IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2, MAY 1988

A Structured Approach to Assembly Language
Programming

SCOTT MACKENZIE

Abstract—A method is described for teaching structured program-
ming techniques to students of assembly language programming.
Structured programming, historically, has only been within the realm
of high-level languages (Pascal, C, etc.), while a more loose approach—
one lacking a formal syntax—has traditionally been applied to low-level

Manuscript received January 26, 1987; revised July 14, 1987.

The author is with Seneca College of Applied Arts and Technology,
Toronto, Ont., Canada.

1EEE Log Number 8718357.

123

programming in assembly language. Borrowing words and symbols
from Pascal and C, a simple syntax has been devised, called Pseudo
Code, that uses three basic structures: linear, conditional, and loop.
Upon learning that all programs can be written using only these three
structures, students become convinced of the reduced complexity
brought by Pseudo Code. A method is adopted that proceeds from the
problem definition to the assembly language program using Pseudo
Code as an interim step. Using this method, students at Seneca College
in Toronto have successfully developed software in assembly language
that would have been too complex for them to attempt without coding
their solutions in a structured form.

INTRODUCTION

Students of electronics, sooner or later, must learn to program
microprocessors in assembly language. The well-developed struc-
tured programming techniques used in high-level languages (the
techniques that computer science students must master) are known,
but are little applied in the low-level world of assembly language
programming, with the result that students tend to adopt a chaotic,
brute-force approach to problem solving. The code is often difficult
to debug, impossible to read, and resembles unstructured Basic
where programmers routinely ‘‘paint themselves into a corner,”
and use a GOTO Statement to escape.

A pedagogy is presented that provides students with a systematic
approach to assembly language programming, one which adheres
to a small but complete set of structures. The method is not ex-
haustive; its intent is to introduce the concept of structuring while
learning assembly language programming. Using this method, stu-
dents at Seneca College have successfully tackled complex pro-
gramming problems in assembly language.

The following paragraphs describe a ‘‘method’’; little is new
except the packaging. The key to success is to simplify the com-
plex, to give shape and form to a problem, and not to expect too
much too soon. The method is presented to the students in three
stages, beginning with the rudiments of structuring, then progress-
ing to subroutines and parameter passing, and then finishing with
a polished syntax. Many programming exercises are given to the
students at each level before progressing to the next. Five sample
exercises are given as representative of the problems that students
can be expected to solve using this method.

The structures are presented to the students as the constituent
parts of a small hypothetical language which we call Pseudo Code.
This language borrows words and symbols from Pascal and C, so
as to strike a balance between legibility and brevity. Pseudo Code
exists purely on paper and is used only as an interim stage in prob-
lem solving. While forcing a strict adherence to structure through
the use of keywords and indentation, the language places state-
ments and conditions in square brackets and encourages students,
at least initially, to use whatever wording they feel appropriate to
describe operations and conditions.

THE USE OF FLOWCHARTS

Flowcharts are used initially but become optional after students
develop problem-solving cognition and master Pseudo Code. So-
lutions are reached by progressing from the problem definition to
the assembly language program via Pseudo Code, using a flowchart
if necessary. This is illustrated in Fig. 1.

The disadvantage of flowcharts is that they are bulky and unruly:
small routines take entire pages, they cannot be typed into a com-
puter using word processing software, and they are difficult to edit.
Their advantage lies in the shape they give to a solution by using
decision blocks and flow arrows to enhance the visual representa-
tion. Parallel operations are shown as such by juxtaposing state-
ment blocks on the page. This visual property of flowcharts, which
does not exist in programming languages due to their line-by-line
notation, is invaluable to many students. Flowcharts are eventually

0018-9359/88/0500-0123$01.00 © 1988 IEEE

124

PROBLEM FLOWCHART PSEUDO ASSEMBLY
DEFINITION (optional) CODE LANGUAGE
PROGRAM

Fig. 1. The stages in problem solving use Pseudo Code as an interim step
between the problem definition and the final program. Flowcharts are
used initially but are discarded or used optionally after students become
familiar with Pseudo Code.

discarded when students demonstrate proficiency in proceeding di-
rectly from the problem definition to Pseudo Code.

Step 1) Rigid Structures; Liberal Use of Language: Students
are gradually introduced to Pseudo Code by allowing them to no-
tate their solutions in comfortable terms, while adhering to the
available structures. Before proceeding to the sample exercises, the
structures are defined and illustrated in Pseudo Code and flowchart
form. (The use of flowcharts will not be elaborated on further.)

Three structures are sufficient to solve any programming prob-
lem: the linear structure, the loop structure, and the choose struc-
ture [1]. The linear structure, shown in Fig. 2, is the familiar
‘‘statement’’-—the workhorse of computer programs. Via state-
ments, programs accomplish their tasks.

The loop structure repeatedly performs an operation until a ter-
minating condition becomes true. The two common arrangements,
which are also called ‘‘statements,”’ are WHILE/DO and REPEAT/
UNTIL. These are illustrated in Fig. 3.

A WHILE/DO structure is required when the operation should not
be performed in the event that the terminating condition already
exists. On the other hand, the REPEAT/UNTIL structure is used when
the operation must be performed at least once.

Although any WHILE/DO statement can be rearranged into a RE-
PEAT/UNTIL statement and vice versa, both are used in Pseudo
Code since they are commonplace and translate easily into assem-
bly language. Another variation of the loop structure is the FOR
statement which we avoid to keep the language small.

A common programming bug is an infinite loop. Students can
guard against this by verifying that at least one operation in the
loop affects the terminating condition. For example, if a counter is
used, then the counter value must be affected (typically, it will be
incremented or decremented) by an operation within the loop.

The choose structure, shown in Fig. 4, is the IF/THEN/ELSE state-
ment. The CASE statement, which can be constructed from 1F/THEN/
ELSE statements, is not used.

The few rules adhered to at this stage are as follows.

1) Enclose conditions and statements in brackets [] and use any
convenient language to describe the operation.

2) Statements within a CHOOSE or LoOoOP structure are indented
to the next tab stop.

3) Multiple statements in the choose or loop structures are
bracketed by BEGIN/END. (Note: Not necessary for REPEAT/UNTIL.)

4) Any structure can be inserted into the statement block of any
other structure.

5) Keywords are WHILE, DO, REPEAT, UNTIL, IF, THEN, ELSE,
BEGIN, END, AND, OR, and NOT.

6) Keywords are written using uppercase characters; all other
words are written using lowercase characters.

7) Machine-dependent language should be avoided (i.e., use
terms like ‘‘pointer’’ rather than ‘‘index register’”).

8) Use the Commercial At sign (@) to indicate indirect ad-
dressing.

9) Enclose comments within ‘‘/*’> aND ““*/°’. (For example:
/* this is a comment */.)

After students have learned the instruction set of the micropro-
cessor and are capable of writing programs using conditional branch
instructions, they are ready to structure their solutions using Pseudo
Code. Initially, the most appropriate problems are those that result

IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2, MAY 1988

FLOWC'HAR’I‘: PSEUDO CODE:

v

statement 1

[statement 1]
[statement 2]
I [statement 3}
etc.

statement 2

Fig. 2. The solution to all programming problems can be expressed using
only three structures. The linear structure—the statement—is the work-
horse of computer programs.

FLOWCHART: PSEUDO CODE:

?

true

false
WHILE (condition]

DO [statement]

REPEAT [statement]

UNTIL (condition]

?

true

Fig. 3. The loop structure is used to repeatedly execute a block of code.
The REPEAT variation executes the statement block at least once, whereas
the WHILE variation checks the terminating condition before the state-
ment is executed.

FLOWCHART:

condition
2?

statement 2 statement 1

PSEUDO CODE: IF [condition]
THEN [statement 1]
ELSE [statement 2]

Note: statement 2 is optional

Fig. 4. The choose structure executes one of two statement blocks de-
pending on a true/false condition. The ELSE statement is optional.

in self-contained programs. Subroutines and parameter passing are
introduced at Step 2).

In this note, the solutions to exercises are given in Pseudo Code
and in the assembly language of Intel’s 8051 Microcontroller,

— ;o . 1-

IEEE TRANSACTIONS ON EDUCATION, VOL. 3, NO. 2, MAY 1988

which is used in courses at Seneca College. The benefit of using
machine-independent terminology becomes apparent when switch-
ing to a different microprocessor. Notice that the Pseudo Code so-
lutions do not suggest a particular target machine.

Example 1: Write a program to add a series of bytes and store
the result. The length of the series is in memory location 41H and
the series begins starting at memory location 42H. Store the sum
in memory location 40H.

Example 2: Search a null-terminated string of ASCII codes and
count the number of digit characters (**0’’-*‘9’"). The string is
stored in memory beginning at location SOH. Put the count in the
accumulator.

The Pseudo Code and assembly language solutions are shown in
Figs. 5 and 6. Note that the solution to Example 1 works for a
zero-length series since the WHILE/DO structure checks the termi-
nating condition before an addition is performed.

With a bit of coaching and more exercises, students should be
able to design the Pseudo Code solutions easily. The translation to
assembly language, however, requires considerable focus and, to
assist, Pseudo Code statements should be used as comments in the
assembly language program. This establishes a line-for-line cor-
relation between the Pseudo Code and the assembly language pro-
gram. For those students using a personal computer and word pro-
cessor, the assembly language program can be written by editing
the Pseudo Code file and inserting assembly language instructions
into each line while pushing the Pseudo Code statements to the
right into comments. This approach greatly simplifies the transla-
tion to assembly language.

The conditional sections of the structures are the most critical.
It is in their use of conditional branch instructions that students
falter, a problem arising out of the disparity between a micropro-
cessor’s instruction set and the way humans think and use lan-
guage. This is particularly evident in Example 2 where a compound
condition is required. An effective approach uses language within
the condition brackets that, although not machine dependent, sug-
gests the type of instructions that will be used during the translation
to assembly language. Hence, in Example 2, the IF condition is
stated as

IF [character > = ‘‘0’’ AND character < = ‘9]
rather than
IF [character is a digit].

Although the latter is more akin to the way we think, it does not
give any hint of the instructions required to implement the condi-
tion.

A message to the ‘‘byte counters’’: the argument that most of
these solutions can be rearranged with a slight reduction in size is
conceded; however, this must be weighed against the loss of code
clarity and the loss of structure. This method is intended primarily
for students of electronics using microprocessors (or microcontrol-
lers) for ‘‘small’’ applications. These students are not writing code
for file servers and compilers; they are writing code that interfaces
microprocessors to terminals, printers, and other 1/0 devices; they
are writing code to read from inputs, manipulate bits and bytes in
some way, and write to outputs. With the high-capacity memory
IC’s available today, there is no need to shoehorn code into the
smallest possible space. At Seneca College, students have designed
microprocessor-based hardware and software for robotic arms, pen
plotters, logic analyzers, etc.—the firmware required has never ex-
ceeded the capacity of a single EPROM.

Step 2) Modular Programming: Programming at the introduc-
tory level will likely be carried out in parallel with lectures intro-
ducing students to subroutines and parameter passing—the main
ingredients of modular programming. Modular programming and
structured programming are two mutually beneficial approaches to
programming. Modules are subroutines with explicitly defined en-
try and exit conditions that exist in a hierarchy with complex mod-
ules building upon and using simple modules. Complex modules

125

/* Example 1: Pseudo Code */
BEGIN
[initialize pointer to 42H]
[initialize counter from location 41H]
[clear sum]
WHILE [counter not equal zero] DO BEGIN
[add @pointer to sum]
[increment pointer]
[decrement counter]
END /* while */
[store sum in location 40H]
END /* example 1 */

; Example 1:

;

Assembly Language

MOV RO, #42H ;initial pointer to 42H
MOV R7,41H sinitialize counter from 41H
CLR A ;jclear sum
WHILE: CJINE R7,#0,DONE ;counter not = zero do begin
ADD A,@RO ;add @pointer to sum
INC RO ;increment pointer
DEC R7 ;decrement counter
SJMP WHILE ;end while
DONE: MOV 40H,A ;jstore sum in location 40H
HERE: SJIMP HERE
END jexample 1
Listing 1

Fig. 5. Pseudo Code and assembly language solution for Example 1.

/* Example 2: Pseudo Code */
BEGIN
{init pointer to 0050H]
[init count = 0]
REPEAT
[char = @pointer]
[increment pointer]
IF [char >= '0' AND char <='9"']
THEN [increment count]
UNTIL [char is 00H]
[store count in accumulator]
END /* example 2 */

; Example 2: Assembly Language
i
* EXAMPLE2: MOV DPTR,#50H ;init pointer to 0050H
MOV R7,#0 jinit count = 0
REPEAT: MOVX A,@DPTR jchar = @pointer
INC DPTR ;increment pointer
IF: CJINE A,#'0',5+3 ;if char >= '0' AND
Jc UNTIL ;
CJINE A, #'9'+1,8+3 ; char <= '9°*
JNC UNTIL H
THEN: INC R7 ;then increment counter
UNTIL: CJNE A, #0,REPEAT ;char is 0OH
MOV A,R7 ;store count in acc
HERE: SJMP HERE
END ;example 2
Listing 2

Fig. 6. Pseudo Code and assembly language solution for Example 2.

will *‘call’’ simple modules, passing parameters to them or receiv-
ing results back. At this level, all parameter passing uses the mi-
croprocessor’s internal registers.

The following rules are added.

10) All modules begin with the module name followed by a pair
of parentheses containing the names of parameters (if any) passed
to the module.

11) All modules end with the keyword RETURN followed by a
pair of parentheses containing the names of parameters (if any)
returned by the module.

12) Module names are written using uppercase characters.

Although only the concept of modular programming has been
added, a considerable leap forward has occurred. Students are now

126

creating larger programs each centered around one main module
with a hierarchy of modules below.

Many useful subroutines can be written by the students as ex-
ercises, leaving them with a library of routines useful to them as
they advance towards high-level applications. Standard C functions
[2] serve as excellent programming problems in Pseudo Code with
subsequent translation to assembly language. A brief description
of some of these follows. Character class testing subroutines are
those that enter with an ASCII character in the accumulator, per-
form a test on the character, and return with a flag bit—typically
the carry flag—set if the test passed or cleared if the test failed
(Table I). Code conversion subroutines enter with a code in the
accumulator, perform a conversion on the code, and return with
the converted code in the accumulator (Table II). String manipu-
lation subroutines perform operations on null-terminated strings—
strings of ASCII codes terminated with a null byte (OOH). These
subroutines are entered with one or two pointers to strings and per-
form an operation on the string(s), such as a copy or compare (Ta-
bie 1II).

As Pseudo Code is a learning tool rather than a real or ‘‘com-
pilable’” language, it does not include many of the features of high-
level languages. The absence of data types, local versus global pa-
rameters, arrays, etc., is not a concern since the applications are
usually small and hardware oriented, dealing with interfacing and
control rather than with data processing.

Example 3: Write a subroutine called INLINE that inputs a line
of characters from the console (echoing back each character as it
is received) and places them in memory starting at location 60H.
Maximum line length is 31 characters including the carriage return.
Put O at the end of the line. Assume the existence of INCHAR and
OUTCHAR subroutines that input and output characters to the serial
port using the accumulator.

Example 4: Write a subroutine called HTOA that performs hex
to ASCII conversion. A hex nibble is passed to the subroutine in
the accumulator with the ASCII equivalent returned in the accu-
mulator (example: input = OBH, output = 42H).

The solutions are shown in Figs. 7 and 8. Since the students are
now writing subroutines that are general in nature and useful for
many applications, they should learn to include an appropriate
comment block at the beginning of each subroutine. The comment
block should provide the following information: 1) name of the
subroutine, 2) entry conditions, 3) exit conditions, and 4) name of
other subroutines used. Registers used for temporary storage should
be saved on the stack at the beginning of the subroutine and re-
stored from the stack at the end.

Step 3) Polishing the Syntax: When students are comfortable
with structures and Pseudo Code, it is useful to develop a more
cryptic and more consistent coding technique. The definition of
Pseudo Code is now completed by supplying a set of operators and
a precedence scheme. The operators are taken from standard C (see
[2]), with some of the more esoteric ones omitted. Conspicuous
variances include the use of the Commercial At (@) for address
indirection, and the absence of the auto-increment and auto-dec-
rement operators. These differences exist purely to fine tune Pseudo
Code to the programming model of the target machine, in this case
the 8051. This may seem in contradiction with the machine inde-
pendence sought after; however, since the final objective is to gen-
erate assembly language programs, this liberty is justifiable. Un-
doubtedly, the coding rules should cater to some extent on the
particular microprocessor used.

The operator set is given in Table IV and the precedence scheme
is given in Table V.

A detail that confuses students initially is the difference between
relational operators and bitwise logical operators. Bitwise logical
operators are generally used in assignment statements such as the
ampersand in

[lowernibble = byte & OFH]

while relational operators are generally used in conditional expres-

IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2, MAY 1988

TABLE I
CHARACTER CLASS TESTING SUBROUTINES

Name Exit with carry = 1 if ...
ISALPH char in range 'a' to 'z' or 'A' to 'Z2'
ISDIGT char in range '0' to '9°
ISHEX char in range 'a' to 'f' or 'A' to 'F'
ISGRPH byte in range 20H to 7EH (ASCII graphic)
ISWHIT char is tab (09H) or space (20H)
ISUPPR char in range 'A' to 'Z’
ISLOWR char in range 'a' to 'z'
Note: Enter with ASCII code in accumulator
TABLE II
CopE CONVERSION SUBROUTINES
Example
Name Operation Enter Exit
HTOA Hex TO Ascii A = OFH A = 46H
ATOH Ascii TO Hex A = 41H A = OAH
UTOL Uppercase TO Lowercase A = 5AH A = 7AH
LTOU Lowercase TO Uppercase A = 62H A = 424
BCDBIN BCD to BINary A =294 A = 1DH
BINBCD BINary to BCD A = OFH A = 15H
Note: A is the accumulator
TABLE 111
STRING MANIPULATION SUBROUTINES
Name Enter Exit
STRLEN Pl length of string Pl in A
STRCPY P1, P2 string P2 copied to string Pl
STRCAT Pl, P2 string P2 catenated to end of string Pl
STRCMP Pl, P2 lexicographical comparison: A = @Pl - @P2

until end of strings or A != ¢

Note: Pl and P2 are pointers to null-terminated ASCII strings
Note: A is the accumulator

sions, such as the double ampersand in
IF [char != “‘Q"" && char != ODH] THEN - - -

As well, the relational operator ‘‘=="" should not be confused
with the assignment operator ‘“='". For example, the Boolean

expression in
IF[j == 9] THEN - - -

is either true or false, depending on whether or not j equals 9,
whereas the assignment statement

[j =9

sets j equal to 9. This difference requires a slight adjustment in the
coding practices used previously.

Example 5: Write a subroutine called psTR to send a null-ter-
minated string to the system printer expanding tabs with spaces.
Assume tab stops after every eight columns, i.e., at columns 9, 17,
25, etc. Assume the existence of a subroutine called PCHAR to print
the character in the accumulator. Assume the string is in . memory
at an address passed to PSTR.

The solution to this example is shown in Fig. 9. As can be seen,
this subroutine is tricky enough that coding directly in assembly
language without the assistance of a flowchart or Pseudo Code
would be a formidable task. The Pseudo Code solution is concise
and clearly shows the structure of the problem. Proceeding from
the problem definition to Pseudo Code is one step in the solution;
translating the Pseudo Code into assembly language is another.
Each of these tasks is far simpler than the combined task of direct
coding in assembly language.

IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2, MAY 1988

/* Example 3: Pseudo Code */

INLINE ()
{pointer = 60H]
{length = 31]
REPEAT

[input char from serial port]
[echo back to serial port
[@pointer = char)
[increment pointer]
[decrement length]
UNTIL [length is @ OR char
[@pointer = @]
RETURN ()

is @DH)

Example 3: Assembly Language

LR R R R e R RS SRS TS S 2 T2

H

H

H

; INLINE: input a line of characters

H

; ENTER: -no conditions

; EXIT: -ASCII codes in memory beginning at 60H

; -maximum line length = 31 characters

; USES: -INCHAR, OUTCHAR

7

XR@ EQU] ;jdirect add of R@

XR7 EQU 7 ; and R7

INLINE: PUSH XRO ;save registers on
PUSH XR7 ; stack
MOV RO, #60H ;pointer = 60H
MOV R7,#31 ;length = 31

REPEAT: ACALL INCHAR ;input char from port
ACALL OUTCHAR ;echo back to port
MOV @R@,A ;@pointer = char
INC RO ;increment pointer
DIJNZ R7,SKIP ;decrement length
SJMP EXIT ;until length is @ OR

SKIP: CJNE A, #0DH,REPEAT ;char is @DH

EXIT: MOV QRO, #0 ;@pointer = ¢
POP XR7 jretrieve registers
POP XR@ ; from stack
RET
Listing 3

Fig. 7. Solution for Example 3.

/* Example 4: Pseudo Code */
HTOA (code)
IF [code >= 0AH]
THEN [add 37H to code] /* in range A TO F */
ELSE [add 30H to code] /* in range 0 TO 9 */
RETURN (code)

Example 4: Assembly Language

Ak Rk R I hkh Rk kkkhkhh kA kX kAR kkhkdkk kb hkhkkh k&

i

i

H

; HTOA: hex to ASCII conversion

i

; ENTER: -A contains hex nibble in range 00-0F

; EXIT: -ASCII equivalent code in A

i

HTOA: CINE A, #0AH,$+3 ;if code > OAH
Jc ELSE
ADD A,#37H jthen add 37H
RET

ELSE: ADD A,#30H jelse add 30H
RET

Listing 4

Fig. 8. Solution for Example 4.

CONCLUSION

A further benefit of Pseudo Code is that the students learn the
rudiments of high-level languages while studying assembly lan-
guage programming. There is a tendency for high-level language
programmers to consider their language as a sort of black box or,
perhaps more appropriately, a form of black magic. Little consid-

127

TABLE IV
OPERATORS USED IN PSEUDO CODE

Class of
Operator

Arithmetic

Symbol Operation
addition
subtraction
multiplication
division
modulus

W e+

(remainder after division

if
if
if
if
if
if
if
if

true
true
true
true
true
true
true
true

Relational values equal

values not equal

first value greater than second

1st value greater or equal to 2nd
first value less than second

lst value less than or equal to 2nd
both value are true

either value is true

— @2 AAVYV
) " [

—

AND

OR

exclusive OR

NOT (l's complement)
shift right

shift left

Bitwise
Logical

logical
logical
logical
logical
logical
logical

—wm

Assignment = set equal to

assignment shorthand where ‘op' is any
arithmetic or bitwise logical operator
(e.g.: J = j + 4 can be coded j += 4)

Precedence () see Table V

Override

Indirect d
Address

variable following is address of operand

TABLE V
OPERATOR PRECEDENCE

Operator Precedence
Q) highest
- @

* / %

<< >>

< <= > o=

== 1=

&

|

&&

I

= += ~= *= etc. lowest

eration is paid to the machine and how programs execute at the
machine level. A compiler performs some inexplicable translation
and somehow a program is generated that performs the desired op-
eration. This is fine in many instances, but for students of elec-
tronics, it is important to remain in contact with the hardware.
Time-dependent and /O intensive operations often demand the
closeness offered by assembly language programming. Pseudo Code
allows programmers to retain this closeness while using a struc-
tured technique. When these students begin programming in Pascal
or C, they make the transition smoothly, knowing how the lan-
guage performs and how it drives the hardware.

What are the students’ views on the approach presented here?
This was discovered many months after the technique was taught
when students, working on their term design projects, were found
to be sketching out their software routines in Pseudo Code prior to
coding in assembly language. It seems they were sold on the idea.
The order brought to their software through structuring made the
extra step worthwhile.

The method presented in this paper has proven to be effective in
teaching assembly language programming. Students at Seneca Col-
lege have successfully implemented microprocessor-based designs
requiring complex software. The resultant code, all written in as-
sembly language, is concise, simple to read and debug, and most

128

/* Example 5:

PSTR{pointer)

pseudo Code */

1= 0) DO BEGIN

[cc = 0] /* cc is column counter */
WHILE [(char = @pointer)
IF [char == tab)] THEN
REPEAT
[send space to printer]
fce += 1]
UNTIL [cc % 8 == 0]
ELSE BEGIN

[send char to printer]

[cc

+= 1)

END /* if */
[pointer += 1}
END /* while */

RETURN ()

EXIT:
USES:

;
XR7
PSTR:

PSTR2:

PSTR3:

PSTR4:
SKIP:

PSTRS:

ENTER:

DPTR points to string

Example 5: Assembly Language

223222222222 222222222 SR SRR 2222222222 22222 2]
PSTR: print string expanding tabs with spaces

string send to printer

PCHAR

EQU 7

PUSH XR7
PUSH DPH
PUSH DPL
PUSH ACC
MOV R7,4#0
CLR A

MOVC A,@A+DPTR
JZ PSTR5
CJNE A,$09H,PSTR4
MoV A, #20H
ACALL PCHAR
INC R7

MOV A,R7
ANL A,#07H
JINZ PSTR3
SJMP SKIP
ACALL PCHAR
INC R7

INC DPTR
8JMP PSTR2
POP ACC
POP DPL
POP DPH
POP XR7
RET

Listing 5

;direct add of R?
;save registers on
; stack

jce = 0

;while ...

;char = @pointer

;1= 0 do begin

;if char == tab then
;send space to prntr

jce += 1

;until cc § 8 ==

;else begin send char
jcc += 1

;jpointer += 1

; ... repeat while
jretrieve registers

; from stack

Fig. 9. Solution for Example 5.

importantly, the software was written using the technique of struc-
tured programming.

REFERENCES

[1] L. Leventhal, 6800 Assembly Language Programming. Berkeley, CA:

Osborne/McGraw-Hill, 1978, ch. 13.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Lan-

guage.

Englewood Cliffs, NJ: Prentice-Hall, 1978.

IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 2, MAY 1988

0018-9359/88/0500-0128$01.00 © 1988 IEEE

