwidth. The
slope of 96 mg/bit translates into a bandwidth of 10.4
bits/s. The Card et a. (1978) experiment used 20 task
conditions with a mean ID of 2.63 bits/s. The mean
movement time was reported as 1.29 s; so, the
bandwidth calculated using a direct division of means
is 2.63/1.29 or 2.0 bits/s. This differs from the slope
reciprocal bandwidth by a factor of fivel This is a
concern if one wishes to generalize findings in terms of
the human rate of information processing. Is the rate
in this case 10.4 bits/s or 2.0 bits/s? As evident in
Table 2, the regression line equations (and resulting
bandwidths) vary tremendously in previous Fitts' law
research using the mouse in point-select tasks.

A third possibility for calculating the prediction model
is regression-through-the-origin.  Although it has
never been employed, the method will produce the
best-fitting line passing through the origin.

Since linear regression produces the prediction line
with the best fit, it is the preferred choice for model
building. However, the proviso is added that the
intercept must be small. “ Small” in this context is on
the order of a few hundred milliseconds — a value
which can reasonably be attributed to random variation
in measurements.

the intercept is large, the difference may be
Table 2
Prediction Equations and Bandwidths From Fitts' Law
Studies Using a Mouse in Point-Select Tasks
Study Prediction equation (ms) Bandwidth (bits/s)
Boritz et a., 1991 MT =1320+430 1D 23
Epps, 1986 MT =108 + 392 ID 26
MacKenzie et al., 1991 MT =-107 + 223 1D 45
Han et d., 1990 MT =389+ 1751D 5.7
Card et al., 1978 MT =1030+96 ID 104
Gillanet a., 1990 MT =795+831ID 12.0




Refinementsto Fitts Law

Despite an extremely good fit in empirical tests, Fitts
law is a frequent target for critical reviews (eg.,
Meyer, Smith, Kornblum, Abrams, & Wright, 1990;
MacKenzie, in press, Welford, 1968). Numerous
problems surface under close examination or when
findings are compared across studies. These have
motivated corrections or refinements to the model. In
this section we review these and offer suggestions to
guide researchers in applying the law.

Formulation for Index of Difficulty

Early examinations of the law noted a consistent
departure of data points above the regression line for
“essy” tasks (ID < 3 hits). A new formulation for ID
was proposed by Welford (1960) to correct this:

ID =logo(A/W + 0.5). (6)

Many researchers, including Fitts, noted an improved
fit using Equation 6. The Welford formulation was
used by Card et a. (1978), whose findings were
subsequently elaborated in the Psychology of human-
computer interaction (Card, Moran, & Newell, 1983).
Not surprisingly, many HCI researchers citing Card
and colleagues adopt the Welford formulation (e.g.,
Boritz et a., 1991; Gillan et a., 1990).

It has also been argued that Fitts, in formulating his
model, deviated unnecessarily from Shannon’s original
work in information theory (MacKenzie, 1989;
Shannon & Weaver, 1949), and that a more
theoretically sound formulation for the index of task
difficulty is

ID = logo(A/W + 1). (7
In terms of MT, the prediction model becomes
MT = a+ b logo(A/W + 1). (8)

Equation 8, known as the Shannon formulation, is
preferred because it

» provides adlightly better fit with observations,

* exactly mimics the information theorem
underlying Fitts' law, and

» aways gives a positive rating for the index of
task difficulty.

The last point above is understood by examining the
three formulations for ID. Using the Fitts or Welford
formulation (Equations 1 & 6), the index is negative if
the amplitude is less than half the target width; that is,
A <WI/2. At the very least, a negative rating for task
difficulty is a nuisance. From Equation 7, as A

approaches zero (for any W), 1D approaches 0 bits, but
never becomes negative. Obviously, the latter effect
has strong intuitive appeal. Although for the one-
dimensional paradigm an amplitude less than W2 only
occurs when the starting position is inside the target
(see Figure 2), very small A:W ratios are fully possible
when the law is applied in two dimensional tasks. This
is demonstrated in the next section.

Extension to Two Dimensions

It is important to remember that the experiments
undertaken by Fitts and most other experimental
psychologists tested one dimensional movements. This
is evident in Figures 1 and 2. Since both target
amplitude and target width are measured along the
same axis, it follows that the model is inherently one
dimensional.

HCI researchers employing Fitts' law invariably use
target selection tasks realized on a two-dimensional
CRT display. The shape of the target and the angle of
approach, therefore, must be considered carefully in
applying the model. If the targets are circles (or
perhaps squares), then the one-dimensional constraint
remains largely intact. (The “width” of acircle is the
same, regardless of the angle of measurement!)
However, if targets are rectangles (e.g., “ words’), the
situation is confounded. We can still view the
amplitude as the distance to the centre of the target; but
the definition of target width is unclear. This is
illustrated in Figure 5.

In applying the model in 2D tasks, a critical question
arises: What is target width? The default strategy isto
consistently use the horizontal extent of the target. We
cal this the “STATUSQUO” model for target width.
Unfortunately, a STATUSQUO model vyields
unrealistically low (sometimes negative!) estimates for
task difficulty when, for example, a short and wide
target, such as aword or series of words, is approached
from above or below at close range. At least two
examples of this exist in the literature. Gillan et al.
(1990) used Fitts' law in a target selection task using
strings of characters as targets while varying the
approach angle and approach distance. One extreme
condition saw a 26-character (6 cm) target approached
diagonally from a distance of 2 cm. Welford's
formulation was used, so the index of task difficulty
was ID = logo(A/W + 0.5) = logp(2/6 + 0.5) = -2.6 bits.
The negative rating is troublesome. (A similar
exampleisfound in Card et al., 1978).

One result of task difficulty extending to the left of 1D
= 0 bits is that it becomes certain that a positive
(probably large) intercept emerges under linear
regression. Thisis because conditions with ID = O bits
or less correspond to conditions that actually occurred



in the experiment. No doubt, such tasks will take a
non-trivial (positive) amount of time.
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Figure 5. Fitts' law in two dimensions. The
roles of width and height reverse as the
approach angle changesfrom0 to 90 .

We suggest two ways to correct this problem. The first
is to use the Shannon formulation for 1D, which for the
example above would increase the rating to 1og2(2/6 +
1) = +0.42 hits.

A second and additional strategy is to substitute for W
a measure more consistent with the 2D nature of the
task. Consider Figure 6. The inherent 1D constraint
in the model is maintained by measuring W along the
approach axis. Thisis shownas W (read “ W prime”)
in the figure. Notwithstanding the assertion that
subjects may “cut corners’ to minimize distances, the
W model is appeding because it alows a 1D
interpretation of a 2D task.

Another possible substitution for target width is “the
smaler of W or H”. This pragmatic approach has
intuitive appeal in that the smaller of the two
dimensions seems more indicative of the accuracy
demands of the task. We call this the “SMALLER-OF’
model. This model is computationally simple since it

can be applied only knowing A, W, and H. The W
model, on the other hand, requires A, W, H, and ?-,
and a geometric calculation to determine the correct
substitution for W. The SMALLER-OF model is limited
to rectangular targets, however.

An experiment was conducted to test the different
models for target width on a standard target selection
task using a mouse. The design employed a balanced
range of short-and-wide and tall-and-narrow targets
approached from various angles. The results indicate
that both the SMALLER-OF and W models are em-
pirically superior to the STATUS QUO model and that
the difference between the SMALLER-OF and W mo-
delsisinsignificant (MacKenzie & Buxton, in press).

.

?A

Figure 6. What is target width? Possibilities
include W (the width of the target along an
approach vector) or the smaller of Wor H.

In summary, the SMALLER-OF or W model is
recommended in applying Fitts law to two
dimensional tasks. We should note that extensions to
three dimensional tasks easily follow from the
arguments above; athough Fitts' law has yet to be
tested in 3-space. Finally, note that the W model
reduces to the STATUSQUO mode for one
dimensional tasks.

Normalization and the Speed-Accuracy Tradeoff

The reciprocity between the speed of actions and the
subsequent accuracy of responses has been well
documented in experimental psychology and human
factors engineering (e.g., Hancock & Newell, 1985;



Pew, 1969). Despite this, researchers all too often base
performance analyses solely or largely on task
completion time measurements while paying little
regard to the errors that accompanied — and equally
contributed to — performance. Comparative
evaluations based on movement time criteria are
difficult when faced with disparities in error rates.
That is, if condition A was faster than condition B, but
had more errors, it is uncertain which condition is
better.

The most important refinement to Fitts' law, perhaps,
is the technique for accommodating spatial variability
or errors in responses. The techniques calls for target
width to be adjusted based on the distribution of “hits”
(selection coordinates) about each target. Thus, at the
model building stage, W is a dependent variable rather
than an independent variable. The claim is that the
technique increases the power of Fitts law since
normalized models inherit a known and consistent
error rate. In particular, comparisons within and
between studies are strengthened by a “level playing
field”.

The output or “dfective” target width (Wg) is derived
from the observed distribution of “hits’, as described
by Crossman and Welford (Welford, 1968, p. 147).
This adjustment lies at the very heart of the
information-theoretic metaphor — that movement
amplitudes are analogous to “ signals’ and that end-
point variability (viz., target width) is analogous to
“noisg’.

The technique is illustrated in Figure 7. When a
nominal error rate of 4% occurs (Figure 7a), no
adjustment is required (We = W). When a different
error rate occurs, target width is adjusted by
multiplying it by a ratio of z scores obtained from
statistical tables for the unit-normal curve. For
example, if 2% errors were recorded on a block of
trials when selecting a 5 cm wide target, then We =

2.066/2.326 ? 5 = 4.45 cm (Figure 7b).1 The analyses
proceed as before except using “effective 1DS’,
calculated using We instead of W.

Applying this technique is essential if comparisons
within or across studies are attempted. Rephrasing and
earlier point, if performance on condition A was 6
bits/s and performance on condition B was 5 bhits/s,
we'd like to conclude that condition A was superior;
however, in the absence of identical or normalized
error rates, such a conclusion is weak and perhaps
wrong. Fitts' law models have appeared in published
research accompanied by error rates from 0% to 25%
(see MacKenzie, in press); yet the technique is rarely

1The technique is described elsewhere in full detail
with examples (MacKenzie, in press).

applied. It is strongly recommended that future
research adopt the method.
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Figure 7. The method for normalizing
responses. In (a) the error rate is 4% so no

adjustment is needed. In (b) the rate is 2% so
an adjustment is made.

Applying Fitts Law: An Example

One challenge in research is relating the findings to
real-world problems confronting practitioners in the
field. Despite its recognition as one of the more robust
models for human movement, Fitts' law has rarely
migrated from the research |ab.

An instance of Fitts' law actually being used in a
product is a computer-aided design tool called Jack,
developed at the University of Pennsylvania (Badler,
Webber, & Kalita, 1991). In Jack three dimensional
human figures (simulated on a CRT display) are
programmed to execute motions such a picking up
objects or making adjustments on a simulated control
panel. Since the researchers did not know how fast to
program movements in Jack, they called upon Fitts
law. A derived Fitts' law model was embedded in Jack



to provide the duration for movements, based on the
distance to move and the size of the terminating region
for the move. The visual result is quite natural.

In this section, further applications for Fitts' law
models are explored and a specific example is
developed.

First, we must recognize when not to use Fitts' law.
The law is a prediction model for rapid, aimed
movement. A variety of user input activities do not fit
this description, including drawing, inking, writing
cursive script, and other temporarily constrained tasks.
Furthermore, some devices are inadequately modeled
by Fitts' law. Isometric joysticks are force sensing and
undergo negligible motion. As a model for human
movement, it seems odd to apply Fitts' law where no
limb movement takes place. Card et a. (1978) found
that performance data for an isometric joystick were
poorly described by Fitts' law. After the data were
decomposed by amplitude, however, the model fit well,
yielding a series of parallel lines across amplitude
conditions. Other devices, such as those for velocity
control, may also display characteristics inappropriate
for aFitts' law model.

For the more common pointing devices (such as the
mouse, trackball, or stylus), and for common point-
select or drag-select tasks, however, Fitts' law has the
potential to assist in the design and evauation of
graphical user interfaces. Questions of the form “How
long will this task take?’ can be answered using Fitts
law prediction equations if certain conditions exist. If
the tasks are rapidly executed with negligible or known
mental preparation time, system response time, device
homing time, etc., then there is a good chance Fitts
law can assist in evaluating alternative methods.

Consider the case of deleting a file (icon) on the Apple
Macintosh computer. Three possible methods are
listed below.

DRAG-SELECT: Drag the icon to the trash-
can. (This is the traditional Macintosh
method.)

POINT-SELECT: Select the file icon with a
point-select operation, then select the trash-
can icon with a second point-select
operation.

STROKE-THROUGH:  Stroke through the
icon. This method uses a button-down action
beside the file icon followed by dragging
(stroking) through the icon and a button-up
action on the opposite side.

The STROKE-THROUGH method is an example of
input which mimics a natural gesture in manuscript
editing (Hardock, 1991; Kurtenbach & Buxton, 1991).
A reasonable assumption for the stroking gesture is
that the button-down action occurs on the left of the
icon in the centre of a region the same size as the icon,
and that the button-up action occurs similarly in a
region on the right of the icon.

A possible screen layout is shown in Figure 8. The
trashcan icon is located at the bottom right of the
screen. The file icon is placed in the middle of the
screen at a distance of 14 cm from the trashcan. Both
icons are 2 cm square. The button-down and button-up
regions for the stroking gesture are shown in dotted
lines.

The calculations proceed using derived pointing and
dragging models for the mouse (MacKenzie et al.,
1991):

Pointing model:

MT =230+ 166 ID 9)
(IP = 6.0 hitg/s)

Dragging model:
MT =135+ 249 1D (10)
(IP = 4.0 bitg/s)

The pointing model applies to the POINT-SELECT
method, while the dragging model applies to the
DRAG-SELECT and STROKE-THROUGH methods.
Note also that for the STROKE-THROUGH method the
amplitude is 4 cm, rather than 14 cm.

Once the initial move to the icon is complete, the time
to delete the file icon using each method is calculated
as follows:

DRAG-SELECT:

MT =135 + 249 log(14/2 + 1)

=135+2497B
=882 ms (11)

POINT-SELECT:

MT =230 + 166 logp(14/2 + 1)

=230 +166? 3
=728 ms (12)

STROKE-THROUGH:

MT =135 + 249 logp(4/2 + 1)

=135+249 7 158
=528 ms (13)



This result suggests, using Fitts' law analyses, that the
traditional method of deleting a file on the Macintosh
is slower than two alternate methods. (The STROKE-
THROUGH method is 40% faster.) The example is
simplistic, however. Other issues such as methods for
deleting multiple files or for un-deleting files must be
considered too.

Even though the rate of information processing is
lower during dragging than during pointing, the
STROKE-THROUGH method, which is a dragging
operation, is faster than the POINT-SELECT method.
This is due to the combined effect of the intercepts in
the prediction equations and the different movement
amplitudes. Using the stroke-through method, the
predicted MT is independent of the distance (A)
between the file icon and the trashcan icon since the
movement amplitude is nominally set at twice the file
icon’s width. However, the predicted MT decreases
with A for the POINT-SELECT method. This suggests
there may be a cross-over point below which the
POINT-SELECT method is faster. Knowledge of this

may play a critical role in selecting an appropriate
method. In the current example, the cross-over point is
caculated by equating the POINT-SELECT and
STROKE-THROUGH predictions as follows:

230 + 166 logo(A/2 + 1) =
135 + 249 logp(A/2 + 1) 14
Solving Equation 14 yields A = 2.72 cm. So, the point-
select method is faster than the STROKE-THROUGH
method only for amplitudes less than 2.72 cm.
Certainly, this is a minority of cases. Other
possibilities could be explored too, such as increasing
the size of the trashcan icon relative to file icons.

Future Possibilities

In the hard science-soft science debate, Newell and
Card (1985) hold that “striving to develop atheory that
does task anaysis by calculation is the key to
hardening the science” (p. 237). Indeed, future
applications of Fitts law may include *embedded
models’ as an
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Figure 8. Screen layout for Fitts' law example.



integral part of user interface design and management
systems. The scenario envisioned goes something like
this: A user interface is patched together in story-
board fashion with a series of screens (with their
associated soft buttons, pull-down menus, icons, etc.)
and interconnecting links. The designer puts the
embedded model into “analyse mode” and “ works’ the
interface — positioning, drawing, selecting, and
“doing” a series of typical operations. When finished,
the embedded model furnishes a predicted minimum
performance time for the tasks (coincident with a
nominal or programmable error rate). The designer
moves, changes, or scales objects and screens and
requests a reanalysis of the same task.

Thisis arough first approximation. At a higher level,
an embedded model is an “agent” in beta testing,
monitoring activities and profiling performance. The
profile catalogs a variety of facets of the interface. For
example, a “locus of control” could identify frequently
used screens or high-use regions on a display. In a
word processing system, for example, depending on the
implementation for scrolling, a user may work mostly
at the bottom of the screen. Knowledge of this may
imply that a menu bar could be placed at the bottom of
the display rather than at the top.

A more powerful embedded model performs sequence
analysis. How long does it take to get from point A to
point B through a series of intermediate steps? Or, of
aternate ways, which is the fastest? Hypermedia
environments with embedded links facilitate such
analyses, since an explicit and external state-transition
description may not be needed. The agent acts on the
screen definitions and links (as they exist in the
application) in evaluating alternative or optimal paths.

An embedded model is more than a software routine
incorporating Fitts' law. System and user performance
constants are needed, similar to those in the Keystroke-
Level Model (Card, Moran, & Newell, 1980). A
parametric analysis could identify bottlenecks or
optimal combinations.  For example, decreasing
pointing time by 10% vs. decreasing user keystroke
time by 10% may have vastly different effects on
overall task completion time. If a task can be
accomplished two ways (e.g., 4 point-select operations
vs. 20 keystrokes), which is the fastest? A parametric
analysis could identify cross-over points across settings
(as shown earlier). The designer could establish
ranges and weights for parameters, and an agent,
armed with embedded models, would take it from
there.

Fitts' law may also participate in user-adaptive systems
— systems with a human interface which changes to
accommodate a user's capabilities and limitations
(Rouse, 1988). Control systems for air traffic, ground

traffic, power generation or industrial processes are
potential instances. One can imagine several human
operators interacting with a complex system by
manipulating iconic controls in response to system
events. As system dynamics change, the demands on
operators change. Models such as Fitts' law (and/or
the Hick-Hyman law) could measure the load on
operators (in bits/s) or predict their performance. In
safety-critical  settings, it may be possible to
systematically allocate tasks to workers to maintain set-
points of sub-maximal performance.

Human-computer interaction has advanced by leaps
and bounds in recent years. We can attribute this
primarily to the improved interfaces advanced through
the technologies of mouse input and bit-mapped
graphic output. There is an ongoing and valuable need
for the prediction and modeling of user activities
within such environments. As human-machine
dialogues evolve and become more “direct”, the
processes and limitations underlying our ability to
execute rapid, preciss movements emerge as
performance determinants in interactive systems.
Powerful models such as Fitts' law can provide vital
insight into strategies for optimizing performance in a
diverse design space.
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