
IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2 , MAY 1988 123

and the considerably more unbalanced currents

I = 0.9 el0

I, = 0.45 e-15b”

to the stator. The elliptical nature of the resulting field is immedi-
ately evident.

IV. CONCLUSIONS A N D EXTENSIONS
A simple but effective means is described for dynamically dem-

onstrating the nature of the revolving field of a polyphase machine
under any condition of balance or unbalance and for either abc or
acb phase sequence. The algorithm is straightforward to program,
understand, and use. It can be employed as an instructional me-
dium in the classroom and can also be used by students to explore
additional cases of machine stator excitation besides those dis-
cussed in class. The dynamic progression of the plot on the screen
reinforces the concept of rotation much better than the frequently
used “snapshot” technique of evaluating the field pattern at two
or three points.

For power-systems students who have studied the theory of sym-
metrical components [2], [3], such a demonstrator can be expanded
to graphically illustrate the interaction of positive- and negative-
sequence fields [4] to produce a single revolving field, as well as
to show the behavior of the sequence-component fields themselves.
This is beyond the intended scope of the simple software discussed
in this paper. However, it should be immediately evident to the
student who applies an acb sequence to the program that a back-
ward-revolving field is produced; and this observation could pos-
sibly be used as a takeoff point for the introduction of symmetrical-
component theory. In a computational laboratory or as an out-of-
class assignment, the student can be asked to augment the basic
program to include the calculation and graphing of both sequences
point by point as well as the display of the phasor value of each of
the three sequence quantities for comparison.

REFERENCES

H. A. Smolleck, “A phasor explanation of the revolving-field concept
for use in polyphase machine analysis,” lEEE Trans. Educ. , vol. E-
21, pp. 37-38, Feb. 1978.
W. D. Stevenson, Jr., Elemenrs of Power System Analysis. 4th ed.
New York: McGraw-Hill, 1982.
J . D. Glover and M. Sarma, Power Sysrem Analysis and Design with
Personal Computer Applications. Boston, MA: PWS Publishers,
1987.
C. F. Wagnerand R. D. Evans, Symmetrical Components. New York:
McGraw-Hill, 1933.

A Structured Approach to Assembly Language
Programming

SCOTT MACKENZIE

Abstract-A method is described for teaching structured program-
ming techniques to students of assembly language programming.
Structured programming, historically, has only been within the realm
of high-level languages (Pascal, C, etc.), while a more loose approach-
one lacking a formal syntax-has traditionally been applied to low-level

Manuscript received January 26, 1987; revised July 14, 1987.
The author is with Seneca College of Applied Arts and Technology,

IEEE Log Number 87 18357.
Toronto, Ont., Canada.

programming in assembly language. Borrowing words and symbols
from Pascal and C, a simple syntax has been devised, called Pseudo
Code, that uses three basic structures: linear, conditional, and loop.
Upon learning that all programs can be written using only these three
structures, students become convinced of the reduced complexity
brought by Pseudo Code. A method is adopted that proceeds from the
problem definition to the assembly language program using Pseudo
Code as an interim step. Using this method, students at Seneca College
in Toronto have successfully developed software in assembly language
that would have been too complex for them to attempt without coding
their solutions in a structured form.

INTRODUCTION
Students of electronics, sooner or later, must learn to program

microprocessors in assembly language. The well-developed struc-
tured programming techniques used in high-level languages (the
techniques that computer science students must master) are known,
but are little applied in the low-level world of assembly language
programming, with the result that students tend to adopt a chaotic,
brute-force approach to problem solving. The code is often difficult
to debug, impossible to read, and resembles unstructured Basic
where programmers routinely “paint themselves into a comer,”
and use a GOTO statement to escape.

A pedagogy is presented that provides students with a systematic
approach to assembly language programming, one which adheres
to a small but complete set of structures. The method is not ex-
haustive; its intent is to introduce the concept of structuring while
learning assembly language programming. Using this method, stu-
dents at Seneca College have successfully tackled complex pro-
gramming problems in assembly language.

The following paragraphs describe a “method”; little is new
except the packaging. The key to success is to simplify the com-
plex, to give shape and form to a problem, and not to expect too
much too soon. The method is presented to the students in three
stages, beginning with the rudiments of structuring, then progress-
ing to subroutines and parameter passing, and then finishing with
a polished syntax. Many programming exercises are given to the
students at each level before progressing to the next. Five sample
exercises are given as representative of the problems that students
can be expected to solve using this method.

The structures are presented to the students as the constituent
parts of a small hypothetical language which we call Pseudo Code.
This language borrows words and symbols from Pascal and C, so
as to strike a balance between legibility and brevity. Pseudo Code
exists purely on paper and is used only as an interim stage in prob-
lem solving. While forcing a strict adherence to structure through
the use of keywords and indentation, the language places state-
ments and conditions in square brackets and encourages students,
at least initially, to use whatever wording they feel appropriate to
describe operations and conditions.

THE USE OF FLOWCHARTS
Flowcharts are used initially but become optional after students

develop problem-solving cognition and master Pseudo Code. So-
lutions are reached by progressing from the problem definition to
the assembly language program via Pseudo Code, using a flowchart
if necessary. This is illustrated in Fig. 1 .

The disadvantage of flowcharts is that they are bulky and unruly:
small routines take entire pages, they cannot be typed into a com-
puter using word processing software, and they are difficult to edit.
Their advantage lies in the shape they give to a solution by using
decision blocks and flow arrows to enhance the visual representa-
tion. Parallel operations are shown as such by juxtaposing state-
ment blocks on the page. This visual property of flowcharts, which
does not exist in programming languages due to their line-by-line
notation, is invaluable to many students. Flowcharts are eventually

0018-9359/88/0500-0123$01 .OO 0 1988 IEEE

I I’

124

PROBLEM
D E F I N I T I O N

IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2, MAY 1988

FLOWCHART PSEUDO ASSEMBLY
(o p t i o n a l) CODE 4 LANGUAGE

PROGRAM

PSEUDO CODE: FLOWCHART:

Fig. 1. The stages in problem solving use Pseudo Code as an interim step
between the problem definition and the final program. Flowcharts are
used initially but are discarded or used optionally after students become
familiar with Pseudo Code.

discarded when students demonstrate proficiency in proceeding di-
rectly from the problem definition to Pseudo Code.

Students
are gradually introduced to Pseudo Code by allowing them to no-
tate their solutions in comfortable terms, while adhering to the
available structures. Before proceeding to the sample exercises, the
structures are defined and illustrated in Pseudo Code and flowchart
form. (The use of flowcharts will not be elaborated on further.)

Three structures are sufficient to solve any programming prob-
lem: the linear structure, the loop structure, and the choose struc-
ture [I] . The linear structure, shown in Fig. 2 , is the familiar
“statement”-the workhorse of computer programs. Via state-
ments, programs accomplish their tasks.

The loop structure repeatedly performs an operation until a ter-
minating condition becomes true. The two common arrangements,
which are also called “statements,” are WHILE/DO and REPEAT/
UNTIL. These are illustrated in Fig. 3.

A WHILE/DO structure is required when the operation should not
be performed in the event that the terminating condition already
exists. On the other hand, the R E P E A T ~ N T I L structure is used when
the operation must be performed at least once.

Although any WHILE/DO statement can be rearranged into a RE-
PEAT/UNTIL statement and vice versa, both are used in Pseudo
Code since they are commonplace and translate easily into assem-
bly language. Another variation of the loop structure is the FOR
statement which we avoid to keep the language small.

A common programming bug is an infinite loop. Students can
guard against this by verifying that at least one operation in the
loop affects the terminating condition. For example, if a counter is
used, then the counter value must be affected (typically, it will be
incremented or decremented) by an operation within the loop.

The choose structure, shown in Fig. 4, is the IF/THEN/ELSE state-
ment. The CASE statement, which can be constructed from IF/THEN/
ELSE statements, is not used.

Step I) Rigid Structures; Liberal Use of Language:

The few rules adhered to at this stage are as follows.
1) Enclose conditions and statements in brackets [] and use any

convenient language to describe the operation.
2) Statements within a CHOOSE or LOOP structure are indented

to the next tab stop.
3) Multiple statements in the choose or loop structures are

bracketed by B E G I N / E N D . (Note: Not necessary for R E P E A T ~ N T I L .)
4) Any structure can be inserted into the statement block of any

other structure.
5) Keywords are WHILE, D o , REPEAT, U N T I L , IF, THEN, ELSE,

BEGIN, END, A N D , OR, and NOT.
6) Keywords are written using uppercase characters; all other

words are written using lowercase characters.
7) Machine-dependent language should be avoided (i.e., use

terms like “pointer” rather than “index register”).
8) Use the Commercial At sign (@) to indicate indirect ad-

dressing.
9) Enclose comments within “I*” AND “*/”. (For example:

/* this is a comment */.)
After students have learned the instruction set of the micropro-

cessor and are capable of writing programs using conditional branch
instructions, they are ready to structure their solutions using Pseudo
Code. Initially, the most appropriate problems are those that result

1

s t a t e m e n t 1

s t a t e m e n t 2

[s t a t e m e n t 11
[s t a t e m e n t 21
[s t a t e m e n t 31
etc.

s t a t e m e n t 3 LJ
Fig. 2. The solution to all programming problems can be expressed using

only three structures. The linear structure-the statement-is the work-
horse of computer programs.

FLOWCHART:

f a

s t a t e m e n t

f a l s e

t r u e

PSEUDO CODE:

W H I L E [c o n d i t i o n]
DO [s t a t e m e n t]

R E P E A T [s t a t e m e n t]
U N T I L [c o n d i t i o n]

Fig. 3. The loop structure is used to repeatedly execute a block of code.
The REPEAT variation executes the statement block at least once, whereas
the WHILE variation checks the terminating condition before the state-
ment is executed.

FLOWCHART:

f a l s e

s t a t e m e n t 2 s t a t e m e n t 1

PSEUDO CODE: I F [c o n d i t i o n]
T H E N [s t a t e m e n t 1 1
ELSE [s t a t e m e n t 2 1

Note : s t a t e m e n t 2 i s o p t i o n a l

Fig. 4 . The choose structure executes one of two statement blocks de-
pending on a true/false condition. The ELSE statement is optional.

in self-contained programs. Subroutines and parameter passing are
introduced at Step 2) .

In this note, the solutions to exercises are given in Pseudo Code
and in the assembly language of Intel’s 8051 Microcontroller,

I 1 -

IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2 , MAY 1988 125

which is used in courses at Seneca College. The benefit of using
machine-independent terminology becomes apparent when switch-
ing to a different microprocessor. Notice that the Pseudo Code so-
lutions do not suggest a particular target machine.

Example 1: Write a program to add a series of bytes and store
the result. The length of the series is in memory location 41H and
the series begins starting at memory location 42H. Store the SUM
in memory location 40H.

Example 2: Search a null-terminated string of ASCII codes and
count the number of digit characters (“0”-“9”). The string is
stored in memory beginning at location 50H. Put the count in the
accumulator.

The Pseudo Code and assembly language solutions are shown in
Figs. 5 and 6. Note that the solution to Example 1 works for a
zero-length series since the WHILE/DO structure checks the termi-
nating condition before an addition is performed.

With a bit of coaching and more exercises, students should be
able to design the Pseudo Code solutions easily. The translation to
assembly language, however, requires considerable focus and, to
assist, Pseudo Code statements should be used as comments in the
assembly language program. This establishes a line-for-line cor-
relation between the Pseudo Code and the assembly language pro-
gram. For those students using a personal computer and word pro-
cessor, the assembly language program can be written by editing
the Pseudo Code file and inserting assembly language instructions
into each line while pushing the Pseudo Code statements to the
right into comments. This approach greatly simplifies the transla-
tion to assembly language.

The conditional sections of the structures are the most critical.
It is in their use of conditional branch instructions that students
falter, a problem arising out of the disparity between a micropro-
cessor’s instruction set and the way humans think and use lan-
guage. This is particularly evident in Example 2 where a compound
condition is required. An effective approach uses language within
the condition brackets that, although not machine dependent, sug-
gests the type of instructions that will be used during the translation
to assembly language. Hence, in Example 2, the IF condition is
stated as

IF [character > = “0” AND character < = “9”]

rather than

IF [character is a digit].

Although the latter is more akin to the way we think, it does not
give any hint of the instructions required to implement the condi-
tion.

A message to the “byte counters”: the argument that most of
these solutions can be rearranged with a slight reduction in size is
conceded; however, this must be weighed against the loss of code
clarity and the loss of structure. This method is intended primarily
for students of electronics using microprocessors (or microcontrol-
lers) for “small” applications. These students are not writing code
for file servers and compilers; they are writing code that interfaces
microprocessors to terminals, printers, and other I/O devices; they
are writing code to read from inputs, manipulate bits and bytes in
some way, and write to outputs. With the high-capacity memory
IC’s available today, there is no need to shoehorn code into the
smallest possible space. At Seneca College, students have designed
microprocessor-based hardware and software for robotic arms, pen
plotters, logic analyzers, etc.-the firmware required has never ex-
ceeded the capacity of a single EPROM.

Step 2) Modular Programming: Programming at the introduc-
tory level will likely be carried out in parallel with lectures intro-
ducing students to subroutines and parameter passing-the main
ingredients of modular programming. Modular programming and
structured programming are two mutually beneficial approaches to
programming. Modules are subroutines with explicitly defined en-
try and exit conditions that exist in a hierarchy with complex mod-
ules building upon and using simple modules. Complex modules

/* Example 1: P s e u d o Code * /

B E G I N
[i n i t i a l i z e p o i n t e r t o 42Hl
[i n i t i a l i z e c o u n t e r f rom l o c a t i o n 41Hl
[c l e a r sum]

W H I L E [c o u n t e r n o t e q u a l z e r o] DO B E G I N
[a d d @ p o i n t e r t o sum]
[i n c r e m e n t p o i n t e r]
[d e c r e m e n t c o u n t e r 1

END /* w h i l e * /
[s t o r e sum i n l o c a t i o n 40H1

END /* e x a m p l e 1 * /

; Example 1: Assembly L a n g u a g e

YOV RO,#42H
MOV R7,41H
CLR A

ADD A , @ R O
INC RO
DEC R7
SJYP WHILE

DONE: YOV 40H,A

WHILE: C J N E R7,#O,DONE

H E R E : SJMP H E R E
END

; i n i t i a l p o i n t e r t o 42H
; i n i t i a l i z e c o u n t e r f r o m 41H
; c l e a r sum
; c o u n t e r n o t = z e r o d o b e g i n
; a d d @ p o i n t e r t o sum
; i n c r e m e n t p o i n t e r
; d e c r e m e n t c o u n t e r
; e n d w h i l e
; s t o r e sum i n l o c a t i o n 40H

; e x a m p l e 1

L i s t i n g 1

Fig. 5 . Pseudo Code and assembly language solution for Example I .

/* Example 2 : P s e u d o Code * /

BEGIN
[i n i t p o i n t e r t o 0050Hl
[i n i t c o u n t = 01
REPEAT

[c h a r = @ p o i n t e r]
[i n c r e m e n t p o i n t e r]
I F [c h a r >= ‘ 0 ’ A N D c h a r < = ‘ 9 ‘ 1

THEN [i n c r e m e n t c o u n t]
U N T I L [c h a r is O O H]
[s t o r e c o u n t i n a c c u m u l a t o r]

END /* e x a m p l e 2 */

; Example 2 : Assembly L a n g u a g e

EXAMPLE2: YOV DPTR,#SOH

REPEAT: YOVX A,@DPTR

IF: CJNE A , # ’ 0 ’ , $ + 3

MOV R7,XO

INC DPTR

JC UNTIL
C J N E A , # ’ 9 ’ + 1 , $ + 3
JNC U N T I L

T H E N : INC R7
UNTIL: CJNE A,#O,REPEAT

MOV A,R7
H E R E : SJMP HERE

END

; i n i t p o i n t e r t o 0050H
; i n i t c o u n t = 0
; c h a r = @ p o i n t e r
; i n c r e m e n t p o i n t e r
; i f c h a r > = ‘ 0 ’ A N D

; c h a r <= ‘ 9 ’

; t h e n i n c r e m e n t c o u n t e r
; c h a r is O O H
; s t o r e c o u n t i n a c c

; e x a m p l e 2

L i s t i n g 2

Fig. 6. Pseudo Code and assembly language solution for Example 2

will “call” simple modules, passing parameters to them or receiv-
ing results back. At this level, all parameter passing uses the mi-
croprocessor’s internal registers.

The following rules are added.
IO) All modules begin with the module name followed by a pair

of parentheses containing the names of parameters (if any) passed
to the module.

1 1) All modules end with the keyword RETURN followed by a
pair of parentheses containing the names of parameters (if any)
returned by the module.

12) Module names are written using uppercase characters.
Although only the concept of modular programming has been

added, a considerable leap forward has occurred. Students are now

I l- 1

126 IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2, MAY 1988

creating larger programs each centered around one main module
with a hierarchy of modules below.

Many useful subroutines can be written by the students as ex-
ercises, leaving them with a library of routines useful to them as
they advance towards high-level applications. Standard C functions
[2] serve as excellent programming problems in Pseudo Code with
subsequent translation to assembly language. A brief description
of some of these follows. Character class testing subroutines are
those that enter with an ASCII character in the accumulator, per-
form a test on the character, and return with a flag bit-typically
the carry flag-set if the test passed or cleared if the test failed
(Table I). Code conversion subroutines enter with a code in the
accumulator, perform a conversion on the code, and return with
the converted code in the accumulator (Table 11). String manipu-
lation subroutines perform operations on null-terminated strings-
strings of ASCII codes terminated with a null byte (OOH). These
subroutines are entered with one or two pointers to strings and per-
form an operation on the string(s), such as a copy or compare (Ta-
ble 111).

As Pseudo Code is a learning tool rather than a real or "com-
pilable" language, it does not include many of the features of high-
level languages. The absence of data types, local versus global pa-
rameters, arrays, etc., is not a concern since the applications are
usually small and hardware oriented, dealing with interfacing and
control rather than with data processing.

Example 3: Write a subroutine called INLINE that inputs a line
of characters from the console (echoing back each character as it
is received) and places them in memory starting at location 60H.
Maximum line length is 31 characters including the carriage return.
Put 0 at the end of the line. Assume the existence of INCHAR and
OUTCHAR subroutines that input and output characters to the serial
port using the accumulator.

Example 4: Write a subroutine called HTOA that performs hex
to ASCII conversion. A hex nibble is passed to the subroutine in
the accumulator with the ASCII equivalent returned in the accu-
mulator (example: input = OBH, output = 42H).

The solutions are shown in Figs. 7 and 8. Since the students are
now writing subroutines that are general in nature and useful for
many applications, they should learn to include an appropriate
comment block at the beginning of each subroutine. The comment
block should provide the following information: 1) name of the
subroutine, 2) entry conditions, 3) exit conditions, and 4) name of
other subroutines used. Registers used for temporary storage should
be saved on the stack at the beginning of the subroutine and re-
stored from the stack at the end.

Step 3) Polishing the Syntax: When students are comfortable
with structures and Pseudo Code, it is useful to develop a more
cryptic and more consistent coding technique. The definition of
Pseudo Code is now completed by supplying a set of operators and
a precedence scheme. The operators are taken from standard C (see
[2]), with some of the more esoteric ones omitted. Conspicuous
variances include the use of the Commercial At (@) for address
indirection, and the absence of the auto-increment and auto-dec-
rement operators. These differences exist purely to fine tune Pseudo
Code to the programming model of the target machine, in this case
the 805 1. This may seem in contradiction with the machine inde-
pendence sought after; however, since the final objective is to gen-
erate assembly language programs, this liberty is justifiable. Un-
doubtedly, the coding rules should cater to some extent on the
particular microprocessor used.

The operator set is given in Table IV and the precedence scheme
is given in Table V.

A detail that confuses students initially is the difference between
relational operators and bitwise logical operators. Bitwise logical
operators are generally used in assignment statements such as the
ampersand in

[lowernibble = byte & OFH]

while relational operators are generally used in conditional expres-

1- - - _ -

TABLE I
CHARACTER CLASS TESTING SUBROUTINES

Name E x i t w i t h c a r r y = 1 i f ...
ISALPH c h a r i n r a n g e ' a ' t o ' 2 ' o r ' A ' t o 'Z'
ISDIGT c h a r i n r a n g e ' 0 ' t o ' 9 '
ISHEX c h a r i n r a n g e ' a ' t o ' f ' o r ' A ' t o ' F '
ISGRPH b y t e i n r a n g e 20H t o 7EH (ASCII g r a p h i c)
ISWHIT c h a r i s t a b (09H) o r s p a c e (20H)
ISUPPR c h a r i n r a n g e ' A ' t o 'Z'
ISLOWR c h a r i n r a n g e ' a ' t o ' 2 '

N o t e : E n t e r w i t h ASCII c o d e i n a c c u m u l a t o r

-_______ ..

--___----_______________________________---_-_----

TABLE I1
CODE CONVERSION SUBROUTINES

Name - - - - - - -
HTOA
ATOH
UTOL
LTOU
BCDBIN
BINBCD
- - - - - - - -
N o t e : A

O p e r a t i o n

Hex T O Ascii
Ascii TO Hex
U p p e r c a s e TO L o w e r c a s e
L o w e r c a s e TO U p p e r c a s e
BCD t o BINary

------_--_______-_-____

BINary t o BCD

is t h e a c c u m u l a t o r

TABLE 111
STRING MANIPULATION SUBROUTINES

Name Enter E x i t

STRLEN P L l e n g t h o f s t r i n g e1 i n A
STRCbY e l , P 2 s t r i n g e2 copied t o s t r i n g P l
STRCAT e l , ~2 s t r i n g e2 c a t e n a t e d t o end o f s t r i n g e 1
STRCMP ~ 1 , P2 l e x i c o g r a p h i c a l comparison: A = @ P i - @ e 2

_ _ _ _ _ _ _ -________ ______________________--__------_--------

u n t i l end o f s t r i n g s O K A ! = 0 --_______-______-____-_-____-------__---__--_------__--------
Note: P1 and e 2 a r e p o i n t e r s t o n u l l - t e r m i n a t e d ASCII s t r i n g s
Note: A is t h e a c c u m u l a t o r

sions, such as the double ampersand in

IF [char ! = "Q" && char ! = ODH] THEN
As well, the relational operator "= =" should not be confused
with the assignment operator " =". For example, the Boolean
expression in

IF [j == 91 THEN . . .
is either true or false, depending on whether or not j equals 9,
whereas the assignment statement

[j = 91
sets j equal to 9. This difference requires a slight adjustment in the
coding practices used previously.

Example 5: Write a subroutine called PSTR to send a null-ter-
minated string to the system printer expanding tabs with spaces.
Assume tab stops after every eight columns, i.e., at columns 9, 17,
25, etc. Assume the existence of a subroutine called PCHAR to print
the character in the accumulator. Assume the string is in memory
at an address passed to PSTR.

The solution to this example is shown in Fig. 9. As can be seen,
this subroutine is tricky enough that coding directly in assembly
language without the assistance of a flowchart or Pseudo Code
would be a formidable task. The Pseudo Code solution is concise
and clearly shows the structure of the problem. Proceeding from
the problem definition to Pseudo Code is one step in the solution;
translating the Pseudo Code into assembly language is another.
Each of these tasks is far simpler than the combined task of direct
coding in assembly language.

1

IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2 , MAY 1988

/* E x a m p l e 3: P s e u d o Code * /

INLINE 0
[p o i n t e r = 60H1
[l e n g t h = 311
REPEAT

[i n p u t c h a r f r o m s e r i a l p o r t]
[e c h o b a c k t o s e r i a l p o r t]
[@ p o i n t e r = c h a r]
[i n c r e m e n t p o i n t e r]
[d e c r e m e n t l e n g t h]

UNTIL [l e n g t h i s 0 OR c h a r i s 0DHl
[@ p o i n t e r = 01

RETURN ()

; E x a m p l e 3: A s s e m b l y L a n g u a g e

.
; INLINE: i n p u t a l i n e o f c h a r a c t e r s

; ENTER:
; EXIT:

; USES:

XR0
XR7
INLINE:

REPEAT:

SKIP:
E X I T :

-no c o n d i t i o n s
-ASCII c o d e s i n memory b e g i n n i n g a t 60H
-maximum l i n e l e n g t h = 3 1 c h a r a c t e r s
-I NC HA R I OUTCHA R

EQU 0
EQU 7
PUSH XR0
PUSH XR7
MOV R0,#60H
MOV R 7 , # 3 1
ACALL INCHAR
ACALL OUTCHAR
MOV @R0,A
INC R0
D J N Z R7,SKIP
SJMP EXIT
CJNE A,#BDH,REPEAT
MOV @R0,#0
POP XR7
POP XR0
RET

; d i r e c t a d d o f R0
; a n d R7
; s a v e r e g i s t e r s o n
; s t a c k
; p o i n t e r = 60H
; l e n g t h = 3 1
; i n p u t c h a r f r o m p o r t
; e c h o b a c k t o p o r t
; @ p o i n t e r = c h a r
; i n c r e m e n t p o i n t e r
; d e c r e m e n t l e n g t h
; u n t i l l e n g t h i s 0 OR
; c h a r is 0DH
; @ p o i n t e r = 0
; r e t r i e v e r e g i s t e r s
; f r o m s t a c k

L i s t i n g 3

Fig. 7 . Solution for Example 3.

/* E x a m p l e 4 : P s e u d o Code * /

HTOA(code)
IF [c o d e >= OAH]

THEN [a d d 37H t o c o d e] /* i n r a n g e A TO F * /
ELSE [a d d 30H t o c o d e] /* i n r a n g e 0 TO 9 * /

RETURN (c o d e)

; Example 4 : Assembly L a n g u a g e

; HTOA: h e x t o ASCII c o n v e r s i o n

; ENTER: -A c o n t a i n s h e x n i b b l e i n r a n g e 00-OF
; EXIT: -ASCII e q u i v a l e n t c o d e i n A

HTOA: CJNE A,#OAH,$+3 ; i f c o d e > OAH

.*********+*************************************k**

JC ELSE
ADD A,#37H ; t h e n a d d 37H
RET

ELSE: ADD A,#30H ;else a d d 30H
RET

L i s t i n g 4

Fig. 8. Solution for Example 4.

CONCLUSION
A further benefit of Pseudo Code is that the students learn the

rudiments of high-level languages while studying assembly lan-
guage programming. There is a tendency for high-level language
programmers to consider their language as a sort of black box or,
perhaps more appropriately, a form of black magic. Little consid-

I '-

127

TABLE IV
OPERATORS USED IN PSEUDO CODE

C l a s s o f
Opera tor Symbol

A r i t h m e t i c t
_------__- _--___

/
8

R e l a t i o n a l ==
!=
>
>=
<
<=
& h

I I
B i t w i s e &
L o g i c a l 1

>>
<<

Assignment =
op=

Precedence ()
O v e r r i d e

I n d i r e c t @
Address

Opera t ion

a d d i t i o n
s u b t r a c t i o n
m u l t i p l i c a t i o n
d i v i s i o n

______________________--------_____--------

modulus

t r u e i f
t r u e i f
t r u e i f
t r u e i f
t r u e i f
t r u e i f
t r u e i f
t r u e i f

l o g i c a l
l o g i c a l
l o g i c a l
l o g i c a l
l o g i c a l
l o g i c a l

(rem a i n d e r a f t e r d i v i s i o n)

v a l u e s e q u a l
v a l u e s n o t e q u a l
f i r s t v a l u e g r e a t e r t h a n second
1st v a l u e g r e a t e r o r e q u a l t o 2nd
f i r s t v a l u e less t h a n second
1st v a l u e less than o r e q u a l t o 2nd
b o t h v a l u e a r e t r u e
e i t h e r v a l u e is t r u e

AND
OR
e x c l u s i v e OR
NOT (1 's complement)
s h i f t r i g h t
s h i f t l e f t

se t e q u a l t o
ass ignment shor thand where ' op '

a r i t h m e t i c or b i t w i s e l o g i c a l
(e .g . : j = j t 4 can b e coded

see Table V

is any
o p e r a t o r
j t= 4)

v a r i a b l e f o l l o w i n g is a d d r e s s o f operand

TABLE V
OPERATOR PRECEDENCE

P r e c e d e n c e O p e r a t o r

0 h i g h e s t
- @
* / %
< < > >
< <= > >= _ _ !=
&

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___-------

--

I
& &

eration is paid to the machine and how programs execute at the
machine level. A compiler performs some inexplicable translation
and somehow a program is generated that performs the desired op-
eration. This is fine in many instances, but for students of elec-
tronics, it is important to remain in contact with the hardware.
Time-dependent and I/O intensive operations often demand the
closeness offered by assembly language programming. Pseudo Code
allows programmers to retain this closeness while using a struc-
tured technique. When these students begin programming in Pascal
or C, they make the transition smoothly, knowing how the lan-
guage performs and how it drives the hardware.

What are the students' views on the approach presented here?
This was discovered many months after the technique was taught
when students, working on their term design projects, were found
to be sketching out their software routines in Pseudo Code prior to
coding in assembly language. It seems they were sold on the idea.
The order brought to their software through structuring made the
extra step worthwhile.

The method presented in this paper has proven to be effective in
teaching assembly language programming. Students at Seneca Col-
lege have successfully implemented microprocessor-based designs
requiring complex software. The resultant code, all written in as-
sembly language, is concise, simple to read and debug, and most

128 IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2, MAY 1988

/* Example 5 : Pseudo Code * /

PSTR (p o i n t e r)
[c c = 01 /* cc is co lumn c o u n t e r * /

WHILE [(c h a r = @ p o i n t e r) I = 0) DO BEGIN
I F [c h a r == t a b 1 THEN

REPEAT
[s e n d s p a c e t o p r i n t e r]
(cc += 11

UNTIL [c c % 8 == 01
ELSE BEGIN

[s e n d c h a r t o p r i n t e r]
[c c += 1 1

END /* i f * /
[p o i n t e r += 1 1

END /* w h i l e * /
RETURN ()

; Example 5 : Assembly Language

; PSTR: p r i n t s t r i n g e x p a n d i n g t a b s w i t h s p a c e s
.

; ENTER: DPTR p o i n t s t o s t r i n g
s t r i n g s e n d t o p r i n t e r
PCHAR

; EXIT:
; USES:

XR7
PSTR:

PSTRZ:

PSTR3:

PSTRI:

SKIP:

PSTRS:

EQU 7
PUSH XR7
PUSH DPH
PUSH DPL
PUSH ACC
MOV R7,XO
CLR A
MOVC A,@A+DPTR
J Z PSTRS
C J N E R,$OSH,PSTRI
MOV A , # Z O H
ACALL PCHAR
INC R7
MOV A.R7
ANL A,$07H
J N Z PSTR3
SJMP SKIP
ACALL PCHAR
I N C R7
INC DPTR
SJMP PSTR2
POP ACC
POP DPL
POP DPH
POP XR7
RET

L i s t i n g 5

; d i r e c t add of R7
; s a v e r e g i s t e r s o n
; s t a c k

;cc = 0
; w h i l e ...
; c h a r = @ p o i n t e r
; I = 0 d o b e g i n
; i f c h a r == t a b t h e n
; s e n d s p a c e t o p r n t r

;cc += 1

: u n t i l cc % 8 == 0

;else b e g i n s e n d c h a r
;cc += 1
; p o i n t e r += 1
; ... r e p e a t w h i l e
; r e t r i e v e r e g i s t e r s
; from s t a c k

Fig. 9. Solution for Example 5

establish their research program. The development of classroom man-
agement skills can contribute to more efficient learning for the stu-
dents, and certainly more efficient use of the instructor’s time and tal-
ents.

A worksheet has been designed to assist new faculty in developing
their own classroom management skills by systematically determining
how specific aspects of the classroom responsibilities can be managed
to achieve the desired educational objectives.

INTRODUCTION
The educational process is a dynamic relationship between stu-

dents and professor. It is this quality of personal interaction that
often lures people to the teaching profession, and new faculty usu-
ally approach this opportunity to contribute to the learning process
with great interest and enthusiasm. For new faculty members, the
classroom experience renews memories of their own enlightenment
process which may have begun with proving a mathematical theo-
rem or with obtaining results in the laboratory. The classroom ex-
perience also brings the realization that teaching must be ap-
proached with more than just raw enthusiasm. It requires that the
professor develop the skills needed to establish and nurture an ef-
fective learning environment.

EDUCATIONAL RESPONSIBILITIES
The research responsibilities and expectations of a new faculty

member are often well defined, but what exactly are the educational
responsibilities and what are the special skills needed? Educational
responsibilities encompass the entire scope of establishing an ef-
fective learning environment, from the development of course con-
tent to the effective utilization of facilities and resources. The skills
needed to meet the challenge of these responsibilities can be re-
ferred to as “classroom management” skills. The professor must
have the ability to organize and orchestrate the many simultaneous
activities that are a part of teaching, while fulfilling the role of
motivator and coach for students. Although the components of
classroom management would not come as a surprise to any edu-
cator, the new faculty member must learn how to systematically
consider the treatment of these components for his or her specific
teaching assignment. - -

To assist new faculty in developing a systematic approach to
classroom management, a worksheet has been designed to identify
the primary areas of responsibilities facing the professor and how
they relate to the educational process. Utilization of this work-
sheet, which follows the description of its organization, will enable
an instructor to establish a framework for managing his or her spe-
cific teaching assignment in order to meet the educational objec-
tives of the course,

importantly 7 the software was written using the technique ofstruc-
tured programming.

REFERENCES

[l] L. Leventhal, 6800AssemblyLanguage Programming. Berkeley, CA:

[2] B. W . Kernighan and D. M. Ritchie, The C Programming Lan-
Osborne/McGraw-Hill, 1978, ch. 13.

guage. Englewood Cliffs, NJ: Prentice-Hall, 1978.

THE WORKSHEET: “COURSE MANAGEMENT-GETTING
STARTED”

The worksheet defines classroom management from three areas
of emphasis, and details these areas in the instructor, res.ource, and
course profiles to be completed as part of this exercise.

Development of Classroom Management Skills

SUSAN A. R. GARROD A N D CHRISTINE M. MAZIAR

Abstract-The need for classroom management is often overlooked
by new faculty, especially when they are under substantial pressure to

Manuscript received March 2, 1987.
S. A. R. Garrod is with the Department of Electrical Engineering Tech-

C. M. Maziar is with the Department of Electrical and Computer En-

IEEE Log Number 87 18359.

nology, Purdue University, West Lafayette, IN 47907.

gineering, University of Texas at Austin, Austin, TX 78712.

Instructor Projle
The professor who fills out the “instructor profile” of the work-

sheet will more fully comprehend the need to develop skills to ef-
fectively and efficiently manage classroom responsibilities. The
detailed listing of hours allocated to the multitude of activities for
which the professor is responsible emphasizes the prem ium placed
on time actually spent preparing for and engaging in the teaching
process. No one has time to fumble about in attempts to organize
the myriad of classroom responsibilities without a clear course of

0018-9359/88/0500-0128$01 .OO 0 1988 IEEE

