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Abstract 

Eye trackers have been used as pointing devices for a number of 
years. Due to inherent limitations in the accuracy of eye gaze, 
however, interaction is limited to objects spanning at least one 
degree of visual angle. Consequently, targets in gaze-based 
interfaces have sizes and layouts quite distant from “natural 
settings”. To accommodate accuracy constraints, we developed a 
multimodal pointing technique combining eye gaze and speech 
inputs. The technique was tested in a user study on pointing at 
multiple targets. Results suggest that in terms of a footprint-
accuracy tradeoff, pointing performance is best (~93%) for targets 
subtending 0.85 degrees with 0.3-degree gaps between them. User 
performance is thus shown to approach the limit of practical 
pointing. Effectively, developing a user interface that supports 
hands-free interaction and has a design similar to today’s common 
interfaces is feasible. 
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1   Introduction 

Within the community of HCI researchers and system designers, 
developing an efficient alternative to traditional manually 
operated interfaces is a major challenge. Such an interface should 
not depend solely on inputs from the keyboard and conventional 
pointing devices such as a mouse. Instead, the interface should 
employ as inputs other, more natural, communication abilities of 
the user. Speech, gestures, and eye gaze are frequent candidates 
for this. Even though these inputs alone are inherently ambiguous, 
interaction is made feasible by combining two or more inputs in 
an appropriate way [Oviatt 1999]. 

Among the options for combined input, speech and eye gaze have 
not yet gained much popularity. Nevertheless, due to the strong 
synergy, a fully functional interactive system is possible – with 
eye gaze employed in locating objects and speech for commands. 
Indeed, prior work demonstrates that integrating eye tracking and 

speech recognition technologies yields a reasonable amount of 
hands-free control over a graphical user interface [Koons et al. 
1993; Tanaka 1999; Zhang et al. 2004]. Practical application of 
such multimodal interfaces, however, still presents a challenge as 
described below. 

In the field of eye gaze-based interfaces, there are successful 
implementations manifesting the ability of the eye to function as a 
pointing device [Jacob 1995]. Nevertheless, the design of those 
user interfaces renders them quite distant from what is perceived 
as “natural” (i.e., today’s standard GUIs with their widgets). One 
of the major differences is the size of on-screen objects. 

Most standard GUI widgets (e.g., icons in a toolbar, checkboxes, 
etc.) span less than one degree of visual angle. For instance, a 
toolbar’s icon in a standard MS Windows application (e.g., MS 
Word) is 24 by 24 pixels in size.  This translates into 
approximately 0.7 degrees for a 17-inch monitor with a resolution 
of 1024 x 768 and a viewing distance of 70 centimeters. 
Meanwhile, the size of a button in a window’s title bar is even 
smaller (only 16 by 16 pixels, or 0.46 degrees). Moreover, icons 
in a toolbar are usually aligned side by side: there is no space 
between! 

In traditional applied eye tracking research, however, targets 
below the one-degree limit are considered too small for facile eye 
gaze interaction [Jacob 1995; Ware and Mikaelian 1987]. 
Consequently, gaze-operated objects are made substantially 
bigger to ensure facile interaction (i.e., to bring gaze pointing to 
the level of practical accuracy). This measure accommodates 
calibration errors of the eye tracker as well as inherent limitations 
in the accuracy of eye gaze. 

For the same reason, objects are also spaced on the screen at 
relatively large distances from one another. In turn, this poses 
problems in managing the real estate of the screen. Therefore, it is 
not surprising that, apart from applications for people with 
disabilities, current gaze-based interfaces are still rare in solutions 
for the general population of computer users. 

Given the constraints on the accuracy of gaze-based pointing, it is 
intriguing to explore the extent that user performance may 
approach the level of practical pointing when eye gaze is 
supplemented with other input modalities such as speech. Despite 
considerable interest in multimodal applications, there are only 
few empirical studies aiming to evaluate user performance in 
multimodal pointing tasks. 

Recently, Zhang et al. [2004] experimented with a multimodal 
system involving eye gaze and speech. Their setup included a 
6 x 5 grid of geometric figures used as targets. The figures varied 
in shape (rectangle, oval, triangle), size (two levels), and color (10 
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levels). The size of the smaller figures was 13 x 9 mm (1.1 x 0.74 
degrees at a viewing distance of 70 cm). 

This presents an interesting case as the target’s size approaches 
the critical one-degree barrier. On the other hand, the distance 
between the centers of adjacent targets in the grid was 
substantially bigger than that: 40 mm (3.27 degrees) horizontally 
and 27 mm (2.19 degrees) vertically. In turn, this made the overall 
layout used in their study impractical for modeling interactions 
similar to those in conventional GUIs. 

To obtain a more relevant model, we developed a gaze-based 
interface featuring tightly spaced targets reasonably close in size 
to that of the smallest GUI widgets. To meet the challenge of 
pointing at targets smaller than the one-degree limit, eye gaze 
input was augmented by speech. 

This paper presents an experiment conducted to compare user 
performance in a point-select task using two modes of interaction: 
unimodal (i.e., gaze-only) and multimodal (gaze and speech). 

 

2   Method 

2.1   Participants 

Twelve unpaid volunteers (6 male, 6 female) participated in the 
study. All were employees at a local university aged 22 to 43. All 
but one had prior experience with eye tracking, whereas only one 
had used speech as computer input before. One participant 
specified English as her first language, whereas the rest were non-
native speakers of English. Six participants wore glasses, six 
required no correction of vision. 
 

2.2   Apparatus 

A remote eye tracking system iView X from SensoMotoric 
Instruments was used for collecting gaze data. Eye gaze input and 
associated events were recorded using experimental software 
developed in our laboratory. The screen resolution was 
1024 x 768. Speech input was recorded with a conventional 
microphone and processed using Microsoft SAP Interface 5.1.  
 

2.3   Procedure 

Participants were seated at a viewing distance of approximately 
70 cm. The experiment used a point-select task. At the onset of 
each trial, a home box appeared on the screen. It was visible to 
participants as a 30-by-30-pixel square (Figure 1). The actual size 
of the home box, however, was 100 x 100 pixels. The expansion 
in motor space facilitated homing through increased tolerance to 
instabilities in calibration of the eye tracker. On the other hand, 
making only the central portion of the home box visible ensured 
bringing the gaze closer to the center of the box. 

Upon fixating on the home box for one second, a matrix of 5 x 5 
squares appeared to the right of the home box (Figure 2). One of 
the squares was the target to be selected (marked with a cross). 
Participants were instructed to look at the target as quickly as 
possible, and fixate upon it until selection. Timing started when 
the matrix appeared, and ended when selection occurred. A 
window of five seconds was given to complete a trial. If no 

selection occurred within five seconds, an error was recorded. 
Then, the next trial followed. 

 

Figure 1:  Home box at the onset of trial 

 

Figure 2:  Matrix of 5 x 5 squares. The target for selection is the 
square marked with a cross. 

 
We defined the eye’s region of interest (ROI) representing the 
focus of visual attention as a 100-by-100-pixel square with its 
center attached to the current gaze point location. As the gaze 
approached the target, the ROI began to overlap with the matrix 
area. The squares within the matrix that were encompassed by the 
overlapping area became highlighted in different colors (Figure 3). 

The color-coding scheme included fifteen colors listed in the 
following order: red, green, blue, yellow, purple, aqua, orange, 
brown, pink, lime, gray, olive, magenta, sky-blue (vocally 
referred to as “sky”), and black. The coding was arranged so that 
the first color in the list (i.e., red) was assigned to the first square 
in the matrix to enter the ROI. Then, the second square 
encompassed by the ROI was highlighted in green, and so on. If 
more than fifteen squares were inside the ROI (this quite often 
being the case for the smallest target size used in the experiment), 
only the first fifteen were highlighted in corresponding colors, 
whereas the remaining ones stayed unchanged. 

Moreover, the color-coding scheme used was tolerant to 
instabilities in the gaze point location caused by inherent eye jitter 
(see [Jacob 1995]). As the ROI is centered on the current gaze 
point, random shifts in the spatial location of the ROI are also 
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inevitable. In turn, this causes the squares within the ROI to 
flicker in different colors, if color mapping were simply based on 
the current location of the ROI. 

 

Figure 3:  Highlighted squares signaling overlap of the eye’s 
region of interest with the matrix. The black dashed outline shows 

the current gaze point location. 
 

To avoid this, the same color stayed with a target for the rest of 
the trial once mapped initially as long as the attention was not 
shifted to other areas of the screen (i.e., no saccade – sudden 
motion of the eye – occurred in between). If at any moment, 
attention moved away from the current selection of the matrix 
squares, the squares were de-highlighted releasing the colors for 
subsequent selections. 

No visual feedback was provided for the gaze point unless it 
entered the matrix. When the gaze point landed on a square in the 
matrix, the square was highlighted with a black dashed outline 
(Figure 3). 

Prior to the first session, participants were shown a table 
displaying the fifteen colors for color-coding of the matrix squares 
(Figure 4). They were asked to memorize the color names for the 
experimental condition involving speech input. After this initial 
introduction, participants practiced one block using speech 
commands. Then, data recording began. 

 

Figure 4:  Table shown to participants with the fifteen colors used 
in the color-coding of the matrix squares 

Participants were given an opportunity to look at the table with 
the colors to refresh their memory when needed before a block of 
trials started. 

The strategies used by participants for target selection depended 
on the input modality. In the combined gaze and speech condition, 
if the square with the dashed outline was other than the target, 
participants were to say aloud the color of the target’s highlight. 

This way they were given an opportunity to compensate for the 
inherent limitations in the accuracy of eye gaze, as well as the 
drift in the eye tracker’s calibration. Meanwhile, in the gaze-only 
condition, participants could do very little to prevent an erroneous 
selection if the gaze did not match the target. 
 

2.4   Design 

The experiment was a 2 x 3 x 3 x 3 x 9 repeated measures 
factorial design. The factors and levels were as follows: 

 Pointing Modality gaze & speech, gaze-only 
 Dwell Time (DT) 1000, 1500, 2000 ms 
 Target Size (S) 20, 30, 40 square pixels 
 Inter-target Gap (G) 0, 10, 20 pixels 
 Trial  1, 2…9 

Here, G denotes gap between the sides of adjacent squares in the 
matrix. 

Participants were randomly assigned to one of three groups. Each 
group received the dwell time conditions in a different order using 
a Latin square. Order of presenting the pointing modality 
conditions was also counterbalanced among participants. 

For each DT condition, participants performed 6 blocks of trials (3 
blocks per modality) in one session. The three sessions were run 
over consecutive days with each lasting approximately 20 minutes. 
Each block consisted of the 9 S-G conditions presented in random 
order. For each S-G condition, 3 trials were performed in the same 
block (in total, 3 trials x 3 blocks = 9 trials). Thus, a block 
consisted of 27 trials. The conditions above combined with 12 
participants resulted in 5832 total trials in the experiment. 

The dependent measures were movement time (MT) and error rate 
(ER). 
 

3   Results 

3.1   Pointing Performance 

The grand means on the two dependent measures were 3029 ms 
for MT and 34.3% for ER. The main effects and interactions on 
each dependent measure are presented below. 

3.1.1   Speed 

The mean MT was 3449 ms in the gaze-only condition and 2609 
ms in the gaze & speech condition. Thus, with the addition of 
speech, MT decreased 24%. The difference was statistically 
significant (F1,11 = 45.3, p < .001).  While MT was high overall, it 
is important to remember that the dwell time selection criterion 
inherently adds to MT, either 1, 1.5, or 2 seconds, depending on 
the condition. 

As expected, the 1000-ms DT condition was the fastest with a 
mean MT of 2605 ms. The 1500-ms DT condition was slower by 
17% (3041 ms), and the 2000-ms DT condition by 32% (3442 ms). 
The main effect for DT was statistically significant (F2,22 = 94.4, 

69



p < .001), as was the input modality x DT interaction (F2,22 = 5.9, 
p < .01). The main effects and interaction are illustrated in Figure 
5. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  MT vs. DT for the two input conditions 
 
 
As seen in Figure 6, target size also significantly influenced 
pointing time (F2,22 = 63.3, p < .001). The input modality x target 
size interaction was significant as well (F2,22 = 25.0, p < .001). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:  MT vs. target size for the two input conditions 
 
 
For the largest target (40 x 40 pixels), MT was on average 3132 
ms in the gaze-only condition, whereas with addition of speech it 
dropped to 2515 ms (a reduction by 20%). As expected, the 
benefit of combined input was the highest for the smallest target 
(20 x 20 pixels): 3793 ms vs. 2741 ms (a reduction in MT of 28%). 
 

3.1.2   Accuracy 

The mean ER was 51.1% in the gaze-only condition and 17.4% in 
the gaze & speech condition. Thus, with addition of speech, ER 
dropped on average by as much as 66%. The difference was 
statistically significant (F1,11 = 48.8, p < .001). 

The lowest error rate was in the 1500-ms condition (32%). It was 
followed by the 2000-ms condition at 35.2% errors, and the 1000-
ms condition at 35.6%. The differences were not significant 
(F2,22 = 0.8, ns). The input modality x DT interaction, however, 
was significant (F2,22 = 5.8, p = 0.01). In the gaze-only condition, 
more errors occurred as dwell time increased (Figure 7). With 
addition of speech, however, error rate decreased markedly as 
dwell time increased from 1000 ms to 1500 ms, and then 
remained at the same level with a further increase in dwell time 
by 500 ms. 

As with pointing time, target size also had a significant effect on 
error rate (F2,22 = 77.6, p < .001). The input modality x target size 
interaction was significant as well (F2,22 = 27.3, p < .001). For the 
largest target (40 x 40 pixels), the error rate was on average 

34.2% in the gaze-only condition, whereas with addition of 
speech it dropped to 12.1% (a reduction by 65%). For the two 
smaller sizes, a similar reduction in error rate was observed with 
speech employed (Figure 8). 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:  ER vs. DT for the two input conditions 
 
 
 
 
 
 
 
 
 
 

Figure 8:  ER vs. target size for the two input conditions 
 
In the combined input condition, inter-target gap also significantly 
affected error rate (F2,22 = 14.3, p < .01). It is not surprising that 
pointing accuracy was relatively poor when targets were side by 
side (0-pixel gap). Interestingly, however, there was no significant 
difference between the error rates obtained for the 10-pixel and 
20-pixel gap conditions (Figure 9). In other words, for practical 
pointing, a 10-pixel gap between targets is almost as good as a 
gap twice that size. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9:  ER vs. target size and inter-target gap (in pixels) for the 
gaze & speech condition 

A further insight on the extended limits of pointing accuracy with 
speech-augmented eye gaze input is obtained when error rate is 
plotted with target size and inter-target gap for the three DT 
conditions separately (Figure 10). 

When the shortest dwell time (1000 ms) was used for target 
selection, error rates for different combinations of target size and 
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inter-target gap levels ranged from 15% to 50%. Error rates 
obtained for the other two DT conditions are much lower and do 
not significantly differ from one another between the conditions. 

They range from 2% to 26% and from 7% to 24% for the 1500-ms 
and 2000-ms conditions, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10:  Error rate vs. dwell time, target size, and inter-target gap for the gaze & speech condition 
 
 

3.2   Performance by Colors 

Some additional information on the factors contributing to errors 
in the present study are obtained by taking a closer look at the 
performance of the color-coding scheme for target identification. 
The five colors most frequently mapped to the target for selection 
were: green, blue, yellow, purple, and aqua. They each had a 
share of over 8% with the total share equal to 51.7%. The 
remaining 48.3% were split between the other ten colors (Figure 
11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11:  Distribution of target highlight colors 
 
 
The percentage of the target highlight colors correctly specified 
by participants and recognized by the system varied among the 
colors. The colors with the correct selection rate above 90% were: 
green, blue, yellow, orange, brown, lime, sky-blue, and black 
(Figure 12). On the other hand, the most problematic colors for 
the international pool of our participants were magenta (65.1%) 
and purple (64.3%). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 12:  Correct target selection rate as a function of its 
highlight color 

 
Of all the cases involving erroneous identification of magenta, 
pink had the biggest share. Thus, participants may have associated 
the less-familiar color magenta with the better-known pink. 
Meanwhile, purple was most frequently mistaken for blue or 
brown. Moreover, we noticed that false identifications of purple 
were quite often due to speech recognition errors, as opposed to 
the actual vocal output by participants. 

These observations demonstrate that there are areas of 
improvement for the color-coding scheme. In our future designs 
we will be more careful when selecting colors, so that the 
challenges for the cognitive and vocal abilities of international 
users are minimized. 
 

4   Conclusions 

Our results suggest that the best performance (in terms of 
footprint-accuracy tradeoff) is expected using the following 
conditions: 1500-ms dwell time, 30-by-30-pixel target size, and 
10-pixel inter-target gap. This combination (shown by dashed 
circle in Figure 10) yielded an average error rate of 7.4% (a mean 
of 108 trials in total: 12 participants x 9 trials). To better visualize 
the geometry on the real scale, Figure 13 displays a fragment of 
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the experimental setup (the lower part) placed next to the actual 
GUI controls in the experimental software’s window (the upper 
part). 

 

Figure 13:  The size and layout suggested for buttons in a gaze-
and-speech interface compared to a toolbar’s buttons in a common 

manually operated GUI 
 

This is an important finding since user performance in a gaze-
based selection task approaches that of practical pointing. 
Moreover, the finding is consistent with the level of accuracy 
reported for the gaze-assisted manual pointing [Zhai et al. 1999]. 
In effect, it means that in terms of accuracy there are no 
fundamental limits for combined gaze and speech input to become 
an alternative pointing technique just as good as manual pointing 
with devices such as an isometric pointing stick in notebook 
computers [Zhai et al. 1999]. 

The major shortcoming of the speech-augmented gaze pointing 
technique presented in this study is its relatively low speed. To 
match the cognitive demands associated with recalling a target’s 
referential attribute (color in the current implementation) and then 
producing vocal output, dwell time for selection had to be 
increased substantially. 

According to our data, accuracy is satisfactory when dwell time 
reaches 1500 ms. This is in sharp contrast to the common setting 
for the gaze-only modality, which is on the order of a few hundred 
milliseconds. The cost in speed, however, is offset by a dramatic 
reduction in error rate. As this study shows, the use of speech 
reduces the overall error rate by almost two thirds compared to the 
outcome for pointing by eye gaze alone. 

By improving the scheme for target coding, we expect to 
significantly reduce dwell time while maintaining pointing 
accuracy at the level currently achieved. In turn, this will improve 
the overall speed-accuracy tradeoff. Another possibility is to use a 
different speech-to-target mapping.  For example, the eight 
highlighted targets in Figure 3 could be mapped to compass 
directions ("north", "north-east", "east", etc.). 

Another important issue is an adequate definition of the eye’s 
region of interest (ROI). In the current implementation, we used a 
fixed value of 100 by 100 pixels for all target sizes. Intuitively, 
however, the extent of the ROI should depend on target size: the 
smaller the target, the smaller the region to accommodate the 
same number of objects within the region (in other words, to keep 
the probability of erroneous selection at the same level). We 
intend to find the best solution for defining the ROI in our future 
studies. 
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Figure 3:  Highlighted squares signaling overlap of the eye’s 
region of interest with the matrix. The black dashed outline shows 

the current gaze point location. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11:  Distribution of target highlight colors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 4:  Table shown to participants with the fifteen colors used 
in the color-coding of the matrix squares 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12:  Correct target selection rate as a function of its 
highlight color 
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