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The PC as a Productivity Tool in the Microprocessor
Laboratory

1. Scott MacKenzie, Member, IEEE

Abstract—The PC microcomputer can serve as a host system for de-
veloping microprocessor-based products. The educational potential for
the PC is investigated citing the low cost and widespread availability
of systems and PC-hosted products to facilitate hardware and software
design. New laboratory methodologies result which prevent students
from getting bogged down in learning the basic functions of an expen-
sive and unique name-brand development system. By focusing lab ac-
tivities on the PC and a powerful set of add-on tools, students readily
undertake the synthesis of complete projects, working from concept to
product.

INTRODUCTION

OMPUTERS are everywhere. This is evident to most peo-

ple, but particularly to engineers and engineering educa-
tors. In the curriculum for electrical and electronics engineering,
not only are many courses ‘‘about’’ computers, but others are
often enhanced through the use of computers as learning vehi-
cles. This paper investigates the means and methods through
which the PC family of microcomputers (e.g., the PC/XT or
PC/AT) can facilitate the achievement of advanced instruc-
tional objectives in the microprocessor laboratory.

The sphere of activities in the microprocessor lab is ex-
tremely rich, ranging from hardware design, construction, and
testing to software coding, translation, debugging, and integra-
tion. With such diversity, the potential for chaos looms. It is
shown in the present study that the PC, acting as an *‘activity
center,”’ can unify many of the tasks undertaken by students in
learning about microprocessors. The result is increased produc-
tivity and the possibility of undertaking more ‘‘complete’’
projects, working from concept to product.

The simplest example perhaps is the creation of source pro-
gram files using text editing software, followed by the transla-
tion to machine language using an assembler program. The PC,
or any other computer for that matter, is a powerful tool for
such tasks. This is only the starting point though. As we shall
see, the widespread acceptance of the PC standard, along with
inexpensive utility software and add-on hardware, has made the
PC a pervasive force to reckon with in many laboratory set-
tings.

EVOLUTION OF THE MICROPROCESSOR LABORATORY

In this section, four distinct modes of laboratory instruction
are cited which have evolved through technological develop-
ments in the computer and microelectronic fields. The mode
adopted often emerges from departmental planning and bud-
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getary constraints. When a substantial investment in equipment
in made, however, the mode of instruction is set for several
years, regardless of newer developments that may arrive. Hind-
sight is often a nagging reminder to us of what we should have
done or might have done.

The following chronology suggests the availability and via-
bility of each mode. Although each mode is found in institu-
tions today, there is a trend toward the central use of the PC in
development environments for microprocessor-based applica-
tions.

Single-Board Computers (1971-1978)

It’s hard to imagine a world of electronic tools and toys with-
out the microprocessor, yet this single-chip wonder is just ap-
proaching its twentieth birthday. In 1971, Intel introduced the
4-b 4004, widely regarded as the first microprocessor, and then
followed with the 8-b 8008 and 8080. Shortly thereafter, Mo-
torola, RCA, and then MOS Technology and Zilog, introduced
similar devices: the 6800, 1801, 6502, and Z80, respectively.
Alone, these IC’s were rather helpless (and they remain so!),
but as part of single-board computers they became the central
component in useful products for learning about and designing
with microprocessors. These SBC’s, of which the D2 by Mo-
torola, KIM-1 by MOS Technology, and SDK-85 by Intel are
the most memorable, quickly found their way into the labs of
electronics departments at colleges and universities.

As a learning vehicle priced around $400, they were perfect.
The typical setup employed a monitor program in ROM and
about 1 kilobyte of RAM, a hexadecimal keypad for input, a
seven-segment LED display for output, and a rather arcane form
of mass storage utilizing audio cassettes and an analogue inter-
face. (Some readers may remember the ‘‘Kansas City Stan-
dard’’!)

Programming involved the laborious task of *‘hand assem-
bly.”” Assembly language programs were written with pencil
and paper followed by the conversion to machine language by
looking up the instruction opcodes in the IC manufacturer’s ta-
bles. Programs were entered into the SBC for execution using
a hex keypad and a primitive set of commands.

Although today we might balk at such inefficiency, a good
argument still exists that introductory courses in microproces-
sors are best served using SBC’s and hand assembly: 1) students
learn the architecture and instruction set of the microprocessor
by noting the encoding scheme for registers, operations, and
addressing modes within the instruction opcodes; 2) hand cod-
ing brings the students as close to the hardware as they are ever
likely to come; and 3) students learn, because of the time in-
vested, to exercise care and adopt a methodical approach to pro-
gramming [1]. These benefits may reduce the ‘‘black box’’
mentality that often results by beginning at too high a level. It
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may be overkill, however, to base an entire course on micro-
processors using an SBC and hand programming. At the very
least, an assembler program (to convert mnemonics to opcodes)
and an effective form of mass storage are needed.

Time-Shared Minicomputers (1978-1983)

As microprocessor IC’s migrated into commercial and indus-
trial products in the late 1970’s, there was a need for more pro-
ductive design environments. These were usually based on
powerful time-shared minicomputers with a cross assembler and
other utility programs that facilitated the programming and de-
bugging stages of design. Minicomputers were expensive
though and access to such resources tended to arrive through
the back door (or, should we say, through ceilings and current
loops!) from computer science or administration departments.

Highly productive microprocessor learning environments
have been described using the HP2000, PDP-11/70, PDP-
11/750, and PDP-11 /34 time-shared minicomputers with at-
tached terminals [2]-[5]. Using a cross assembler as the basic
tool, these systems permit ‘‘symbolic’’ programming through
mnemonics and labels thus avoiding direct coding of addresses
and data in binary or hexadecimal formats. Some systems also
have a ‘‘debugger’’ and ‘‘simulator’’ which model the target
microprocessor’s architecture and ‘‘execute’’ a program while
reporting the content of CPU registers and memory locations
for the programmer’s scrutiny.

Single-board computers or prototypes of microprocessor-
based products are still used in these environments but share the
link to the host minicomputer with the terminal. Assembled
programs are downloaded from the host to the SBC for *‘real’’
execution and further debugging. With an immediate increase
in productivity, more comprehensive projects are possible.

Centralized storage in the form of a hard disk is standard
equipment and further unburdens students from the labors pre-
sent in a lab based solely on single-board computers. Another
advantage of this approach is that the minicomputer is often
owned, maintained, and managed by another department at the
institution [2].

Name-Brand Development Systems (1983-1987)

The ultimate tool for developing microprocessor-based prod-
ucts is the ‘‘development system.’’ These all-in-one systems
were introduced in the late 1970’s by microprocessor chip man-
ufacturers such as Intel (Series III) and Motorola (EXORciser),
and by test instrument manufacturers such as Hewlett-Packard
(HP64000) and Tektronics (TEK8001). As well as a powerful
assortment of software utilities, these systems added a new tool:
the in-circuit emulator (ICE). Allowing software to execute in
the system-under-test under control of the development system,
the ICE dramatically increases productivity and has become an
essential tool for professional product development.

Along with the powerful features of development systems
comes prohibitive price tags. The purchase of one commercial
microprocessor development system may consume a full year’s
budget for an entire electrical engineering department [2]. Prices
may top $50 000 for a fully equipped workstation [7]. Other
than the base price of the system, the in-circuit emulator is the
most expensive component. The latest 80386 in-circuit emula-
tors tip the scales at about $16 000 [8].

Although prices have dropped in recent years, equipping an
entire student lab with, say, a dozen name-brand development
systems, is still too extravagant for most departments. Reports
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of development system-based labs indicate environments con-
ducive to product development but with a limited number of
stations per lab [9], [10]. At the author’s college, three Intel
iPDS100 development systems were acquired in 1985 and used
for several years before being shelved in lieu of ten PC-based
development systems. Limited resources often require that lab
facilities remain open many hours each week [11] or even 24 h
per day [4].

Although problems such as a long learning curve and expen-
sive maintenance contracts have been cited [1], a major advan-
tage of development systems is the degree of consistency offered
across all tools, whether in the command-line format for pro-
grams or in the layout of the documentation. Environments
which are PC-based or based on a central time-shared minicom-
puter, are likely to incorporate tools from different manufactur-
ers with different user interfaces. This may frustrate students as
they adapt to different environments.

PC-Hosted Development Systems (1987-present)

The date of 1987 is roughly set as the arrival of PC-hosted
development systems. Due the presence of ‘‘compatibles’” and
‘“‘clones,”’ prices dropped to the point where microcomputers

. truly became ‘‘personal.’’ The widespread migration of micro-

computers into the home and onto the desk at work caused the
market to grow and become stable. At the same time, a wide
variety of PC-hosted add-on products entered the market, such
as EPROM programmers, cross assemblers, simulators, in-cir-
cuit emulators, etc.

The tools have arrived that make the PC the logical choice
for many courses in the engineering curriculum. The rest of this
paper will elaborate on the ‘‘why’’ and ‘‘how’’ of the PC-based
microprocessor laboratory.

ADVANTAGES OF PC-HOSTED DEVELOPMENT TOOLS

In this section arguments are presented for basing a micro-
processor laboratory (for teaching any target microprocessor)
on the PC. Advantages are categorized by cost, standardization,
and methodology.

Cost

Each year the January issue of IEEE Spectrum features a
technology update, a comprehensive survey and barometer of
the electronics industry. It has been evident for the past several
years that the PC has become the de facto standard for engi-
neering: ‘*Users are buying millions of PC /AT-bus clones each
year . . . the cheapest 8088- and 8086-based PC clones stayed
at $500, and PC /AT clones at $1200 [13].”’

One need only look in a newspaper or electronics magazine,
such as Byte, to see the cost-effectiveness of equipping a student
lab with PC’s. There are basically three choices: an IBM prod-
uct, a compatible, or a clone. The difference between a com-
patible and a clone is that a compatible is designed from scratch
by a major computer company, such as Olivetti or Hewlett-
Packard, and reproduces the architecture of the PC (with some
enhancements, presumably), whereas a clone is a chip-by-chip
copy of a PC (or a gate-by-gate equivalent consolidating large
sections of the design into LSI gate arrays). Although initially
unreliable, clones have matured and are generally the preferred
choice today. They are legal since IBM’s original basic input-
output system (BIOS) EPROM is omitted in favour of an alter-
native BIOS provided by a specialty company (e.g., Phoenix
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Technologies Ltd., Norwood, MA). The operating system, MS-
DOS, is also copyright and is acquired as a separate purchase.

The cost savings do not stop with the purchase of the system.
There are a large number of vendors for hardware and software
add-ons, with competition pushing prices down. Some useful
software is even available free from on-line bulletin boards [12].

Standardization

Part of the success of the PC family is due to upward com-
patibility through the various models allowing customers to run
old software on new systems. This is important for engineering
departments that must invest in software and equipment for
long-term use.

The ubiquitous PC permits students to work on lab projects
outside of scheduled lab time. This is a major point since for
security or insurance reasons engineering departments often
limit access to labs, yet the nature of projects necessitates extra
work. There are several possibilities to increase access to PC’s:
other labs at the institute may be available, students may have
their own PC’s, or students may have access to PCs at part-time
jobs.

Compatibility exists not only in the system, but in the add-
on products. Hundreds of companies offer PC-hosted develop-
ment products, such as cross assemblers (for any target micro-
processor), cross compilers (C, Pascal, Fortran, etc.),
simulators and debuggers, linkers, locators, and librarians, con-
version utilities, terminal emulators, file transfer programs . . .
the list goes on.

Noteworthy hardware products have embraced the PC stan-
dard with bus-compatible plug-in cards. The author’s institution
recently retired a veritable monster of an EPROM programmer
packaged in a heavy suitcase and priced at around $2000, re-
placing it with several PC-based EPROM programmers at $150
each. Each comes with a plug-in card and software on diskette.

PC-based in-circuit emulators have recently arrived at the sub-
$2000 mark; however, average prices are still around $4000, a
touch dear when equipping, say, ten stations! A recent survey
[14] cites 24 manufacturers of PC-based in-circuit emulators
with prices starting at $550.

In summary, just about any development product of interest
is available in a PC-hosted version at a price much less than
stand-alone or name-brand versions.

Laboratory Methodology

The widespread availability of PC’s offers new possibilities
for laboratory methodology. Experience shows that students
take charge and learn MS-DOS on their own (or from their
peers). This results in a tremendous shift in the nature of su-
pervised lab activities—a shift away from learning basic system
functions to the synthesis of student-initiated projects.

Since many editors are available, students can be expected to
provide their own editor and to develop proficiency with it out-
side of scheduled laboratory time. Dedicated lab activities are
not needed to teach students the operating system and editor of
a unique development system. Students weaned on word pro-
cessors, however, must learn to use ASCII or ‘‘nondocument”’
mode when editing to keep files free of formatting control codes.
(They quickly learn the difference!)

When a name-brand development system or time-shared
minicomputer is used, no such assumptions can be made; stu-
dents tend to learn the operating system, editor, and various
tools only to the extent that they are exposed to them during
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scheduled lab periods. When PC-based development systems
are used, students learn from one another, both in the lab and
outside of it.

TooLs

This section examines tools for developing microprocessor-
based products, categorizing them as software, hardware, or
hybrid.

Software Tools

Software tools are MS-DOS commands, utility programs, or
application programs. Typical MS-DOS tools are commands
such as DIR, TYPE, DEBUG, COPY, and FORMAT. Attain-
ing proficiency with MS-DOS is not a problem as students un-
familiar with MS-DOS quickly get up to speed. Capable students
create their own working environment using batch files, sub-
directories, macro key definitions, terminate-and-stay-resident
programs, ramdrives, etc. Others catch on quickly.

Utilities are programs exclusive of MS-DOS. The main util-
ity program is the assembler. If we assume the microprocessor
of interest is a 6809, Z80, 8085, 8051, or some other IC which
is not of the 8088 /8086 family native to the PC, then a ‘‘cross’’
assembler is needed, i.e., a utility that assembles a program for
a CPU other than the one in the host system. PC-hosted cross
assemblers are available at around $300 for most microproces-
SOfrS.

Object programs created by a cross assembler cannot execute
on the PC. Another utility program, a ‘‘simulator,’’ is needed.
Program execution is simulated with the results immediately
evident on the PC display. The contents of CPU registers, sta-
tus bits, and memory locations are displayed, as is a disassem-
bled listing of the program. Commands are provided to set
breakpoints or execute the program in single-step mode. An ex-
ample of a simulator display is shown in Fig. 1 for an 8051
product called 8051SIM (HiTech Equipment Corp., San Diego,
CA).

Other utility programs include cross compilers to translate
high-level language programs to the machine language of the
target microprocessor, linker/locators used to combine relocat-
able object modules created by the cross assembler or cross
compiler, and, of course, text editors or word processors. Some
editors are specifically ‘‘program editors’’ providing automatic
indenting, or an integrated environment whereby program as-
sembly or compilation that terminates in an error automatically
returns to the line in question.

Another tool is the conversion utility that translates object
files to hex files or vice versa. Other programs, such as those
for EPROM programming, often provide small conversion pro-
grams to bring files into the necessary format.

Fig. 2 illustrates a sequence of commands to assemble a pro-
gram, type the assembled result on the console, convert the ob-
ject file to a hex file, and dump the contents to the console. The
object bytes in the listing file are clearly evident in the hex file.
A hex file is needed when transferring an object file from the
host system to the target system, EPROM programmer, in-cir-
cuit emulator, or another system. Essential information, such
as load address, byte count, and a checksum, is present without
any control codes (except carriage return).

A terminal emulation program is also needed to connect the
PC to an SBC. Dedicated programs are available for this pur-
pose, or communication programs such as Xmodem or Kermit
may be used. Thus, the PC serves not only as a development
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Fig. 1. A typical display for the 8051SIM simulator program. Clockwise
from the top, there are separate display areas for CPU registers, internal
RAM, external RAM, program memory (hex format), and program mem-
ory (disassembled format). Menu commands are at the bottom of the dis-
play. Currently active is the program command from the RAM Alter menu.

A:\>asm51 test.src

A:\>type test.lst

LOC OBJ LINE SOURCE
0100 1 org 0100h
0100 7860 2 mov r0,#60h
0102 7F20 3 mov x7,432
0104 7655 4 loop: mov @ro, #55h
0106 08 5 inc ro
0107 DFFB 6 djnz r7,loop
0109 22 7 ret

8 end

A:\>oh test.obj
A:\>type test.hex

:0A01000078607F20765508DFFB22AF
:00000001FF

Ar\>

Fig. 2. The command sequence shows a program (test.src) being assem-
bled and converted to a hex-format file. The contents of the listing file and
the hex file are dumped to the console for inspection.

host, but also as a dumb terminal dedicated to the single-board
computer. Many terminal emulation programs remain resident
when not in.use, with a single keystroke switching between ter-
minal mode and host mode.

Hybrid Tools

Hybrid tools—those that are both hardware and software—
are of two types: EPROM programmers or in-circuit emulators.
These are purchased as one or more programs on diskette and
a plug-in card or an external unit that connects to the PC’s serial
or parallel port.

Fig. 3 illustrates a PC-based development system with an
EPROM programmer’s zero-insertion-force socket mounted on
the system chassis. A ribbon cable connects the ZIF socket to
the plug-in card inside the system.

The menu provided by the EPROM programmer software
(barely evident in Fig. 3) is shown in Fig. 4. Commands can
be seen to select EPROM type, blankcheck an EPROM, load
disk file into buffer, read EPROM contents into buffer, copy
buffer contents to EPROM, verify programmed EPROM against
buffer, or select a range of addresses to be programmed. The
concept of a ‘‘buffer’’ is central to the operation of the EPROM
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Fig. 3. A typical PC-based development system. Note the EPROM pro-
grammer on the system chassis with a ribbon cable connecting to an inter-
face card inside the system. A single-board computer connects to the PC
serial port via an RS-232C cable.

Sunshine Eprom writer card v-5.7
model : EW-001B, EW-904B (C) 1986
O S L T LA A T T PR
Select from the following :
<E>: Eprom type / Vpp
<T>: Textool size --—
<Q>: Quit.
<L>: Load disk object file in buffer.
<S>: Save buffer on disk.
<D>: Display, modify. checksum or print buffer.
<B>: Blank check.
<R>:
<V>: Verify
<C>: Copy —-—--—
<1>: Read(A) -
<2>: Verify(h)

(2764 /21V)
1)

in buffer address 0000.
—-- with buffer address 0000.
-— from buffer address 0000.
- in buffer any address.
—— with buffer any address.
<3>: Copy(A) — -- from buffer any address.
<4>: Copy(B) - -~ Blank check and Copy.
<5>: Verify(B) —------ Verify & Display error

Result:

Fig. 4. Typical commands for the software accompanying an EPROM
programmer.

programmer. Indeed, the use of the host system’s RAM for this
purpose is one of the reasons PC-hosted EPROM programmers
are so inexpensive in comparison to stand-alone units (which
must include a significant amount of buffer RAM as well as a
CPU, serial port, etc.).

The ultimate tool (with the ultimate price tag) is the in-circuit
emulator. Fig. 5 shows an Intel iPDS100 development system
with an EPROM programmer and an in-circuit emulator con-
sisting of a bus-interface unit, a ribbon cable, and a CPU em-
ulation pod. The pod contains a CPU wafer with *‘bond-out’’
wires allowing the development system to control the operation
of application software in the system-under-test in real time,
halting execution at will and displaying the contents of CPU
registers or system memory.

Hardware Tools

Hardware tools consist of the development system, a serial
cable, a printer, and test equipment. We may also consider the
SBC and power supply as necessary hardware equipment (see
Fig. 3). The SBC has a monitor program in EPROM providing
a primitive set of commands to examine and change memory
locations, download hex files from a host system, and begin
execution of an application program.

Since the PC serial ports (COM1 or COM2) are configured
as DTE’s (data terminal equipment) and the SBC serial port is
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Fig. 5. An Intel iPDS100 development system with a 8051 in-circuit em-
ulator installed. The emulator pod replaces the CPU chip in the system-
under-test (Courtesy Intel Corporation).

most likely a DTE as well, the serial cable must cross the trans-
mit (TxD) and receive (RxD) wires. (Such a cable is com-
monly called a ‘‘null modem.””) As well, since the PC serial
ports are configured with the full complement of modem control
signals, wrap-back connections are needed to ‘‘fool’” the sys-
tem into thinking a modem is connected, online, and ready for
data (see Fig. 6).

THE DEVELOPMENT CYCLE

In progressing from concept to product, hardware and soft-
ware are designed separately, with a final integration stage at
the end (see Fig. 7).

One may observe that there is nothing particularly ‘‘cyclic’
about the development cycle shown. Indeed, the ideal and im-
possible scenario of no ‘‘breakdowns’’ is shown. Of course
problems are omnipresent. Debugging occurs at every step in
the development cycle with corrections introduced by reengag-
ing in an activity earlier in the cycle. Depending on the severity
of the error, the correction may be trivial or, in the extreme,
may return the designer to the concept stage. Thus there is an
implied connection in Fig. 7 from the output of any stage in the
development cycle to any earlier step. Each stage in Fig. 7 is
now described.

Software Development

Specifying software is the task of explicitly stating what the
software will do. This may be approached as a user interface
problem, i.e., how will the user control the system, and what
effects will be observed for each action taken? Students can be
asked to produce screen layouts for the user interface before
writing any code. If switches, dials, or audio or visual indica-
tors are employed on the prototype hardware, the explicit pur-
pose and operation of each should be stated.

Designing the software is another task that students are likely
to jump into without a lot of planning. There are two common
techniques for designing software prior to coding: flowcharts
and pseudo-code. Flowcharts need no introduction here as they
have proven a useful prelude to programming since the earliest
days of Fortran. Pseudo-code is a Pascal-like language that al-
lows a relatively free use of language in describing operations
within the framework of standard looping and choice statements
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Fig. 6. Typical wiring for a cable to connect a PC serial port to a single-
board computer. Wrap-back connections are needed at the PC end of the
cable to fool the system into thinking a modem is attached.

such as WHILE, IF/THEN/ELSE, etc. A good argument can
be made for the use of pseudo-code since it enforces good pro-
gramming techniques (such as the use of modules, structures,
and hierarchies), and allows program design to be undertaken
using a text editor rather than pencil, paper, and template [15].

The editing, translation, and preliminary testing stages of
software design take the most time, at least in student projects.
Errors detected by the assembler are quickly corrected by ed-
iting the source file. Run-time errors will not show up until the
program is executed by the simulator or in the target system.
These errors may be elusive since they require careful obser-
vation and often are uncovered only by single stepping the pro-
gram or executing up to an address specified as a breakpoint.
Uncovering the bug may require that the student monitor
changes in memory locations, CPU registers, status bits, or in-
put-output ports.

Hardware Development

Specifying the hardware involves assigning quantitative data
to system functions.For example, a robotic arm project should
be specified in terms of number of articulations, reach, speed,
accuracy, torque, power requirements, etc. Students should
provide a specification sheet analogous to that accompanying
the purchase of an audio amplifier or VCR.

The conventional method of hardware design, employing a
pencil and logic template, is often enhanced through computer-
aided design (CAD) software. The learning curve for CAD pro-
grams is substantial though, and, unless specific course activi-
ties are provided, these packages are too complex for casual
use.

There are pathetically few shortcuts for the labors of proto-
typing. Whether breadboarding a simple interface to a bus or
port connector on an SBC, or wire wrapping an entire controller
board, the techniques of prototyping are only developed with a
great deal of practice. Such manual skills are likely to be em-
phasized more at the vocational level than at the university level;
nevertheless, students sooner or later must put it all together
and make it work. No silver bullet here!

Preliminary testing of hardware is undertaken in the absence
of any application software. Stepwise testing is important—
there’s no point measuring a clock signal on an oscilloscope
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Fig. 7. The development cycle. From concept to product, there are sepa-
rate paths for hardware and software development with a final step for in-

tegrating the two.

before the presence of power supply voltages has been verified.
The following sequence is proposed: visual checks, continuity
checks, dc measurements, ac measurements. After verifying the
connections, voltages, and clock signals, debugging becomes
pragmatic: is the prototype functioning as planned? If not, cor-
rective action may take the student back to the construction,
design, or specification of the hardware.

Integration and Verification

The most difficult stage in the development cycle occurs when
hardware meets software. Some very subtle bugs that have
eluded the simulation stage appear under real-time execution.
The problem is confounded by the need for a full complement
of resources: hardware such as the PC development system, tar-
get system, power supply, cables, and test equipment; and soft-
ware such as the monitor program, operating system, terminal
emulation program, etc.

Once a satisfactory degree of performance is obtained through
execution in RAM (or via in-circuit emulation), the software is
burned into EPROM and installed in the SBC as *‘firmware,’’

Of course the truly final stages of manufacturing, marketing,
and servicing are not undertaken with student projects, but they
are sometimes noted and undertaken as a hypothetical step in a
term project. For example, students could develop a plan for
diagnosing problems in the field.

COMMANDS AND ENVIRONMENTS

In this section the overall development environment is con-
sidered. We present the notion that at any time the student is
working within an ‘‘environment’’ with commands doing the
work. The central environment is, of course, MS-DOS. As sug-
gested in Fig. 8, some commands return to the environment
upon completion, while others evoke a new environment.

Invoking Commands

One of the drawbacks of MS-DOS is the inconsistency in user
interfaces from one application to the next. The growing aware-
ness of the Apple Macintosh’s superior interface, whereby de-
velopers are expected to conform to interface specifications, is
perhaps signaling an end to the winner-take-all approach to
software development.

MS-DOS commands are either resident (e.g., DIR) or tran-
sient (e.g., FORMAT, DISKCOPY). Application programs are
similar to transient commands in that they exist as an executable
disk file and are invoked from the MS-DOS prompt. However,
there are still many possibilities. Commands or applications may

be invoked as part of a batch file, by a function key, or from a
menu-driven user interface acting as a front-end for MS-DOS.

If command arguments are needed there are many possibili-
ties again. Although typically entered on the invocation line
following the command, some commands have default values
for arguments, or prompt the user for arguments. Unfortu-
nately, there is no standard mechanism, such as the ‘‘dialog
box’’ used in the Macintosh interface to retrieve extra infor-
mation needed for a command or application. Some applica-
tions, such as word processors, ‘‘take over’’ the system and
bring the user into a new environment for subsequent activities.

Environments

As evident in Fig. 8, some software tools such as the simu-
lator, ICE, or EPROM programmer evoke their own environ-
ment. Learning the nuances of each is a problem for beginners
due to the great variety of techniques for directing the activities
of the environment: cursor keys, function keys, first-letter com-
mands, menu highlighting, default paths, etc. Often hard copy
manuals are poor or nonexistent. This is consistent with the
general trend away from manuals in lieu of ‘‘user friendly’” and
“‘help-driven’’ interfaces.

Methodology

As research in artificial intelligence and cognitive science has
discovered, modeling human ‘‘problem solving’’ is a slippery
business. It is of little benefit to force students to adhere to the
step by step approach to development shown in Fig. 7. Humans
appear to approach the elements of a situation in parallel, simul-
taneously weighing the relative importance of possible actions
and proceeding by intuition. The methodology suggested here
is to show the students the development cycle to clarify the use
of tools and the techniques to realize each step, but to leave the
overall process to the individual. Past efforts to serialize student
work in a stepwise manner have not worked; students solve
problems using a personal style and meet the instructor’s check-
list later. Although specific documentation requirements and
deadlines are necessary, the day-to-day process is best left to
the individual. When ‘‘breakdowns’’ occur, the tools become
exploratory vehicles to discover and correct problems.

The basic operation of commands is ‘‘translate,”” ‘‘view,”’
or ‘‘evoke a new environment.’’ Students should view the re-
sults of translation to verify results. They can be told, in jest,
not to believe the outcome of any translation (assembling,
EPROM programming, etc.), and to verify everything by view-
ing results. Tools for viewing are commands such as DIR (were
the expected output files created?), TYPE (what’s in the output
file?), edit, print, etc.
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Fig. 8. The development environment. MS-DOS is the central environ-
ment and most commands return control to it upon completion. Some com-
mands or applications evoke a new environment with their own set of

controls and commands.

ADVANCED TooLs AND METHODOLOGIES

The approaches presented in this section must be evaluated
with caution. In many instances the low level and primitive de-
velopment environment is of prime educational importance in
developing computer literacy. Just as high-level languages
buffer programmers from hardware details, providing engineer-
ing students with sophisticated development environments often
shields them from many of the problems they must eventually
face in the working world when they are required, for example,
to integrate a variety of software and hardware products into a
working system. Although such tools may be the key to success
in professional environments, they may end up akin to a secu-
rity blanket when used by students.

Menu-Driven Environments

The simplest enhancement, perhaps, is in the use of a menu-
driven environment that eliminates invoking commands from
the MS-DOS prompt. These programs, such as QUICK DOS
(Gazelle Systems, Provo, UT), provide the user with a full
screen of commands, and a listing of the currently selected di-
rectory. Navigating about the system or executing commands is
performed using the cursor keys or by entering the first letter of
menu commands.

Although such environments can enhance productivity, they
also introduce an extra layer of abstraction which hides a sys-
tem’s underlying behavior. Generally this is not a problem. Stu-
dents using these programs have a good understanding of MS-
DOS to begin with; others use MS-DOS and migrate to these
environments when they are ready.

Development Using High-Level Languages

The introduction of high-level languages in microprocessor-
based designs has always been controversial. Although devel-
opment time may drop, learning time is longer and the compiled
code is longer and slower than an equivalent assembly language
program. Efficient programming languages, such as C, com-
bined with optimizing compilers can, however, come close to
producing code as efficient as assembly language programs. Re-
gardless, the best of both worlds can be obtained by coding
‘“critical sections’’ in assembly language and merging the result
with sections written in the high-level language.

Educators have long debated the merits of using high-level
languages in microprocessor courses. The literature reveals a
moderate use of languages such as Basic [16], PL/M [17], and
Pascal [18], with some educators even predicting the demise of
assembly language [19].

As with the use of menu-driven environments, the main
drawback with using high-level languages lies in the degree of
abstraction. For engineering students, it is important to remain
as close to the hardware as possible until a deep understanding
of the architecture of microprocessors and microcomputers is
developed. For this reason, assembly language is the best
choice, at least initially.

Other PC-based Tools

A range of PC-based test equipment has emerged in recent
years, including voltmeters, frequency counters, and digital
pattern generators. As with PC-based EPROM programmers,
designing these products around a PC negates the need for much
of the internal circuitry which contributes to their high cost. Do
not hold your breath though: the $1000, 500 MHz PC-based
oscilloscope is not imminent.

A tool of great interest to electronics educators is the logic
analyzer. Although stand-alone units have a history of strato-
spheric price tags (The Gould K450M costs $287 000!), the
PC-based logic analyzer is now a practical reality. A recent sur-
vey [20] cites products by 18 manufacturers with prices ranging
from $495 to $104 000, with average prices just under $2000.
It is interesting that none of the companies surveyed make a
logic analyzer hosted by the Apple Macintosh. The Mac simply
has not made a mark in engineering applications.

The possibility of the PC acting as the host for the develop-
ment tools as well as the test equipment, suggests the possibility
of powerful development scenarios. Perhaps data gathered on
system activities could be analyzed by automatic debugging,
code generating and optimizing programs. Bugs could be found
and new code generated. Such expert systems, like language
translators, would only provide a rough first approximation; hu-
man processes would be required to complete the task.

Networking

A network contains one or more ‘‘file servers’” and multiple
“‘workstations.”’ The workstations are PC’s with plug-in local
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area network (LAN) cards, costing around $300, with a coax
or twisted-pair links forming a ‘‘bus’’ or ‘‘ring’’ arrangement.
Link speed is typically 10 Mbps.

One advantage is that mass storage is centralized in one pow-
erful and expensive system, the file server, with the worksta-
tions remaining modest, e.g., a PC/XT with one or no floppy
disk drive. The file server can be a PC /AT with 60-300 Mbytes
of hard disk storage. The network approach may be cheaper
than putting a hard drive in each system if such a configuration
is being considered.

New possibilities exist with networked environments: inter-
station file transfers, cooperative work, e-mail, teacher moni-
toring of network activities, connection to BITNET for
intercollege communications, etc. A dependency on the file-
server, however, means network activities may be halted or re-
stricted in the event of a break down.

CAD Tools

As mentioned earlier, various computer-aided design pack-
ages are available to expedite the drafting and documentation
of a design. Although many CAD tools are for the mechanical
or civil engineering disciplines, some are specifically geared for
electronic engineering. The two most common types are sche-
matic drawing software such as SCHEMA (Omation, Inc.,
Richardson, TX) and printed circuit board (PCB) layout soft-
ware such as snARTWORK (Wintek Corp., Lafayette, IN).
Although these programs have a long learning curve, the results
are impressive. Some schematic drawing programs produce files
which can be read by PCB programs to automatically generate
a layout.

CONCLUSION

The PC has been cited throughout this paper as a useful tool
for centralizing student activities in the microprocessor labo-
ratory. A good indication that the trend cited here is likely to
continue is that the IC and test equipment manufacturers, such
as Intel and Hewlett-Packard, now offer a selection of PC-hosted
products. Cross assemblers and in-circuit emulators, once only
available on expensive name-brand development systems, are
now available in PC-hosted versions, even from major manu-
facturers. There is a clear trend toward the use of the PC as the
host system in development environments incorporating a broad
range of inexpensive add-on products. For educators, therein
lies a unique opportunity to expand and enhance the instruc-
tional objectives in the microprocessor laboratory.
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