LetterWise: Prefix-based Disambiguation for
Mobile Text Input

. Scott MacKenzie', Hedy Kober?, Derek Smith®, Terry Jones’, and Eugene Skepnér

'Dept of Computer Science
York University

Dept. of Psychology
Columbia University

3Eatoni Ergonomics, Inc.
171 Madison Ave.

Toronto, ON, Canada New York, NY New York, NY
+1 416 736-2100 +1 212-854-3608 +1 212 725 9766
mack@yorku.ca hk384@columbia.edu {dsmith,terry,eu}@eatoni.com
ABSTRACT required.

A new technique to enter text using a mobile phone
keypad is described. For text input, the traditional touch-
tone phone keypad is ambiguous because each key
encodes three or four letters. Instead of using a stored
dictionary to guess the intended word, our technique uses
probabilities of letter sequences — “prefixes” — to guess
the intended letter. Compared to dictionary-based
methods, this technique, called etterWise takes
significantly less memory and allows entry of non-
dictionary words without switching to a special input
mode. We conducted a longitudinal study to compare
LetterWiseto Multitap, the conventional text entry method
for mobile phones. The experiment included 20
participants (10 LetterWise 10 Multitap), and each
entered phrases of text for 20 sessions of about 30 minutes
each. Error rates were similar between the techniques;
however, by the end of the experiment the mean entry
speed was 36% faster witletterWisethan withMultitap.

Keywords
Text entry, mobile phones, language modeling

INTRODUCTION

In December 2000, fifteen billion text messages were sent
using the standard 12-key mobile phone keypad. This
number is provided by the GSM World Association
(www.gsmworld.com) who also note that volumes are
doubling every six months. This is particularly
remarkable in view of the poor affordances of the mobile
phone keypad. Fifteen billion messages translates into
about one trillion keystrokes, assuming six words per
message and input via the conventional multitap technique
used on mobile phones. In this paper we present a new
technique for entering text using a mobile phone keypad
that approximately halves the number of keystrokes

Mobile Phone Keypad
Text entry on a mobile phone is based on the standard 12-
key telephone keypad (see Figure 1).

Figure 1. The standard 12-key telephone keypad

The 12-key keypad consists of number k&y& and two
additional keys { and#). The lettersa-z are spread
over keys2-9 in alphabetic order. ThePACEcharacter

is often assigned to ttiekey, but this varies depending on
the phone. As alphabet size is typically at least 26 letters,
three or four letters are grouped on each key, and, so,
ambiguity arises.

In the following sections we describe three methods for
working with this ambiguity. The firstMultitap, is the
established method for entering names into a mobile
phone’s address book. As a general purpose text input
method, however, it is slow, inefficient, and not well liked
by users [4]. The second is a dictionary-based method
with several commercial implementations. The third is a
new method we callLetterWise LetterWiseis a
linguistically optimized technique that is not dictionary-
based.

Multitap
With Multitap, the user presses each key one or more
times to specify the desired letter. For example2tkey

is pressed once for the leteertwice forb, three times for

c. Besides requiring multiple keystrokes for many letters,
Multitap requires a mechanism to segment consecutive
letters on the same key. An example is the wamd
because botb andn are on thes key. To enteon the
user presses three times, waits for the system to timeout,
and then presse8 twice more to enten. Another
approach is to press a special key to skip the timeout
(“timeout kill"), thus allowing direct entry of the next
character on the same key. Some phones use a
combination of the two solutions. For example, Nokia
phones implement a 1.5 second timeout and a timeout-kill
using the bowNARROWKey. The user decides which
strategy to use.

Dictionary-based Disambiguation

Another way to overcome ambiguity is to add a dictionary
to the system. One such technique is known as
dictionary-based disambiguationCommercial examples
include T9 by Tegic Communications (www.tegic.com),
eZiTextfrom Zi Corp. (www.zicorp.com), oiTAP from

the Lexicus division of Motorola
(www.motorola.com/lexicus).

With dictionary-based disambiguation, each key is
pressed only once. For example, to etiter, the user
enters8-4-3-0 TheO key, for SPACE delimits words

and terminates disambiguation of the preceding keys. The
key sequence8-4-3 has 3x3x3 = 27 possible
renderings (see Figure 1). The system compares the
possibilities to a dictionary of words to guess the intended
word.

Naturally, disambiguation is not perfect since multiple
words may have the same key sequence.
the most-probable word is the default. However, if the
desired word is not the most-probable, overhead is
incurred. For example, there are four words matching the
key sequence-2-5-3 From most-to-least probable,
the words and the required key sequences are

able 2-2-5-3-0

cake 2-2-5-3-N-0

bald 2-2-5-3-N-N-0

calf 2-2-5-3-N-N-N-0
If the user intendsalf , then three presses of a special
NEXT key are required to reach the correct response.
Clearly, “one key per letter” is an over simplification of
user interaction with dictionary-based entry methods.

Prefix-based Disambiguation

LetterWise was developed to avoid the problems just
noted. It works with a stored database of probabilities of
prefixes. A prefix is the letters preceding the current
keystroke. For example, if the user pressesgith prefix

th , the most likely next letter i because¢he in English

is far more probable than eithtad orthf .

In these cases

The most significant departure is thatterWisedoes not
use a dictionary of stored words. Instead, a priori analysis
of a dictionary is used to distill probability information
about letter sequences in the language. This allows
efficient entry of words and, unlike dictionary-based
approaches, generalizes to non-words.

LetterWiseoccasionally guesses the wrong letter, and in
these cases the user must press a speeiat key to
choose the next mostly likely letter for the given key and
context. This behaviour is examined in detail shortly.

The performance dfetterWiseimproves with the number

of preceding letters considered. LiatterWise improved
performance means fewer presses of NEXT key.
Increasing the number of preceding characters considered
also increases the memory footprint of the implementation
an important consideration for mobile devices.
Prefixes of length 3 were used in the experiment described
in this paper.

Letterwise databases store information on a selected
subset of prefixes. In practice, the memory requirements
vary from about 500 bytes to 9000 bytes. See [5] for
details.

Keystrokes Per Character (KSPC)

Keystrokes per characteK$PQ is a useful metric for
characterising overall text entry behaviolkSPCis the
number of keystrokes, on average, required to produce
each character using a given input method.

As a baseline, consid&SPC=1. This is a reasonable
measure for a Qwerty keyboard, because each letter has a
dedicated key.KSPC< 1 is possible, for example, with
word prediction techniques.KSPC> 1 is likely if the
keyboard has fewer keys than symbols in the target
language.

An extreme example d{SPC> 1 is text input using a 5-
button two-way pager. With these devices, the cursor is
maneuvered over letters using four arrow buttons and then
a letter is selected using tE®ITER button. If letters are
presented alphabetically in two rows, the effect is
KSPC=6.18. Bellman and MacKenzie [1] describe a
technique to reduce this KSPC= 4.03 by fluctuating the
layout after each keystroke to minimize the cursor
distance to the next letter.

Multitap, T9, and LetterWiseall haveKSPC> 1. 1t is
possible to compute th€SPC characteristic for a given
entry technique using a language corpus (see [8] for
details). For our investigations, we used the British
National Corpus (ftp:/ftp.itri.bton.ac.uk/bnc/). For
simplicity, we reduced the 90 million word corpus to a list
of approximately 65 thousand unique words and their
frequencies.

Table 1 compares thKSPC characteristic foMultitap,
LetterWise and dictionary-based disambiguation
techniques suchl9. The measures were computed

considering only the lettelaz and thesPACEcharacter.
Punctuation and other symbols are excluded. Although
important, such symbols, by and large, do not represent a
“point of differentiation” among the entry techniques
considered.

Table 1
Keystrokes Per Character
(KSPQ for Various Techniques

Technique KSPC
Multitap 2.0342
Dictionary-based disambiguation9) 1.0072
LetterWise 1.1500

& see text for important assumptions

At KSPC = 1.1500, LetterWise requires 43.5% fewer
keystrokes per character thistultitap.

The figure for dictionary-based disambiguation is quite
impressive at first glance. That it is so close to 1.0000
suggests that presses WEXT are relatively rare with
dictionary-based disambiguating methods. As noted by
Silfverberg et al. [11], only about 5% of words require the
NEXT function. The keystroke overhead reflected in the
KSPC figure (1.0072) is much less than 5% however,
since it is weighted by word frequency. Silfverberg et
al.’s figure is unweighted: it is an absolute measure of the
ratio of words requiring at least one press NEXT.
Importantly, their measure excludes the most probable
word in any ambiguous set (e.g., “able”, mentioned
earlier) because it is the default and is entered directly.

The apparently impressiviKSPC figure with T9 is
predicated on the rather generous assumption that users
only enter dictionary words. It is well known that text
messaging users employ a rich dialect of abbreviations,
slang, etc. [3] When confronted with non-dictionary
words, or when the user makes spelling or typing errors,
dictionary-based disambiguation fails completely, and the
user's only recourse is to switch to an alternate entry
mode, such adViultitap. LetterWise bears no such
assumptions, because it is not dictionary-based. We will
describe the behaviour dfetterWiseand T9 on non-
dictionary words later.

Presses of NEXT

In our implementatiorLetterWise prefixes do not cross
word boundaries. Thus, when entering the first letter of a
word, the prefix is empty. For the second letter, the prefix
has size one, and so on to the maximum prefix length. For
this reason, keystroke overhead occurs primarily at the
beginning of words. The probability of a letter appearing
correctly increases sharply with position within a word.

Normalizing for word frequency, 50.1% of all words can
be entered without ever pressing thiext key. Of the

remaining 49.9%, most pressesNaixT occur on the first
letter in a word, and, of these, usually just one press of
NEXT is needed. Once the user successfully enters the first
letter in a word, the need for pressesNekT is greatly
reduced (see Figure 2).

50 -
_ 40 4 O3 Presses of NEXT
E’\i 30 | W 2 Presses of NEXT
g 01 Press of NEXT
o
=

1 2 3 4 5 6 7 8 9
Position In Word

10

Figure 2. Press ofEXT vs. letter position in word

Non-Dictionary Words

Since LetterWiseis prefix-based, not dictionary-based, it
does not fail catastrophically when the user attempts to
enter a non-dictionary word, such as a proper noun,
abbreviation, or slang. The user can always succeed and,
the more the word resembles English, the fewer presses of
NEXT required. For example, the German word
"haltestelle” is entered in LetterWise as follows:

h altes telle
4N25837N83553

Even if the word does not resemble English, users can
always succeed in entering it. For exantpdikaido is
entered in_etterWiseas follows:

h ok k aid o
4AN65N5N243N6

There is no need to switch kbultitap mode to enter non-
dictionary words, as is the case wif® and other
dictionary-based methods.

Predicting Asymptotic Text Entry Rates

Soukoreff and MacKenzie [12] developed a model that

combines Fitts’ law and digram probabilities in a language

to predict asymptotic text entry rates for tapping on a soft
keyboard with a stylus. Silfverberg et al. [11] extended

the model to finger input on a mobile phone keypad using
various techniques. Table 2 reproduces Silverberg et al.’s
figures and adds an additional entry fetterWise

Table 2
Predicted Asymptotic Text Entry Rates (wpm)

Method Index finger Thumb
Multitap

- wait for timeout 22.5 20.8

- timeout kill 27.2 24.5
T9 4572 40.62
LetterWise 38.1 33.7

& see text for important assumptions

LetterWise’sposition is not surprising, given tH€SPC
values in Table 1. At 33-38 wpm, the predicted entry
rates forLetterWiserates are lower than those f®8,
however, they do not carry similar assumptions with
respect to ambiguous words or non-dictionary words.

Phrase Set

One of the first steps in designing an empirical evaluation
is constructing a set of phrases to be entered. Our phrase
set was created manually. We began with MacKenzie and
Zhang's [9] set of 70 phrases and expanded it to 500
phrases. The goal was to construct phrases that were of
moderate length, easy to remember, and with letter
frequencies typical of English. The phrases included only
letters and spaces. Figure 3 gives the main characteristics
of the phrase set. The letter frequencies were tested
against a standard reference [10]. The high correlation (
= .9541) indicates the phrase set was representative of
English.

500
28.6 (16/4B)
2711 (1163)

Number of phrases

Average phrase length (min / max)
Number of words (unique words)
Average word length (min / max) 4.45 (1/13)
Letter correlation with English r=.9541

Figure 3. Characteristics of phrase set

With this background, we now present our empirical
evaluation ofLetterWise We usedVultitap as the point
of comparison.

METHOD

Participants

Twenty participants volunteered for the experiment. They

were recruited based on contacts within two university

communities. Participants were paid an hourly rate, plus a
bonus upon completion.

We used a between-subjects design and randomly
assigned participants to either thetterWiseor Multitap
condition, ten subjects per condition. A within-subjects
design was considered, but not employed because of the
potential for interference between the cognitive and motor
skills needed for each technique.

Apparatus

Hardware

The experiment was conducted on computer systems
running Mandrake'€NU/Linuxversion 7.2. Output was
viewed on a 19" colour monitor. Text entry was
performed using a PC ConcepiB-5640numeric keypad
with standard 19 mm keys re-labeled to match the letter
and number assignments typical of mobile phone keypads
(see Figure 4). Participants pressed keys using a
technique of their choosing, typically using the index
finger of the right (preferred) hand. The keypad was
either held in their left hand or positioned on the desk, as
desired by each participant.

Figure 4. Keypad used in the experiment

Software

Our experimental software and analysis routines were
developed in C, C++, Python, Perl, and Java. Figure 5
shows the interface.

LM N (=18 BN

[
[‘.'I-L'l.'.l'l'l:-i deserve more redress

|'-".-.".i:L-s. deserve mof

| Multitup
0| abe | def
gi | jk | mno
pgs | v | waye
SEACE | | HEXT

Figure 5. Screen shot of the experimental software

Procedure

Participants entered short phrases of text presented to
them on the display. The instructions were brief, with the

intent to simulate one or two screens of text on a mobile

phone.

LetterWiseinstructions: When typing, press the key with
the letter you want. Most probably, the letter you intend
will appear. If it does not, press thexT key repeatedly
until the right letter appears.

Multitap instructions: When typing, press the key with the
letter you want. Press the key repeatedly until the letter
appears. (Example: on the 2 key, press once,fottwice

for b, three times forc.) If the same key is needed for
two consecutive letters, such lag in bat , then enteb,
press the'exT key, and then enter.

Some additional instructions were given on the operation
of the software, the treatment of errors, and the need to
press thenexT key at the end of a phrase to bring up the

next phrase.

A beep was sounded if the software detected a keystroke
error. In this case, participants had to adjust subsequent
keystrokes to correct the error and regain synchronization
with the presented text. With this procedure, the final
product was error-free. Therefore, our error analyses are
of keystroke errors, rather than character errors.

Participants were also told to rest at their discretion
between phrases, but to proceed expeditiously through a
phrase once the first character was entered.

Design

Participants performed twenty sessions of about 25-30

minutes each. Participants signed up for 1-hour

appointments, and thus completed two sessions per
appointment, with about a 5-minute rest in between.

Appointments were booked on consecutive days (with

occasional gaps of two days for weekends), with as many
as two appointments per day, provided appointments were
separated by at least one hour. This was done to ensure
adequate rest.

The experiment was a x220 factorial design. “Entry
method” was a between-subjects factbet{erWisevs.
Multitap), and “Session” was a within-subjects factor (1,
2,3...20).

RESULTS

Data Summary

The files collected for 20 participants tested over 20
sessions of 25-30 minutes contained about 16 MB of raw
data. These contained keystroke-level data for 23,709
phrases, totaling 1,076,676 keystrokes of input.

Entry Speed

The means for session one were 7.3 wpm and 7.2 wpm for
LetterWiseandMultitap, respectively. Improvement with
practice was readily seen with both methods. On tie 20
session entry speeds were 21.0 wpm and 15.5 wpm for
LetterWise and Multitap, respectively. Thus, although
LetterWisewas only marginally faster initially

30 +
: y = 7.1429x°34°
LetterWise R2 - 0.9927
254 ----- Multitap .
E 20
o
= R
8 15 -
& y = 7.0997x%%4°
g o R? = 0.9805
2 10
5 i
0 T

1 3 5 7 9 11 13 15 17 19

21 23 25 27 29 31 33 35 37 39

Session

Figure 6. Entry speed (wpm) by entry method and session

(1.1%), the spread increased to 36.3% by the end of the
experiment (see Figure 6).

An analysis of variance indicated significant main effects
for entry methodK; 15 = 4.33,p = .05) and sessioffr{g 34>

= 58.52,p < .0001), and a significant entry method by
session interactionFgg 34, = 8.74,p = .0005). These
effects are seen in Figure 6.

The improvement with practice is further illustrated in the
trend lines and prediction equations in Figure 6. These
were computed through a least squares fit using the
conventional power law of learning (see [1, 9] for

examples). The following models resulted:

LetterWise y = 7.1429%%%%° R? = 9927

Multitap: y = 7.0997x %% R? = .9805

wherey is the predicted entry speed in “words per minute”
and x is the number of 30-minute sessions. An
extrapolation to the 4Dsession is shown in the figure.
The highR? values imply that the fitted models provide a
very good prediction of user behaviour. In both cases
over 98% of the variance is accounted for in the models.
For both entry methods the observed and predicted entry
speeds are well below the speeds predicted in Table 2,
suggesting there is plenty of room forprovement with
practice.

Error Rates

The grand mean for error rate was 5.2% (see Figure 7).
Overall, the error rates were slightly higher f@tterWise
than for Multitap; however an ANOVA revealed that the
differences by entry method were not statistically
significant €115 = 0.384, ns). There was also no
statistical significance for the session main effée§ 4,=
1,692, p > .05) or for the entry method by session
interaction Fi634,= .653, ns).

Error Rate (%)
D

—o0— LetterWise
—— Multitap

o T T T T T T T T T T T
1 3 5 7 9 11
Session

Figure 7. Errors rates (%) by entry method and session

13 15 17 19

DISCUSSION

Skill Acquisition

Our analyses and observations suggest that learning is
divided into three phases:

Discovery phase In this phase, speed of entry is
dominated by users’ familiarity with convention, such as
alphabetic ordering. It appears that this phase lasts only a
few hundred keystrokes.

Motor reflex acquisition phase This phase begins after
the discovery phase and lasts for thousands of keystrokes.
During this phase, speed of input increases
logarithmically. Participants in the present experiment
performed about 50,000 keystrokes each over the 20
sessions of data entry. Learning was continuing, even at
the end of the experiment (see Figure 6). On a log-log
plot (not shown), it is more clearly seen that learning
continues in the usual power-law fashion [1, 9].

Terminal (Fitts’ law) phase. For advanced experts, all
reflexes are learned, and entry speed is determined by
keypad geometry and the frequency with which pairs of
keys are operated in succession. Fitts’ law pertains to this
advanced stage of learning [11, 13]. At this stage, all
functions of all keys are known perfectly well, and entry
time is purely a function of motor constraints in the
interface. Although such behaviour is unlikely to ever
take hold fully, the approximations afforded from Fitts’
law analyses represent a useful point in the interaction
space — an asymptote toward which experts progress.

In comparison with the Fitts’ law predictions in Table 1
for Multitap (index finger, timeout kill) and etterWise

our participants are well short of reaching their expected
asymptotic rates. Fadvlultitap, the session 20 mean of
15.5 wpm is 56.8% of the expert prediction of 27.2 wpm.
Simarily for LetterWise the session 20 mean of 21.0 wpm
is 55.1% of the predicted asymptotic rate of 38.1 wpm.

Components of Character Entry Time
In this section we present more-detailed analyses of users’
interaction withMultitap andLetterWise

To operateMultitap successfully, the user must discover
the following processes for entering letters:

Find - locate the key for the desired letter, and press it.

Adjust - if the desired letter does not appear, press the
key again until it does.

Timeout kill - if the same key is required for consecutive
letters, press a timeout-kill button between the letters.

To operatd etterWisethe process is a bit simpler:
Find - locate the key for the desired letter, and press it.

Adjust - If the desired letter does not appear, press the
NEXT key until it does.

Separate analyses of these components are presented
below.

Finding a Key

The time to find a keytr, was defined operationally as
the time from the last keystroke of one character to the
first correct keystroke of the next character. One simple
hypothesis for this component of character entry time is
that novices find letters by visually scanning the keys
sequentially. This should diminish with practice, with just
motor constraints remaining.

There is no reason to suspect any differende lietween
Multitap andLetterWise In fact this was the casé: was
essentially the same for both techniques, starting at about
1500 ms for session 1 and improving to about 550 ms on
session 20.

Adjust Time and Timeout Kill

The time to adjustty, was defined operationally as the
time from the first correct keystroke for a character until
the character was actually obtained through presses of the
same key Nlultitap), or presses of theNexT key
(LetterWisé. In many caset, was zero as no adjustment
was necessary.

Timeout kill time, tx, is simply the time from the
keystroke that produced the correct character to correctly
pressing the timeout kill key, if neededty is only
required inMultitap mode.

The separate effects fafandtx are shown in Figure 8 for

600 -

500 -

Time (ms)
w B
o o
o o
| |

N

o

o
I

100 -

o T T T T T T T T T

LetterWise(bottom line) andVultitap (top two lines). It

is seen that, for LetterWise(bottom line) decreases with
practice, starting initially at about 250 ms and dropping
steadily to 100 ms by session 20. Improvement continues
to the end of the experiment. The values are small
throughout, and this is because the figure is an average
over all characters entered. WitletterWise86% of
characters are entered without an adjustment;ti.e.0

86% of the time.

For Multitap (top two lines), the situation is different.
Time to adjustt,, starts off at about 340 ms, improves to
260 ms by session 5, and then remains the same thereafter.
Thus, participants quickly learn the requisite behaviour
for “multi-tapping”, but the motor component remains
and is fixed following this initial period of learning —
about 2.5 hours in our experiment. The multi-tapping
behaviour is required at least once for about 56% of all
characters. Figure 8 suggests that multi-tapping adds on
average 260 ms to character entry time.

Timeout kill time, tx, with Multitap is shown as an
additive component of character entry time in Figure 8. It
adds about 150 ms to the character entry time initially, but
drops to about 60 ms by session 7. Only slight
improvement appears thereafter. Again, the value is small
because it is an average over all characters entered.
Timeout Kill is only needed about 8% of the time with
Multitap.

—O— Multitap: tA + tK
—— Multitap: tA
—o— LetterWise: tA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Session

Figure 8. Time to adjust,) and timeout kill {x) processes as a function of practiceNutitap
(top two lines) and etterWiseg(bottom line) (Note: Timeout kill is only required fistultitap)

A timeout kill in Multitap is in some sense similar to a
press of theNexT key in LetterWise Both are required
infrequently, and, in these experiments, both are
accomplished using the same key — the # key on the
standard telephone keypad.

Components of Character Entry Time for T9

To include dictionary-based entry methods in our
analyses, we need to identify the components of character
entry time, as just done fa¥lultitap and LetterWise
Importantly, the behaviour for ambiguous words and non-
dictionary words must be included. Our observations with
severalT9-equipped mobile phones suggest the following
components:

Find - locate the key for the desired letter and press it;
continue for each letter in the word.

Adjust - at the end of the word, if the intended word does
not appear, then

() press theiext key until the intended word appears,
or the originally displayed word re-appears, then

(b) if the intended word failed to appear, enter the word
usingMultitap.

For T9, the Adjust phase is complex and the strategy to
adjust depends on many factors. For one, note that the
adjustment occurs at the end of a word, rather than after
each letter. Indeed, a “leap of faith” is expected during
word entry because the display is unstable and often
fluctuates unpredictably. As an example, consider the
word “golf ”, as entered inf9%mode on a Nokia 3210
mobile phone. Figure 9, reading top to bottom, illustrates
the required keystrokes and the displayed output at each
keystroke.

Keystroke Display Comment
4 [wrong first letter
6 in still wrong
5 ink still wrong
3 hold wrong word appears
* hole adjust - wrong word
* gold adjust - wrong word
* golf adjust - correct word
0 golf accept word

Figure 9. Entering “golf ” inf9-mode on a
Nokia 3210 mobile phone (‘0" is tr&PACEkey)

The interaction illustrated in Figure 9 is more complex

than suggested by a simple keystroke count. Perceptual
and cognitive processes are clearly at work as the user
considers the system’s response to each keystroke. At

each keystroke where a response is considered, about 190-
260 ms is added to visually perceive and process the
choice [7]. If the intended word ultimately does not
appeatr, then the interaction is even more complex.

To examine the performance cost of interaction in the
presence of non-dictionary words, we undertook a
parametric analysis based on our data. We first obtained
the observed entry time for each word in our phrase set at
each stage of learning. Recall that our phrase set had
2711 words, of which 1163 were unique (see Figure 3).
We extracted the entry time for each word considering
only the time to find each letter in the wotd, Time to
adjust or timeout kill time was ignored; thus, the time
should be a reasonable approximation offtBentry time
because it is based on only one keystroke per letter.

To accurately model typing and spelling errors, we took
the typing and spelling errors from thdultitap user
study, and mimicked the behaviour of th&9
implementation in the Nokia 3210. ThisT9
implementation attempts to notify the user when a typing
or spelling error occurs by beeping when the input does
not match any prefix in the dictionary. The beep generally
occurs near the end of the word, regardless of where in the
word the error occurred. Hearing the beep, the simulated
user backspaced to the error (at expert speeds — again
favorable toT9), corrected the error, and continued.

Our next assumption was that the underlying dictionary
contained the vocabulary of our phrase set. Thus, we
obtained novice-to-expert predictions under the
“all words in dictionary” assumption.

We then removed words from the dictionary in stages,
leaving .95, .90, .85, then .80 of the words in the
dictionary. Then, we modeled user input withwith the
removed words entered as non-dictionary words.
time to enter these words was approximated a$%@hine
plus theMultitap time. This is reasonable, since users of
T9-equipped phones do not have a priori knowledge of
whether or not words are in the phone’s dictionary. They
must enter a word first, then, discovering that it is not in
the dictionary, they must re-enter the wordNMltitap
mode.

The

Our analysis is generous f® in several ways. First,
words were removed at each stage systematically, starting
with the least-probable entries. As well, we ignored the
time for the user to consider and cycle through the
alternatives in sets of ambiguous words. The results are
shown in Figure 10.

The top line in the figure is the ideal situation where all
words entered are in the dictionary. As a reality check,

note that the figures for session 1 (9.3 wpm) and session users and 20.4 wpm for expd@@ users. In their study, all
20 (21.7 wpm) are very close to the figures cited by James words entered were in the dictionary, so the appropriate

and Reischel [6]. They reported 9.09 wpm for novii®e comparison is with the top line in Figure 10.
25 -
1.00
20 4 0.95
_ 0.90
£ 0.85
2 15 - 0.80
©
()
()
Q.
2 10
c
L
5 |
0 T T T T T T T T T T T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Session

Figure 10. Simulate@9 analysis for non-dictionary words. Lines show
T9 performance with decreasing ratios of words in dictionary

25 -

1S
o
2
©
o)
o)
[oR
N
>
c
w —O— LetterWise
5 4 —0—T9

—O— Multitap

0 T 7T @/ T ‘T T ‘T v——Tv— T — 17— 1T/ '"//—/——"1"T////—"1T T /T /1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Session

Figure 11. Comparison of entry rates (wpm) with practice.éterWiseT9, andMultitap. (Note:
LetterWiseandMultitap figure are from Figure 6. Simulated T9 figures are from Figure 10 with
0.85 frequency of words in dictionary)

The other lines in Figure 10 represent various dictionary words. The dashed line labeled “0.85”
degradations in performance in the presence of non- represents entry wherein 15% of the user’s words are not

in the dictionary. In this case, the performance WRhs
about the same as fbtultitap (see Figure 11).

If the user is predisposed to use an even higher proportion
of non-dictionary words, performance is further degraded,
and is well below that foMultitap. Of course, at some
point users will simply give-up in frustration, and work
exclusively in the alternate entry mode. This was
observed with at least some participants in Grinter and
Eldridge’s study with teenagers [3]. If the title of their
study is any indication —y do tngrs luv 2 txt msg?- a
high frequency of non-dictionary words is common, a
phenomenon of text messaging they call “evolving
language”. As another example, a collection of text from
the 1988 Wall Street Journal containing 20,691,239
words was found to contain not only 8,633,941 ambiguous
words, but also 4,007,375 words which were not in
Webster’s seventh dictionary [2].

MULTILINGUAL INPUT

Languages throughout the world are currentlgpsuited

in various forms in mobile computing, and this will
continue. While the focus in the present paper is on
English, the discussions apply to other languages,
particularly those based on alphabets. Databases for
LetterWiseare presently available for 35 languages, with
databases for other languages under development. See
www.eatoni.com for details.

CONCLUSION

We have demonstrated prefix-based disambiguation to be
an efficient means for text entry on keypad-based devices
such as mobile phones. Keystroke count is reduced by
close to 50% in comparison Multitap, and entry rate is
higher by about 36% after ten hours of use. Furthermore,
the technique is not limited to the entry of words in a
stored database, as with dictionary-based entry methods.
A simulated comparison witf'9 shows that_etterWise
and T9 have similar entry speeds when all words are in
T9's dictionary, but when as few as 15% of the least
common words are missing9's speed is similar to that

of Multitap, and about 30% slower thaetterWise

REFERENCES
1. Bellman, T., and MacKenzie, I. S. A probabilistic
character layout strategy for mobile text entry,

Proceedings of Graphics Interface ‘9Boronto: Canadian
Information Processing Society, 1998, 168-176.

2. Davis, J. R. Let your fingers do the spelling:

Disambiguating words spelled with the telephone keypad,
Avios JournaBb (1991), 57-66.

3. Grinter, R. E., and Eldridge, M. A. Y do tngrs luv 2 txt
msg? To appear inProceedings of the European
Conference on Computer Supported Cooperative Work -
ECSCW 2001.Amsterdam: Kluwer Academic Press,
2001.

4. Guernsey, L. Playing taps on the cell phdNew York
Times (2000, October 12), D9.

5. Gutowitz, H. Patent No. 6,219,731, Method and
apparatus for improved multi-tap text input. Eatoni
Ergonomics, Inc. (2001).

6. James, C. L., and Reischel, K. M. Text input for mobile
devices: Comparing model predictions to actual
performance,Proceedings of the ACM Conference on
Human Factors in Computing Systems - CHI 200&éw
York: ACM, 2001, 365-371.

7. Keele, S. W., and Posner, M. I. Processing of visual
feedback in rapid movementdpurnal of Experimental
Psychologyr7 (1968), 155-158.

8. MacKenzie, . SKSPC (keystrokes per character) as a
characteristic of text entry technigyeSubmitted for
publication. 2001.

9. MacKenzie, I. S., and Zhang, S. X. The design and
evaluation of a high-performance soft keyboard,
Proceedings of the ACM Conference on Human Factors
in Computing Systems - CHI ‘99ew York: ACM, 1999,
25-31.

10. Mayzner, M. S., and Tresselt, M. E. Table of single-
letter and digram frequency counts for various word-
length and letter-position combination®sychonomic
Monograph Supplements(1965), 13-32.

11. Silfverberg, M., MacKenzie, I. S., and Korhonen, P.
Predicting text entry speed on mobile phones,
Proceedings of the ACM Conference on Human Factors
in Computing Systems - CHI 2000ew York: ACM,
2000, 9-16.

12. Soukoreff, W., and MacKenzie, I. S. Theoretical
upper and lower bounds on typing speeds using a stylus
and soft keyboardBehaviour & Information Technology

14 (1995), 370-379.

13. Zhai, S., Hunter, M., and Smith, B. A. The Metropolis
keyboard: An exploration of quantitative techniques for
graphical keyboard desigrRroceedings of the ACM
Symposium on User Interface Software and Technology -
UIST 2000 New York: ACM, 2000, 119-128.

