{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Input" 2 19 "" 0 1 255 0 0 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 1 16 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Ti mes" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "Maple Output" -1 12 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Plot " -1 13 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 } 3 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT 256 13 "Heat Equation" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 187 "A derivation is \+ given in the notes (jpg-files in the folder). We follow David Betounes : Partial Differential Equations for Computational Science, Springer V erlag 1997, ISBN 0-387-98300-7." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 176 "We begin with a one-dimensional example. (Example 2.2 in the book). A thin rod lies on the x-axis from 0 to 1 ( appropriate units are chosen to make the equation dimensionless). " }} {PARA 0 "" 0 "" {TEXT -1 65 "At time zero the rod is at zero temperatu re (inital condition). " }{TEXT 19 10 "u(x,0) = 0" }{TEXT -1 1 "." }} {PARA 0 "" 0 "" {TEXT -1 158 "On the left boundary the rod is kept at \+ zero temperature by a heat bath (make it zero Celsius to avoid trouble with physics, zero Kelvin are not reachable!). " }}{PARA 0 "" 0 "" {TEXT 19 10 "u(0,t) = 0" }{TEXT -1 6 " for " }{TEXT 19 5 "t > 0" }} {PARA 0 "" 0 "" {TEXT -1 101 "On the right boundary the rod is insulat ed, i.e., no flow of heat across this boundary is permitted. " }{TEXT 19 28 "diff(u(x,t),x)[@x=1,t>0] = 0" }{TEXT -1 28 " (this is not Maple syntax!)" }}{PARA 0 "" 0 "" {TEXT -1 172 "The heat equation contains \+ a source term, i.e., it is not homogeneous. The inhomogeneity is chose n as a constant, i.e., heat is being generated in all locations of the rod " }{TEXT 19 9 "0 < x < 1" }{TEXT -1 9 " (not at " }{TEXT 19 5 "x \+ = 0" }{TEXT -1 2 ")." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 96 "The heat equation has a steady-state solution, i.e., a \+ solution that is being reached for large " }{TEXT 19 1 "t" }{TEXT -1 38 ". For this to be possible, a solution " }{TEXT 19 6 "u(x,t)" } {TEXT -1 127 " has to be found with vanishing time derivative in the l imit of large time. This function will depend on the position variable " }{TEXT 19 1 "x" }{TEXT -1 6 " only." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "HEq:=diff(u(x,t),t) = diff(u(x,t),x$2) + 1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$HEqG/-%%diffG6$-%\"uG6$%\"xG%\"tGF-,&-F'6$F)-%\"$G6$ F,\"\"#\"\"\"F5F5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 46 "In order to \+ express the boundary condition at " }{TEXT 19 3 "x=1" }{TEXT -1 31 " w e have to understand how the " }{TEXT 19 1 "D" }{TEXT -1 50 " operator works on functions of several variables:" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 28 "BC:=u(0,t)=0,D[1](u)(1,t)=0;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#BCG6$/-%\"uG6$\"\"!%\"tGF*/--&%\"DG6#\"\"\"6#F(6$F2F +F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "IC:=u(x,0)=0;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#ICG/-%\"uG6$%\"xG\"\"!F*" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "sol:=pdsolve(\{HEq,BC,IC\},u (x,t));" }{TEXT -1 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$solG<#/-% \"uG6$%\"xG%\"tG,,**%$_C1G\"\"\"%$_C3GF/-%$expG6#*&&%#_cG6#F/F/F+F/F/- F26#*&F5#F/\"\"#F*F/F/F/**F0F/F1F/%$_C2GF/F8!\"\"F/*&FF/F*F/F?*&F.F?F0F/F?" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 138 "It seem s as if Maple has not found a unique solution. Four constants appear i n the answer. Is it possible that many solutions truly exist?" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 141 "Let us e xtract the steady state solution by solving the ordinary differential \+ equation that follows from setting the time derivative to zero." }} {PARA 0 "" 0 "" {TEXT -1 38 "Let us call the steady-state solution " } {TEXT 19 4 "w(x)" }{TEXT -1 1 ":" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "DE:=diff(w(x),x$2)+1=0;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#DEG/,&-%%diffG6$-%\"wG6#%\"xG-%\"$G6$F-\"\"#\"\"\"F2F2\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "BCode:=w(0)=0,D(w)(1)=0; " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&BCodeG6$/-%\"wG6#\"\"!F*/--%\"D G6#F(6#\"\"\"F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "solDE:=d solve(\{DE,BCode\});" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&solDEG/-%\" wG6#%\"xG,&*&#\"\"\"\"\"#F-*$)F)F.F-F-!\"\"F)F-" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 24 "plot(rhs(solDE),x=0..1);" }}{PARA 13 "" 1 "" {GLPLOT2D 810 151 151 {PLOTDATA 2 "6%-%'CURVESG6$7S7$$\"\"!F)F(7$$\"3e mmm;arz@!#>$\"3w%Ry,iff:#F-7$$\"3[LL$e9ui2%F-$\"3O(Qt74%>$*RF-7$$\"3nm mm\"z_\"4iF-$\"3qc`r**[Q;gF-7$$\"3[mmmT&phN)F-$\"3-y7i%pTq+)F-7$$\"3CL Le*=)H\\5!#=$\"3a->]]&oC%**F-7$$\"3gmm\"z/3uC\"FB$\"3=.j,1ngp6FB7$$\"3 %)***\\7LRDX\"FB$\"3!**e3e!e/Z8FB7$$\"3]mm\"zR'ok;FB$\"35Giudt7E:FB7$$ \"3w***\\i5`h(=FB$\"3pBaM#eb,q\"FB7$$\"3WLLL3En$4#FB$\"3?o!*ye$*\\u=FB 7$$\"3qmm;/RE&G#FB$\"3!HJ#e[B9C?FB7$$\"3\")*****\\K]4]#FB$\"3s>Tf)p7#) =#FB7$$\"3$******\\PAvr#FB$\"3'zro?)fF[BFB7$$\"3)******\\nHi#HFB$\"3qp uXp')3)\\#FB7$$\"3jmm\"z*ev:JFB$\"3yTl9d\"f.j#FB7$$\"3?LLL347TLFB$\"3= D#G@YmHy#FB7$$\"3,LLLLY.KNFB$\"3aE+y+7F3HFB7$$\"3w***\\7o7Tv$FB$\"3u'* Q2!eW%\\IFB7$$\"3'GLLLQ*o]RFB$\"3E(>aJ0#HqJFB7$$\"3A++D\"=lj;%FB$\"3'H Qt+CN%)H$FB7$$\"31++vV&R`NWW`$FB7$$\"3GLLeR\"3Gy%FB$\"3J/,eaa/ROFB7$$\"3cmm;/T1&*\\FB$\"3e\\ *HR$3`ZPFB7$$\"3&em;zRQb@&FB$\"3%*3&4*ejWbQFB7$$\"3\\***\\(=>Y2aFB$\"3 _GMh)pHa%RFB7$$\"39mm;zXu9cFB$\"3m#f-Zuw%QSFB7$$\"3l******\\y))GeFB$\" 3Q=hgr64ITFB7$$\"3'*)***\\i_QQgFB$\"3-S6eL/G:UFB7$$\"3@***\\7y%3TiFB$ \"3Y\"[7*=y_$H%FB7$$\"35****\\P![hY'FB$\"3QWnN:XfvVFB7$$\"3kKLL$Qx$omF B$\"3bdd+PX,XWFB7$$\"3!)*****\\P+V)oFB$\"3pU(QBz?Y^%FB7$$\"3?mm\"zpe*z qFB$\"3UtjqRzmtXFB7$$\"3%)*****\\#\\'QH(FB$\"3WPFzZ;%Qj%FB7$$\"3GKLe9S 8&\\(FB$\"3cH^v>BG'o%FB7$$\"3R***\\i?=bq(FB$\"38*[2\\mnnt%FB7$$\"3\"HL L$3s?6zFB$\"3ioSnLs%=y%FB7$$\"3a***\\7`Wl7)FB$\"3*e`I.B3X#[FB7$$\"3#pm mm'*RRL)FB$\"3!pYm#)>77'[FB7$$\"3Qmm;a<.Y&)FB$\"3#pT0q\"))H%*[FB7$$\"3 =LLe9tOc()FB$\"3Jm\")=())oE#\\FB7$$\"3u******\\Qk\\*)FB$\"3/fy!zfP[%\\ FB7$$\"3CLL$3dg6<*FB$\"3!R$H.g7ll\\FB7$$\"3ImmmmxGp$*FB$\"3#R=OR55,)\\ FB7$$\"3A++D\"oK0e*FB$\"3CM]UeB?\"*\\FB7$$\"3A++v=5s#y*FB$\"3I[`@#\\Rw *\\FB7$$\"\"\"F)$\"3++++++++]FB-%'COLOURG6&%$RGBG$\"#5!\"\"F(F(-%+AXES LABELSG6$Q\"x6\"Q!Fa[l-%%VIEWG6$;F(Fbz%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 61 "The heat equation is supposed to describe the evolut ion from " }{TEXT 19 8 "u(x,0)=0" }{TEXT -1 9 " towards " }{TEXT 19 18 "u(x,infinity)=w(x)" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 177 "Note how the boundary conditions are satisified (prescribed tempe rature value on the left, and zero derivative on the right). These con ditions have to be satisfied at all times." }}{PARA 0 "" 0 "" {TEXT -1 201 "The equation is usually solved by the separation of variables \+ method. Before we do that let us look at the solution generated by map le. Without the boundary conditions the following answer is obtained: " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "sol:=pdsolve(HEq);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$solG-%'&whereG6$/-%\"uG6$%\"xG%\"tG ,&*&-%$_F1G6#F,\"\"\"-%$_F2G6#F-F3F3*&,(*(\"\"#!\"\"%$_C1GF3F,F:F3*&%$ _C2GF3F,F3F3%$_C3GF3F3F " 0 "" {MPLTEXT 1 0 47 "solHEq:=subs( _C1=1,_C2=1,_C3=0,rhs(op(1,sol)));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# >%'solHEqG,(*&-%$_F1G6#%\"xG\"\"\"-%$_F2G6#%\"tGF+F+*&\"\"#!\"\"F*F1F2 F*F2" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 128 "The heat equation admits a solution of the form where the transient part is expressed as a pro duct of one-dimensional functions " }{TEXT 19 11 "F1(x)*F2(t)" }{TEXT -1 77 ". The two functions satisfy simple ordinary differential equati ons listed in " }{TEXT 19 3 "sol" }{TEXT -1 1 "." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "eq1:=diff(F2(t),t)=c1*F2(t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq1G/-%%diffG6$-%#F2G6#%\"tGF,*&%#c1G\"\"\"F)F/ " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "eq2:=diff(F1(x),x$2)=c1 *F1(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq2G/-%%diffG6$-%#F1G6#% \"xG-%\"$G6$F,\"\"#*&%#c1G\"\"\"F)F3" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "sol_x:=dsolve(\{eq2,F1(0)=0,D(F1)(1)=0\},F1(x));" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%&sol_xG/-%#F1G6#%\"xG\"\"!" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 68 "We are not interested in the trivi al solution, so what do we do now?" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "sol_x:=dsolve(\{eq2,F1(0)=0\},F1(x));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&sol_xG/-%#F1G6#%\"xG,&*&%$_C2G\"\"\"-%$expG6#*& %#c1G#F-\"\"#F)F-F-!\"\"*&F,F--F/6#,$F1F5F-F-" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 131 "Somehow we will have to find acceptable solutions (de rivative to vanish on the right-hand boundary) by choosing c1 rather t han _C2." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "sol_x1:=subs(_C 2=1,rhs(sol_x));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'sol_x1G,&-%$exp G6#*&%#c1G#\"\"\"\"\"#%\"xGF,!\"\"-F'6#,$F)F/F," }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 40 "plot(subs(x=1,diff(sol_x1,x)),c1=0..50);" }} {PARA 13 "" 1 "" {GLPLOT2D 846 231 231 {PLOTDATA 2 "6%-%'CURVESG6$7S7$ $\"\"!F)F(7$$\"3SLLL3x&)*3\"!#<$!3wgP*4_dGL$F-7$$\"3zmm\"H2P\"Q?F-$!3W m2BVO+%H'F-7$$\"3XLL$eRwX5$F-$!3eJ.F]\\Uc5!#;7$$\"3=ML$3x%3yTF-$!3W()o `px\"[g\"F:7$$\"3gmm\"z%4\\Y_F-$!3o7zj\\.C'G#F:7$$\"34LLeR-/PiF-$!3G$Q `'4w8bIF:7$$\"3;++DcmpisF-$!3GK)*QEu&z+%F:7$$\"3vLLe*)>VB$)F-$!3+1rF.D a\"=&F:7$$\"3o++DJbw!Q*F-$!3_@4=a8([c'F:7$$\"3%ommTIOo/\"F:$!3P(f_>w4p B)F:7$$\"3^LL3_>jU6F:$!3uZz_S(zC%**F:7$$\"3E++]i^Z]7F:$!3'Gg4NTN_@\"!# :7$$\"3/++](=h(e8F:$!3Q8m^tAMr9Fbo7$$\"3A++]P[6j9F:$!3%H\\LrU!4aF:$!3-NGjn!o_y$Fbo7$$\"3M+]i!f#=$3#F:$!3Y6n!zA-9Q%Fbo7$$\"37+](= xpe=#F:$!3NU+si&eb,&Fbo7$$\"3-nm\"H28IH#F:$!3YzA85Xo_dFbo7$$\"3%om\"zp SS\"R#F:$!3$3_$)**f^L]'Fbo7$$\"3cLL3_?`(\\#F:$!3oteNf^/*R(Fbo7$$\"3fL$ e*)>pxg#F:$!3RL\"3=GS?V)Fbo7$$\"3D+]Pf4t.FF:$!3e&f!)[WONU*Fbo7$$\"3ZLL e*Gst!GF:$!37qADS\\()f5!#97$$\"39+++DRW9HF:$!3kgT#Q')yN>\"F^t7$$\"3:++ DJE>>IF:$!3Zy\"yF!GXP8F^t7$$\"35+]i!RU07$F:$!3k-KN+1%**[\"F^t7$$\"3$)* **\\(=S2LKF:$!3#fS.6/zdn\"F^t7$$\"3nmmm\"p)=MLF:$!3)RVk!y9ve=F^t7$$\"3 U++](=]@W$F:$!3gHo&)348s?F^t7$$\"36L$e*[$z*RNF:$!31\"oohMTFG#F^t7$$\"3 e++]iC$pk$F:$!3,gB2hf;LDF^t7$$\"3Sm;H2qcZPF:$!3a$***e*3=%*y#F^t7$$\"3Y +]7.\"fF&QF:$!3-fD(f8/-3$F^t7$$\"3amm;/OgbRF:$!3-'[6DWn()Q$F^t7$$\"3I+ ]ilAFjSF:$!3*)3h:82ORPF^t7$$\"3)RLLL)*pp;%F:$!31#p@vKdb5%F^t7$$\"3WLL3 xe,tUF:$!3CDSgp806XF^t7$$\"3Wn;HdO=yVF:$!3U5pw,LIY\\F^t7$$\"3a+++D>#[Z %F:$!3C^$Gv;#Gx`F^t7$$\"3)om;aG!e&e%F:$!3K2\\kr.D5fF^t7$$\"3wLLL$)Qk%o %F:$!3Cj![\\rmXU'F^t7$$\"3m+]iSjE!z%F:$!3\"*=F*>4)o9qF^t7$$\"3u+]P40O \"*[F:$!3=[E\"H:jCi(F^t7$$\"#]F)$!3tn#))Q%Q^D$)F^t-%'COLOURG6&%$RGBG$ \"#5!\"\"F(F(-%+AXESLABELSG6$Q#c16\"Q!Fc[l-%%VIEWG6$;F(Fdz%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "This shows that positive values of " }{TEXT 19 2 "c1" }{TEXT -1 88 " won't do the trick. So we try negat ive values, which makes the solution complex-valued." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 72 "[Re(subs(x=1,c1=-5,diff(sol_x1,x))),Im(su bs(x=1,c1=-5,diff(sol_x1,x)))];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$ \"\"!,$*(\"\"#\"\"\"\"\"&#F(F'-%$cosG6#*$F)F*F(!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 119 "plot([Re(subs(x=1,diff(sol_x1,x))),Im(su bs(x=1,diff(sol_x1,x)))],c1=-220..0,color=[red,blue],axes=boxed,numpoi nts=500);" }}{PARA 13 "" 1 "" {GLPLOT2D 792 261 261 {PLOTDATA 2 "6'-%' CURVESG6$7`jl7$$!$?#\"\"!$F*F*7$$!+:sQ&>#!\"($!\"!F*7$$!+cOP\">#F/F07$ $!+*)*fo=#F/F07$$!+.kJ#=#F/F07$$!+6Wzx@F/F07$$!+Y>gt@F/F07$$!+\"*3Ep@F /F07$$!+m8xk@F/F07$$!+RiHg@F/F07$$!+@Ipb@F/F07$$!+.&Q;:#F/F07$$!+xS2Z@ F/F07$$!+44\\U@F/F07$$!+yT2Q@F/F07$$!+iL1M@F/F07$$!+:THH@F/F07$$!+ORDD @F/F07$$!+\\Ub?@F/F07$$!+HUR;@F/F07$$!+F+$=6#F/F07$$!+GQ[2@F/F07$$!+E! \\H5#F/F07$$!+hYy)4#F/F07$$!+KGH%4#F/F07$$!+$3F'*3#F/F07$$!+Nbc&3#F/F0 7$$!+_*y63#F/F07$$!+$=Zm2#F/F07$$!+JP@s?F/F07$$!+QT#z1#F/F07$$!+w7;j?F /F07$$!+L;))e?F/F07$$!++AJa?F/F07$$!+;;<]?F/F07$$!+i[kX?F/F07$$!+TbQT? F/F07$$!+AL$p.#F/F07$$!+l/eK?F/F07$$!+EM-G?F/F07$$!+dWjB?F/F07$$!+-h9> ?F/F07$$!+7\\p9?F/F07$$!+JZg5?F/F07$$!+Bp\"f+#F/F07$$!+\"4C<+#F/F07$$! +dOD(*>F/F07$$!+#)[(H*>F/F07$$!+_QA))>F/F07$$!+4)4T)>F/F07$$!+M.Wz>F/F 07$$!+9Y=v>F/F07$$!+D&H0(>F/F07$$!+qH^m>F/F07$$!+%eQ>'>F/F07$$!+_*>v&> F/F07$$!+2U5`>F/F07$$!+1Zq[>F/F07$$!+k\"yW%>F/F07$$!+g\"4*R>F/F07$$!+n XbN>F/F07$$!+k:(4$>F/F07$$!+UG#o#>F/F07$$!+GxBA>F/F07$$!+()f%y\">F/F07 $$!+O\\Y8>F/F07$$!+7*)))3>F/F07$$!+EUn/>F/F07$$!+6yN+>F/F07$$!+w>f&*=F /F07$$!+/pF\"*=F/F07$$!+LR'o)=F/F07$$!+cgP#)=F/F07$$!+C3Dy=F/F07$$!+fM &Q(=F/F07$$!+o&*[p=F/F07$$!+h:#['=F/F07$$!+ZAqg=F/F07$$!+9%\\f&=F/F07$ $!+[.m^=F/F07$$!+UlTZ=F/F07$$!+(3`G%=F/F07$$!+s6FQ=F/F07$$!+3B5M=F/F07 $$!+f^nH=F/F07$$!+%pa`#=F/F07$$!+l7n?=F/F07$$!+(z=m\"=F/F07$$!+!Rk>\"= F/F07$$!+-!*e2=F/F07$$!+weD.=F/F07$$!+.$>*)z\"F/F07$$!+ti\\%z\"F/F07$$ !+Oz!)*y\"F/F07$$!+*=4by\"F/F07$$!+udE\"y\"F/F07$$!+M'Hnx\"F/F07$$!+oL ?si;F/F07$$!+X%ewl\"F/F07$$!+!3%\\`;F/F07$$!+^A+ \\;F/F07$$!+-lLW;F/F07$$!+a\\FS;F/F07$$!+r$))ej\"F/F07$$!+-mNJ;F/F07$$ !+\\J#pi\"F/F07$$!+cNjA;F/F07$$!+&pqyh\"F/F07$$!+_5f8;F/F07$$!+>;-4;F/ F07$$!+M5)[g\"F/F07$$!+#Ga.g\"F/F07$$!+f\\4'f\"F/F07$$!+TFk\"f\"F/F07$ $!+%))*G(e\"F/F07$$!+XGt#e\"F/F07$$!+wQMy:F/F07$$!+?b&Qd\"F/F07$$!+JVS p:F/F07$$!+]TJl:F/F07$$!+Ujig:F/F07$$!+4NVc:F/F07$$!+wI'>b\"F/F07$$!+, VoZ:F/F07$$!+rK$Ha\"F/F07$$!+G#>)Q:F/F07$$!+_(\\T`\"F/F07$$!+KS*)H:F/F 07$$!+W*Q__\"F/F07$$!+*QA7_\"F/F07$$!+.![m^\"F/F07$$!+r$HA^\"F/F07$$!+ EO\"y]\"F/F07$$!+DTT.:F/F07$$!+$e(=*\\\"F/F07$$!+z&=Y\\\"F/F07$$!+')RE !\\\"F/F07$$!+#)4o&[\"F/F07$$!+gA`\"[\"F/F07$$!+Yr%pZ\"F/F07$$!+1abs9F /F07$$!+bVC9F/F07$$!+!)4`>9F/F07$$!+m;T:9F/F07$$!+L)e1T\"F/F 07$$!+n(pjS\"F/F07$$!+hf7-9F/F07$$!+1Dc(R\"F/F07$$!+\"f!)HR\"F/F07$$!+ E<\"))Q\"F/F07$$!+yXQ%Q\"F/F07$$!+8T1!Q\"F/F07$$!+%o!Qv8F/F07$$!+;#G8P \"F/F07$$!+4Qnm8F/F07$$!+@%)Hi8F/F07$$!+&HlzN\"F/F07$$!+A(GON\"F/F07$$ !+#p0#\\8F/F07$$!+bt^W8F/F07$$!+3'=-M\"F/F07$$!+$>vfL\"F/F07$$!+`!R9L \"F/F07$$!+(y7pK\"F/F07$$!+%>]GK\"F/F07$$!+hx.=8F/F07$$!+S4,98F/F07$$! +?6I48F/F07$$!+`g![I\"F/F07$$!+%\\#z+8F/F07$$!+F)yiH\"F/F07$$!+S_t\"H \"F/F07$$!+\\K@(G\"F/F07$$!+%y?IG\"F/F07$$!+H(z'y7F/F07$$!+/->u7F/F07$ $!+x]rp7F/F07$$!+e=6l7F/F07$$!+Tt0h7F/F07$$!+:H\\c7F/F07$$!+Z(4>D\"F/F 07$$!+;I\\Z7F/F07$$!++A[V7F/F07$$!+_HrQ7F/F07$$!+uFnM7F/F07$$!+'3t*H7F /F07$$!+nI\"eA\"F/F07$$!+l)[7A\"F/F07$$!+mE!p@\"F/F07$$!+kyO77F/F07$$! +*\\.#37F/F07$$!+q;r.7F/F07$$!+@f/*>\"F/F07$$!+tV)\\>\"F/F07$$!+!z(f!> \"F/F07$$!+@g1'=\"F/F07$$!+oDj\"=\"F/F07$$!+vHMx6F/F07$$!+9,es6F/F07$$ !+r/Io6F/F07$$!+Q5tj6F/F07$$!+`/ff6F/F07$$!++P1b6F/F07$$!+yV!3:\"F/F07 $$!+g@NY6F/F07$$!+-$**>9\"F/F07$$!+kAWP6F/F07$$!+&H`I8\"F/F07$$!+R\\cG 6F/F07$$!+]P6C6F/F07$$!+pN-?6F/F07$$!+hdL:6F/F07$$!+GH966F/F07$$!+&\\s m5\"F/F07$$!+?PR-6F/F07$$!+*oUw4\"F/F07$$!+Z'GN4\"F/F07$$!+r\"f))3\"F/ F07$$!+^Mg%3\"F/F07$$!+i$[*z5F/F07$$!+3=$f2\"F/F07$$!+@uNr5F/F07$$!+!z Qp1\"F/F07$$!+XI_i5F/F07$$!+WN7e5F/F07$$!+-q*Q0\"F/F07$$!+(*zK\\5F/F07 $$!+0M(\\/\"F/F07$$!+,/RS5F/F07$$!+z;CO5F/F07$$!+lllJ5F/F07$$!+D[EF5F/ F07$$!+uP)G-\"F/F07$$!+\\xI=5F/F07$$!+jI495F/F07$$!+\\mx45F/F07$$!+93, 05F/F07$$!+Tdp+5F/F07$$!*rFG'**F/F07$$!*%*[z\"**F/F07$$!*h'pw)*F/F07$$ !*(HsK)*F/F07$$!*1%3*y*F/F07$$!**RSU(*F/F07$$!*&3@,(*F/F07$$!*_#o`'*F/ F07$$!*'=z5'*F/F07$$!*!QNo&*F/F07$$!*D>F_*F/F07$$!*5+pZ*F/F07$$!*X6_V* F/F07$$!*'*R4R*F/F07$$!*KNxM*F/F07$$!*.,4I*F/F07$$!*Nw.E*F/F07$$!*FKQ@ *F/F07$$!*Sy+<*F/F07$$!*9Zn7*F/F07$$!*T\"Q$3*F/F07$$!*6^\"R!*F/F07$$!* unA**)F/F07$$!*F!G\\*)F/F07$$!*7Yo!*)F/F07$$!*r%[h))F/F07$$!*1Ai\"))F/ F07$$!*8'fv()F/F07$$!*!=ZF()F/F07$$!*e.so)F/F07$$!*R0,k)F/F07$$!*sa^f) F/F07$$!*8>]b)F/F07$$!*Y#))4&)F/F07$$!*fYWY)F/F07$$!*oE#>%)F/F07$$!*.- tP)F/F07$$!*[\"*QL)F/F07$$!*B'**)G)F/F07$$!*'\\CW#)F/F07$$!*x7#)>)F/F0 7$$!*gnw:)F/F07$$!*MB?6)F/F07$$!*m\">m!)F/F07$$!*MC?-)F/F07$$!*>;>)zF/ F07$$!*rBU$zF/F07$$!*$>#Q*yF/F07$$!*0Do%yF/F07$$!*&[A0yF/F07$$!*%GefxF /F07$$!*&37;xF/F07$$!*#GxqwF/F07$$!*=H\"HwF/F07$$!*)3@%e(F/F07$$!*S`v` (F/F07$$!*#z$p\\(F/F07$$!*4sIX(F/F07$$!*RaxS(F/F07$$!*()>MO(F/F07$$!*% R_?tF/F07$$!*L&*GF(F/F07$$!*!*)4IsF/F07$$!*d/W=(F/F07$$!*s)*H9(F/F07$$ !*>Jx4(F/F07$$!*(z8bqF/F07$$!*z:1,(F/F07$$!*@(3npF/F07$$!*$o^@pF/F07$$ !*9Fw(oF/F07$$!*eVF$oF/F07$$!*pJ#)y'F/F07$$!*))Htu'F/F07$$!*z^/q'F/F07 $$!*ZB&emF/F07$$!*9>Qh'F/F07$$!*QJ5d'F/F07$$!*3@N_'F/F07$$!*m!Q#['F/F0 7$$!*!foNkF/F07$$!*qGJR'F/F07$$!*\"ydYjF/F07$$!*F7kI'F/F07$$!*So1E'F/F 07$$!*4#[;iF/F07$$!*jCB<'F/F07$$!*jH$GhF/F07$$!*?kg3'F/F07$$!*;u./'F/F 07$$!*CGo*fF/F07$$!*?)*4&fF/F07$$!*)4^4fF/F07$$!*%)fO'eF/F07$$!*WU(>eF /F07$$!*$>$fx&F/F07$$!*or,t&F/F07$$!*#[-)o&F/F07$$!*og[k&F/F07$$!*L-sf &F/F07$$!*g^Sb&F/F07$$!*!>#*4bF/F07$$!*8V]Y&F/F07$$!*!3zBaF/F07$$!*;<) z`F/F07$$!*DyhL&F/F07$$!*=)\\*G&F/F07$$!*/0$[_F/F07$$!*qw2?&F/F07$$!*0 ')y:&F/F07$$!**zW:^F/F07$$!*V8)p]F/F07$$!*H%*R-&F/F07$$!*k0B)\\F/F07$$ !*:M!Q\\F/F07$$!*^H[*[F/F07$$!*A&*z%[F/F07$$!*aqu![F/F07$$!*YE4w%F/F07 $$!*fsrr%F/F07$$!*LTQn%F/F07$$!*gv/j%F/F07$$!*IXie%F/F07$$!*#>ORXF/F07 $$!*Yuj\\%F/F07$$!*JSRX%F/F07$$!*!*y&3WF/F07$$!*D;LO%F/F07$$!*K!pAVF/F 07$$!**fcuUF/F07$$!*x(HMUF/F07$$!*e*>(=%F/F07$$!*\"*[A9%F/F07$$!*K8@5% F/F07$$!*lwp0%F/F07$$!*yS:,%F/F07$$!*(3KmRF/F07$$!*A'RCRF/F07$$!*n&)4) QF/F07$$!*U!4OQF/F07$$!*9R8z$F/F07$$!*'pIXPF/F07$$!*zhZq$F/F07$$!*`<\" fOF/F07$$!*&eG8OF/F07$$!*`=\"pNF/F07$$!*Q5!HNF/F07$$!*!zJ\"[$F/F07$$!* 7;4W$F/F07$$!*C>RR$F/F07$$!*/>BN$F/F07$$!*.xmI$F/F07$$!*/:KE$F/F07$$!* ,ny@$F/F07$$!*PBi<$F/F07$$!*2088$F/F07$$!*fZY3$F/F07$$!*6KS/$F/F07$$!* Gm,+$F/F07$$!*e[[&HF/F07$$!*190\"HF/F07$$!*8=w'GF/F07$$!*^*)*>GF/F07$$ !*4$>xFF/F07$$!*w)\\JFF/F07$$!*\"H4!p#F/F07$$!*QD[k#F/F07$$!*;KAg#F/F0 7$$!*)*4xb#F/F07$$!*S\"=9DF/F07$$!*-6'oCF/F07$$!*K@ZU#F/F07$$!*xP)zBF/ F07$$!*)eKNBF/F07$$!*2CWH#F/F07$$!*)faZAF/F07$$!*mF/F07$$!**GAS> F/F07$$!*+sO*=F/F07$$!*Y1N&=F/F07$$!*fix!=F/F07$$!*GwNw\"F/F07$$!*#)=% >^B\"F/F07$$!*([&>>\"F/F07$$!*_'HW6F/F07$$!*zX65 \"F/F07$$!*3;q0\"F/F07$$!*JP@,\"F/F07$$!)*\\)3(*F/F07$$!)N6p#*F/F07$$! )WsK))F/F07$$!)P#fO)F/F07$$!)B*R&zF/F07$$!)*3(yuF/F07$$!)C!)\\qF/F07$$ !)WF/F07$$!)S*3&RF/F07$$!)tkXNF/F07$$!)l?!3$F/F07$$!)ymUEF/F07$$!)_N4 AF/F07$$!)zpvFfip7$F-$\"+Q&*ei= Ffip7$F3$\"+rR^H=Ffip7$F6$\"+!Q[>z\"Ffip7$F9$\"+'yZPv\"Ffip7$F<$\"+PGN :k\"Ffip7$FE$\"+nBw-;Ffip7$FH$\"+'p 4Mc\"Ffip7$FK$\"+->fA:Ffip7$FN$\"+nEO'[\"Ffip7$FQ$\"+ZcFX9Ffip7$FT$\"+ mzq.9Ffip7$FW$\"+lLOj8Ffip7$FZ$\"+f1\\E8Ffip7$Fgn$\"+EGO#G\"Ffip7$Fjn$ \"+@'[ZC\"Ffip7$F]o$\"+fkt+7Ffip7$F`o$\"+p`bh6Ffip7$Fco$\"+RkL=6Ffip7$ Ffo$\"+@k'p2\"Ffip7$Fio$\"+\"=(eL5Ffip7$F\\p$\"+O'yc$**!\"*7$F_p$\"+-@ 9-&*Fb^q7$Fbp$\"++y')\\!*Fb^q7$Fep$\"+5@ja')Fb^q7$Fhp$\"+)ehiA)Fb^q7$F [q$\"+mI<#y(Fb^q7$F^q$\"+[#3jM(Fb^q7$Faq$\"+seNBpFb^q7$Fdq$\"+;jV_kFb^ q7$Fgq$\"+5sAGgFb^q7$Fjq$\"+!y)GubFb^q7$F]r$\"+%Q^@;&Fb^q7$F`r$\"+S\"4 3r%Fb^q7$Fcr$\"+ky\\&G%Fb^q7$Ffr$\"+KLPSQFb^q7$Fir$\"+U0u/MFb^q7$F\\s$ \"+yjJ[HFb^q7$F_s$\"+=!*[3DFb^q7$Fbs$\"+]Ede?Fb^q7$Fes$\"+dLO7;Fb^q7$F hs$\"+FAU-7Fb^q7$F[t$\"+_#4zK(!#57$F^t$\"+;!f.8$Fbbq7$Fat$!+2R+T8Fbbq7 $Fdt$!+iHo:cFbbq7$Fgt$!+!GAb.\"Fb^q7$Fjt$!+6%R_W\"Fb^q7$F]u$!+-fP4>Fb^ q7$F`u$!+%Q]9L#Fb^q7$Fcu$!+e8*>z#Fb^q7$Ffu$!+OcI)=$Fb^q7$Fiu$!+%))f$QO Fb^q7$F\\v$!+sLmrSFb^q7$F_v$!+C8<.XFb^q7$Fbv$!+I(y9$\\Fb^q7$Fev$!+5*H8 M&Fb^q7$Fhv$!+]D\\#y&Fb^q7$F[w$!+Y%45?'Fb^q7$F^w$!+A@JRmFb^q7$Faw$!+)G kS.(Fb^q7$Fdw$!+%['*zY(Fb^q7$Fgw$!+U6@\")yFb^q7$Fjw$!+;^&4H)Fb^q7$F]x$ !+Y->;()Fb^q7$F`x$!+yQE0\"*Fb^q7$Fcx$!+3'f5]*Fb^q7$Ffx$!+Wt![$**Fb^q7$ Fix$!+0rWK5Ffip7$F\\y$!+\"4')>2\"Ffip7$F_y$!+3A'=6\"Ffip7$Fby$!+<&4#[6 Ffip7$Fey$!+#>@m=\"Ffip7$Fhy$!+f-RC7Ffip7$F[z$!+\\PRk7Ffip7$F^z$!+hSM* H\"Ffip7$Faz$!+#3\\#R8Ffip7$Fdz$!+YM'[P\"Ffip7$Fgz$!+P>s49Ffip7$Fjz$!+ EQxY9Ffip7$F][l$!+[S^$[\"Ffip7$F`[l$!+W4`;:Ffip7$Fc[l$!+1[:^:Ffip7$Ff[ l$!+-%*\\%e\"Ffip7$Fi[l$!+N\"Q,i\"Ffip7$F\\\\l$!+`6a];Ffip7$F_\\l$!+2G &\\o\"Ffip7$Fb\\l$!+)\\(z;Ffip7$Fj]l$!+)Gw_&>Ffip7$F]^l$!+!pj.)>Ffip7$ F`^l$!+%RR%4?Ffip7$Fc^l$!+YhAL?Ffip7$Ff^l$!+W;Tg?Ffip7$Fi^l$!+G)4d3#Ff ip7$F\\_l$!+'ocx5#Ffip7$F__l$!+#4L>8#Ffip7$Fb_l$!+#f,c:#Ffip7$Fe_l$!+' 4%[y@Ffip7$Fh_l$!+G@4*>#Ffip7$F[`l$!+5&3)>AFfip7$F^`l$!+a3cSAFfip7$Fa` l$!++\"f0E#Ffip7$Fd`l$!+!R1/G#Ffip7$Fg`l$!+wXF(H#Ffip7$Fj`l$!+]0d:BFfi p7$F]al$!+1g>LBFfip7$F`al$!+?$o%\\BFfip7$Fcal$!+mRjjBFfip7$Ffal$!+__rz BFfip7$Fial$!+i\\o#R#Ffip7$F\\bl$!+cC,2CFfip7$F_bl$!+y(3!>CFfip7$Fbbl$ !+#oC9V#Ffip7$Febl$!+/w^UCFfip7$Fhbl$!+_#GLX#Ffip7$F[cl$!+#4lDY#Ffip7$ F^cl$!+;IyrCFfip7$Facl$!+5[`![#Ffip7$Fdcl$!+usY([#Ffip7$Fgcl$!+;UB%\\# Ffip7$Fjcl$!+GkV+DFfip7$F]dl$!+qas0DFfip7$F`dl$!+Qt55DFfip7$Fcdl$!+yB7 9DFfip7$Ffdl$!+%okp^#Ffip7$Fidl$!+;w>>DFfip7$F\\el$!+KU]?DFfip7$F_el$! +A9:@DFfip7$Fbel$!+mR,@DFfip7$Feel$!+Qc4?DFfip7$Fhel$!+;:V=DFfip7$F[fl $!+Sp(e^#Ffip7$F^fl$!+E1j7DFfip7$Fafl$!+=J^3DFfip7$Fdfl$!+SKj.DFfip7$F gfl$!+7-X)\\#Ffip7$Fjfl$!+/to\"\\#Ffip7$F]gl$!+!*\\*[[#Ffip7$F`gl$!+'y !)oZ#Ffip7$Fcgl$!+i]YoCFfip7$Ffgl$!+Q%o#eCFfip7$Figl$!+?jr[CFfip7$F\\h l$!+%GkqV#Ffip7$F_hl$!+AmpDCFfip7$Fbhl$!+9\"[CT#Ffip7$Fehl$!+!*eL+CFfi p7$Fhhl$!+Ejx&Q#Ffip7$F[il$!+]A%4P#Ffip7$F^il$!+iaObBFfip7$Fail$!+#)=5 RBFfip7$Fdil$!+'3#yABFfip7$Fgil$!+?yP/BFfip7$Fjil$!+/]5'G#Ffip7$F]jl$! +Us5mAFfip7$F`jl$!+[9LZAFfip7$Fcjl$!+MC%eA#Ffip7$Ffjl$!+Q(QX?#Ffip7$Fi jl$!+%3!f#=#Ffip7$F\\[m$!+U#G*e@Ffip7$F_[m$!+=aZO@Ffip7$Fb[m$!+9<$G6#F fip7$Fe[m$!+19(f3#Ffip7$Fh[m$!+#yv41#Ffip7$F[\\m$!++lvM?Ffip7$F^\\m$!+ [$>u+#Ffip7$Fa\\m$!+$3+<)>Ffip7$Fd\\m$!+l'oO&>Ffip7$Fg\\m$!+J5BD>Ffip7 $Fj\\m$!+u\"QT*=Ffip7$F]]m$!+9/8m=Ffip7$F`]m$!+T@;L=Ffip7$Fc]m$!+&y>G! =Ffip7$Ff]m$!+Q]Ds\"Ffip7$Fi`m$!+$*4\">: \"Ffip7$F\\am$!++G\"[6\"Ffip7$F_am$!+Pb[q5Ffip7$Fbam$!+g$*3L5Ffip7$Fea m$!+Gf8!*)*Fb^q7$Fham$!+[([iY*Fb^q7$F[bm$!+k#Q_3*Fb^q7$F^bm$!+],0a')Fb ^q7$Fabm$!++zF<#)Fb^q7$Fdbm$!+oi.!y(Fb^q7$Fgbm$!+!eQDP(Fb^q7$Fjbm$!+G3 g[pFb^q7$F]cm$!+/'*=3lFb^q7$F`cm$!+)4jt1'Fb^q7$Fccm$!+)4(>7cFb^q7$Ffcm $!+Y-**4_Fb^q7$Ficm$!+k%=fv%Fb^q7$F\\dm$!+M#)z)H%Fb^q7$F_dm$!+I`LdQFb^ q7$Fbdm$!+I-zbMFb^q7$Fedm$!+i2pxHFb^q7$Fhdm$!+)y-Bd#Fb^q7$F[em$!+#H(\\ +@Fb^q7$F^em$!+x_\"Go\"Fb^q7$Faem$!+K&yYA\"Fb^q7$Fdem$!+E/B()yFbbq7$Fg em$!+oA]VLFbbq7$Fjem$\"+gx)*G#)!#67$F]fm$\"+9p\\3`Fbbq7$F`fm$\"+q<]c** Fbbq7$Fcfm$\"+1'e\"*R\"Fb^q7$Fffm$\"++QjL=Fb^q7$Fifm$\"+wp&3G#Fb^q7$F \\gm$\"+!4#e;FFb^q7$F_gm$\"+A2IOJFb^q7$Fbgm$\"+?a'**f$Fb^q7$Fegm$\"+'3 %G9SFb^q7$Fhgm$\"+->0aWFb^q7$F[hm$\"+kT0][Fb^q7$F^hm$\"+O/4!G&Fb^q7$Fa hm$\"+3Hy\"o&Fb^q7$Fdhm$\"+GvV)4'Fb^q7$Fghm$\"+sFU-lFb^q7$Fjhm$\"+'3$f @pFb^q7$F]im$\"+wqZ@tFb^q7$F`im$\"+')GMExFb^q7$Fcim$\"+U,gB\")Fb^q7$Ff im$\"+w5u%[)Fb^q7$Fiim$\"+_z'Q*))Fb^q7$F\\jm$\"+Q4Ib#*Fb^q7$F_jm$\"+E$ 3ej*Fb^q7$Fbjm$\"+!4U^***Fb^q7$Fejm$\"+In$)Q5Ffip7$Fhjm$\"+3/Qs5Ffip7$ F[[n$\"+qT')46Ffip7$F^[n$\"+N[YV6Ffip7$Fa[n$\"+]lez6Ffip7$Fd[n$\"+%)y? 57Ffip7$Fg[n$\"+v%\\WC\"Ffip7$Fj[n$\"+L*ooF\"Ffip7$F]\\n$\"+Njg38Ffip7 $F`\\n$\"+KQbR8Ffip7$Fc\\n$\"+>rjo8Ffip7$Ff\\n$\"+LpM*R\"Ffip7$Fi\\n$ \"+;V*yU\"Ffip7$F\\]n$\"+#QirX\"Ffip7$F_]n$\"+)GcH[\"Ffip7$Fb]n$\"+8Mn 5:Ffip7$Fe]n$\"+a$Hk`\"Ffip7$Fh]n$\"+(3O8c\"Ffip7$F[^n$\"+$p(\\'e\"Ffi p7$F^^n$\"+yz))3;Ffip7$Fa^n$\"+Dl-J;Ffip7$Fd^n$\"+vW_a;Ffip7$Fg^n$\"+^ 4$\\n\"Ffip7$Fj^n$\"+1Q$\\p\"Ffip7$F]_n$\"+(>lVr\"Ffip7$F`_n$\"+\"p09t \"Ffip7$Fc_n$\"+&)Rp[+(=Ffip7$Fdan$\"+'=)ew=Ffip7$Fgan$\"+O9h#)=Ffip7$Fjan$ \"+Ku*o)=Ffip7$F]bn$\"+*)\\v!*=Ffip7$F`bn$\"+@%QL*=Ffip7$Fcbn$\"+Qp*[* =Ffip7$Ffbn$\"+/rX&*=Ffip7$Fibn$\"+ma*\\*=Ffip7$F\\cn$\"+&ekL*=Ffip7$F _cn$\"+))\\$3*=Ffip7$Fbcn$\"+.kO()=Ffip7$Fecn$\"+H/f#)=Ffip7$Fhcn$\"+E Ysw=Ffip7$F[dn$\"+HU_q=Ffip7$F^dn$\"+Wb.i=Ffip7$Fadn$\"+?3)R&=Ffip7$Fd dn$\"+,@YV=Ffip7$Fgdn$\"+#=AB$=Ffip7$Fjdn$\"+'4q9#=Ffip7$F]en$\"+8$\\# 3=Ffip7$F`en$\"+t!fQz\"Ffip7$Fcen$\"+AaYy8SA;Ffip7$F^gn $\"+h``)f\"Ffip7$Fagn$\"+/w0w:Ffip7$Fdgn$\"+cbM[:Ffip7$Fggn$\"+(\\XS_ \"Ffip7$Fjgn$\"+AE%[\\\"Ffip7$F]hn$\"+\"ym\"o9Ffip7$F`hn$\"+HC-Q9Ffip7 $Fchn$\"+v5[39Ffip7$Ffhn$\"+O_!oP\"Ffip7$Fihn$\"+Sh'pM\"Ffip7$F\\in$\" +FH*RJ\"Ffip7$F_in$\"++$)*)y7Ffip7$Fbin$\"+<`mZ7Ffip7$Fein$\"+gyB87Ffi p7$Fhin$\"+rU$p<\"Ffip7$F[jn$\"+agrS6Ffip7$F^jn$\"+oL.06Ffip7$Fajn$\"+ $f-Z1\"Ffip7$Fdjn$\"+:)[y-\"Ffip7$Fgjn$\"+=0$)y)*Fb^q7$Fjjn$\"+i!49^*F b^q7$F][o$\"+76'**yFb^q7$Fi[o$\"+Ui/quFb^q7$F\\\\o$\"+]Z@_qFb^q7$F_\\o$\"+]R0@ mFb^q7$Fb\\o$\"+'y1**='Fb^q7$Fe\\o$\"+k=(3z&Fb^q7$Fh\\o$\"+'*[\\I`Fb^q 7$F[]o$\"+MHF;\\Fb^q7$F^]o$\"+#e\"RsWFb^q7$Fa]o$\"+EXoXSFb^q7$Fd]o$\"+ KL7qNFb^q7$Fg]o$\"+cv8dJFb^q7$Fj]o$\"+SeU(o#Fb^q7$F]^o$\"+5dweAFb^q7$F `^o$\"+Tcj*y\"Fb^q7$Fc^o$\"+Xr&\\Q\"Fb^q7$Ff^o$\"+3$paC*Fbbq7$Fi^o$\"+ kH[1[Fbbq7$F\\_o$\"+-rYAQFbds7$F__o$!+/7J5SFbbq7$Fb_o$!+[#HB@)Fbbq7$Fe _o$!+rX8t7Fb^q7$Fh_o$!+V=>,QFb^q7$Fj`o$!+QK'[C%F b^q7$F]ao$!+#\\U8j%Fb^q7$F`ao$!+]Kz@]Fb^q7$Fcao$!+yxRH)Fb ^q7$F^co$!+;BdS')Fb^q7$Faco$!+'46P%*)Fb^q7$Fdco$!+Y\"yUB*Fb^q7$Fgco$!+ Gm(f`*Fb^q7$Fjco$!+iVJF)*Fb^q7$F]do$!+-$*>35Ffip7$F`do$!+&*)GT.\"Ffip7 $Fcdo$!+')\\He5Ffip7$Ffdo$!+8m=$3\"Ffip7$Fido$!+#H-O5\"Ffip7$F\\eo$!+ \"[Md7\"Ffip7$F_eo$!+6$G_9\"Ffip7$Fbeo$!+^TDj6Ffip7$Feeo$!+GS**z6Ffip7 $Fheo$!+YDq&>\"Ffip7$F[fo$!+U5#3@\"Ffip7$F^fo$!+@TFB7Ffip7$Fafo$!+wVAM 7Ffip7$Fdfo$!+0TVW7Ffip7$Fgfo$!+3/1`7Ffip7$Fjfo$!+b!f%f7Ffip7$F]go$!+y `Pl7Ffip7$F`go$!+$RE*o7Ffip7$Fcgo$!+1uWr7Ffip7$Ffgo$!+=(*>s7Ffip7$Figo $!+ux\\r7Ffip7$F\\ho$!+g@:p7Ffip7$F_ho$!+A/7l7Ffip7$Fbho$!+-)Q%f7Ffip7 $Feho$!+A8o_7Ffip7$Fhho$!+aJ\"Ffip7$Fgio$!+qt!o<\"Ffip7$Fjio $!+(\\tz:\"Ffip7$F]jo$!+b5EQ6Ffip7$F`jo$!+*oY!>6Ffip7$Fcjo$!+SLf%4\"Ff ip7$Ffjo$!+6O`s5Ffip7$Fijo$!+'f[`/\"Ffip7$F\\[p$!+AM%*>5Ffip7$F_[p$!+S A_1**Fb^q7$Fb[p$!+oM99'*Fb^q7$Fe[p$!+=bY&H*Fb^q7$Fh[p$!+eu$4**)Fb^q7$F [\\p$!+a08]')Fb^q7$F^\\p$!+1r2$G)Fb^q7$Fa\\p$!+g!oJ&zFb^q7$Fd\\p$!+q6[ 'e(Fb^q7$Fg\\p$!+)f&*o>(Fb^q7$Fj\\p$!+-/x0oFb^q7$F]]p$!+)y8&=kFb^q7$F` ]p$!+/c3zfFb^q7$Fc]p$!+#=Lkd&Fb^q7$Ff]p$!+7\"4\"R^Fb^q7$Fi]p$!+11*ot%F b^q7$F\\^p$!+S?Z\"H%Fb^q7$F_^p$!+;@pnQFb^q7$Fb^p$!+K,q?MFb^q7$Fe^p$!+U ta!)HFb^q7$Fh^p$!+#Rkt^#Fb^q7$F[_p$!+SO*)p?Fb^q7$F^_p$!+!e*)=h\"Fb^q7$ Fa_p$!+y)*Ge6Fb^q7$Fd_p$!+k#*4HuFbbq7$Fg_p$!+-QA'p#Fbbq7$Fj_p$\"+YEr,: Fbbq7$F]`p$\"+[1+IfFbbq7$F``p$\"+@<>65Fb^q7$Fc`p$\"+K%yxY\"Fb^q7$Ff`p$ \"+*)oYb=Fb^q7$Fi`p$\"+i*zbG#Fb^q7$F\\ap$\"+#GRsm#Fb^q7$F_ap$\"+mW3sIF b^q7$Fbap$\"+U=r4MFb^q7$Feap$\"+EYyzPFb^q7$Fhap$\"+i&)Q@TFb^q7$F[bp$\" +S#4fW%Fb^q7$F^bp$\"+uL@^ZFb^q7$Fabp$\"+MdSE]Fb^q7$Fdbp$\"+1'QEI&Fb^q7 $Fgbp$\"+[\\6WbFb^q7$Fjbp$\"+5%fRx&Fb^q7$F]cp$\"+/'=%ffFb^q7$F`cp$\"+S \"o\"QhFb^q7$Fccp$\"+G/T#G'Fb^q7$Ffcp$\"+a>!*)R'Fb^q7$Ficp$\"+!yH-\\'F b^q7$F\\dp$\"++I'fa'Fb^q7$F_dp$\"+)ebRd'Fb^q7$Fbdp$\"+!*)>(plFb^q7$Fed p$\"+g_HLlFb^q7$Fhdp$\"+-BNjkFb^q7$F[ep$\"+cxxdjFb^q7$F^ep$\"+!>\\(HiF b^q7$Faep$\"+m&y.1'Fb^q7$Fdep$\"+y^peeFb^q7$Fgep$\"+mn31cFb^q7$Fjep$\" +IT*=N&Fb^q7$F]fp$\"+-A%H-&Fb^q7$F`fp$\"+-wH%p%Fb^q7$Fcfp$\"+WVtSVFb^q 7$Fffp$\"+-c!4$RFb^q7$Fifp$\"+=x2\"\\$Fb^q7$F\\gp$\"+%o3!pIFb^q7$F_gp$ \"+[3a,EFb^q7$Fbgp$\"+!eX08#Fb^q7$Fegp$\"+i(*p4;Fb^q7$Fhgp$\"+!*\\qc6F b^q7$F[hp$\"+74-JkFbbq7$F^hp$\"+.%R=y\"Fbbq7$Fahp$!+=jB1DFbbq7$Fdhp$!+ #oQ&*G'Fbbq7$Fghp$!+Mu2M$*Fbbq7$Fjhp$!+a\\-76Fb^q7$$!++!Qi\\'Fbbq$!+&4 Jh6\"Fb^q7$F]ip$!+*GbA/\"Fb^q7$$!++DVt@Fbbq$!+W3)*G$)FbbqF_ip-Faip6&Fc ipF+F+Fdip-%*AXESSTYLEG6#%$BOXG-%+AXESLABELSG6$Q#c16\"Q!Fjhv-%%VIEWG6$ ;F(F+%(DEFAULTG" 1 2 0 1 10 0 2 9 1 2 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 185 "What \+ are we learning here? We took the condition for the right-hand boundar y, and we showed that it can be satisfied by the solution to the spati al ODE provided the separation constant " }{TEXT 19 2 "c1" }{TEXT -1 132 " is chosen to be negative. The real part of the condition is alwa ys zero (boring, but important). The derivative of the solution at " } {TEXT 19 3 "x=1" }{TEXT -1 105 " does vanish when the imaginary part o f the expression crosses zero. We can use the integration constant " } {TEXT 19 3 "_C2" }{TEXT -1 59 " to make the solution real-valued (by m aking it imaginary)." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 117 "Therefore, the product part of the solution, i.e., the transient part, is not unique. There are different choices of " } {TEXT 19 2 "c1" }{TEXT -1 152 " that work, and we have to take them al l into account in order to find a unique solution that matches our bou ndary conditions and the initial condition." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 32 "Each spatial solution (function " }{TEXT 19 5 "F1(x)" }{TEXT -1 86 " that satisfies the ODE and the b oundary conditions) has an appropriate time solution " }{TEXT 19 5 "F2 (t)" }{TEXT -1 112 " that goes with it. Before we find it, let us look at the spatial modes. First we determine a few of the lowest " } {TEXT 19 2 "c1" }{TEXT -1 19 " values accurately." }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 82 "sol_c1:='sol_c1': sol_c1[1]:=fsolve(Im(subs( x=1,diff(sol_x1,x))),c1=-10..-0.0001);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%'sol_c1G6#\"\"\"$!++6SnC!\"*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 60 "sol_c1[2]:=fsolve(Im(subs(x=1,diff(sol_x1,x))),c1=-50 ..-10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%'sol_c1G6#\"\"#$!+!*4m?A !\")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 61 "sol_c1[3]:=fsolve(I m(subs(x=1,diff(sol_x1,x))),c1=-100..-50);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%'sol_c1G6#\"\"$$!+^F]oh!\")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 62 "sol_c1[4]:=fsolve(Im(subs(x=1,diff(sol_x1,x))),c 1=-150..-100);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%'sol_c1G6#\"\"%$! +Rl-47!\"(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 62 "sol_c1[5]:=fs olve(Im(subs(x=1,diff(sol_x1,x))),c1=-250..-150);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%'sol_c1G6#\"\"&$!+\"*[f)*>!\"(" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 203 "Of course, there are infinitely many solutions, a nd it is not unreasonable to ask at this point whether we will get any where at all... Nevertheless, we'll proceed by looking at some of the \+ spatial modes:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 90 "plot([seq (subs(c1=sol_c1[i],I*sol_x1),i=1..5)],x=0..1,color=[red,blue,green,bla ck,brown]);" }}{PARA 13 "" 1 "" {GLPLOT2D 848 287 287 {PLOTDATA 2 "6)- %'CURVESG6$7S7$$\"\"!F)F(7$$\"+;arz@!#6$\"+s+WYoF-7$$\"+XTFwSF-$\"+HWs z7!#57$$\"+\"z_\"4iF-$\"+n;dZ>F57$$\"+S&phN)F-$\"+1ljQ*QF57$$\"+J$RDX\"F5$\"+!\\'zBXF5 7$$\"+)R'ok;F5$\"+Q9Pq^F57$$\"+1J:w=F5$\"+_+;4eF57$$\"+3En$4#F5$\"++)Q &fkF57$$\"+/RE&G#F5$\"+s<8Ffp7$$\"+R\"3Gy%F5$\"+y?:l8Ffp7$ $\"+.T1&*\\F5$\"+dm689Ffp7$$\"+(RQb@&F5$\"+ZXFh9Ffp7$$\"+=>Y2aF5$\"+w8 x,:Ffp7$$\"+yXu9cF5$\"+\"*\\(Ra\"Ffp7$$\"+\\y))GeF5$\"+/h&ee\"Ffp7$$\" +i_QQgF5$\"+(o#4D;Ffp7$$\"+!y%3TiF5$\"+a:Qh;Ffp7$$\"+O![hY'F5$\"+A&*p* p\"Ffp7$$\"+#Qx$omF5$\"+k%>Bt\"Ffp7$$\"+u.I%)oF5$\"+sz@lNFfp7$$\"+l*RRL)F5$\"+q4!>$>Ffp7$$\"+`<.Y&)F5$\"+)*[1[>Ffp7$$ \"+8tOc()F5$\"+H)f>'>Ffp7$$\"+\\Qk\\*)F5$\"+T,%G(>Ffp7$$\"+p0;r\"*F5$ \"+1N2$)>Ffp7$$\"+lxGp$*F5$\"+bF>!*>Ffp7$$\"+!oK0e*F5$\"+3,m&*>Ffp7$$ \"+<5s#y*F5$\"+\\_$))*>Ffp7$$\"\"\"F)$\"\"#F)-%'COLOURG6&%$RGBG$\"*+++ +\"!\")F(F(-F$6$7SF'7$F+$\"+SGs]?F57$F1$\"+3`@=QF57$F7$\"+=H%)odF57$F< $\"+=&[Nn(F57$FA$\"+whI\"\\*F57$FF$\"+w%3\"46Ffp7$FK$\"+_1ck7Ffp7$FP$ \"+JK*GT\"Ffp7$FU$\"+A,rY:Ffp7$FZ$\"+RKLo;Ffp7$Fin$\"+z)*)4w\"Ffp7$F^o $\"+M;5[=Ffp7$Fco$\"+@nP;>Ffp7$Fho$\"+r*3L'>Ffp7$F]p$\"+5m\\*)>Ffp7$Fb p$\"+Ll)***>Ffp7$Fhp$\"+X(Q7*>Ffp7$F]q$\"+'o53'>Ffp7$Fbq$\"+N&ff\">Ffp 7$Fgq$\"+$yny%=Ffp7$F\\r$\"+0!*GlFfp7$Fiy$!+,R0h>Ffp7$F^z$!+!QD&*)>Ffp7$Fcz$!\"#F)- Fhz6&FjzF(F(F[[l-F$6$7inF'7$F+$\"+k\"*=2MF57$F1$\"+#[vTH'F57$F7$\"+9** Hr$*F57$F<$\"+QnO?7Ffp7$FA$\"+%['*yY\"Ffp7$FF$\"+;Qng;Ffp7$FK$\"+tE&z \"=Ffp7$FP$\"+MU/J>Ffp7$$\"+_(>/x\"F5$\"+5cdn>Ffp7$FU$\"+vha!*>Ffp7$$ \"+#)H`I>F5$\"+DS-(*>Ffp7$$\"+dG\"\\)>F5$\"+$ff)**>Ffp7$$\"+KFHR?F5$\" +4x/**>Ffp7$FZ$\"+`)*e%*>Ffp7$$\"+c#o%*=#F5$\"+0q*y(>Ffp7$Fin$\"+FJ,]> Ffp7$$\"+9r5$R#F5$\"+p4V0>Ffp7$F^o$\"+$H(=Z=Ffp7$Fco$\"+2!Q2p\"Ffp7$Fh o$\"+3Ht$\\\"Ffp7$F]p$\"+3w(*z7Ffp7$Fbp$\"+u`(Q*)*F57$Fhp$\"+Q-S'=(F57 $F]q$\"+ccUQQF57$Fbq$\"+wtvVxF-7$Fgq$!+c&Geg#F57$F\\r$!+KZmcdF57$Far$! +]/p$)))F57$Ffr$!+ulh`6Ffp7$F[s$!+Z0s39Ffp7$F`s$!+0'fAj\"Ffp7$Fes$!+2P I(y\"Ffp7$Fjs$!+#RU\"4>Ffp7$$\"+8i\"=s&F5$!+zQX_>Ffp7$F_t$!+!=m>)>Ffp7 $$\"+bljLfF5$!+TRG(*>Ffp7$Fdt$!+%=\"4**>Ffp7$$\"+@]tRhF5$!+Uv'z)>Ffp7$ Fit$!+(\\aU'>Ffp7$$\"+3kh`jF5$!+b2OB>Ffp7$F^u$!+ZEXn=Ffp7$Fcu$!+_cqIF57$F[x$\"+kXe&=&F57$F `x$\"+9oa;$)F57$Fex$\"+\"pU%>6Ffp7$Fjx$\"+G1>d8Ffp7$F_y$\"+RS*4f\"Ffp7 $Fdy$\"+j]ffFfp7$F^z$\" +1!\\4(>Ffp7$$\"+30O\"*)*F5$\"+;Ss#*>FfpFbz-Fhz6&FjzF(F[[lF(-F$6$7^qF' 7$$\"+3x&)*3\"F-$\"+i**)4R#F57$F+$\"+CZoZZF57$$\"+!y%*z7$F-$\"+'e(*Ru' F57$F1$\"+%Gcqm)F57$$\"+oMrU^F-$\"+8pir5Ffp7$F7$\"+>+$=E\"Ffp7$$\"+m6m #G(F-$\"+o_yN9Ffp7$F<$\"+T)e(*e\"Ffp7$FA$\"+E(*eG=Ffp7$$\"+=JN[6F5$\"+ WJ\"e!>Ffp7$FF$\"+\"e]/'>Ffp7$$\"+p3p)H\"F5$\"+?'R'z>Ffp7$$\"+!pt*\\8F 5$\"+gd`#*>Ffp7$$\"+5lD,9F5$\"+2!)4**>Ffp7$FK$\"+-bI**>Ffp7$$\"+)4wb] \"F5$\"+%4NG*>Ffp7$$\"+kGhe:F5$\"+N#*ez>Ffp7$$\"+J'\\;h\"F5$\"+hHhf>Ff p7$FP$\"+(=uH$>Ffp7$F`fl$\"+:&o.'=Ffp7$FU$\"+PdkiFfp7$Fg q$!+vI!G)>Ffp7$$\"+r(3x@%F5$!+g6T%*>Ffp7$$\"+iB0pUF5$!+gVm**>Ffp7$$\"+ `fR?VF5$!+Pfa)*>Ffp7$F\\r$!+c%f5*>Ffp7$$\"+WG))yWF5$!+@c0b>Ffp7$Far$!+ f%[>*=Ffp7$Ffr$!+y3h3Ur9Ffp7$Fcu$\"+u(GRt\"Ffp7$$\"+y)Qjx'F5$\"+75xR=Ffp7$Fhu$\"+qvr>>Ffp7 $$\"+N&H@)pF5$\"+')z%)o>Ffp7$F]v$\"+Q(=_*>Ffp7$$\"+upp1rF5$\"+O$>%)*>F fp7$$\"+`_VLrF5$\"+tE*)**>Ffp7$$\"+JNFfp7$$\"+5=\"p=(F5 $\"+jRl(*>Ffp7$$\"+n$)QSsF5$\"+Y.^))>Ffp7$Fbv$\"+FM\\s>Ffp7$$\"+o%*\\% R(F5$\"+$)p#R#>Ffp7$Fgv$\"+Sw#=&=Ffp7$F\\w$\"+q:HH;Ffp7$Faw$\"+'Q%pF8F fp7$$\"+pe()=!)F5$\"+estT6Ffp7$Ffw$\"+%zlzR*F57$$\"+ZACI#)F5$\"+OcJGtF 57$F[x$\"+gP\\j^F57$$\"+ee)*R%)F5$\"+kL_!)GF57$F`x$\"+#*eK%e&F-7$$\"+K &*>^')F5$!+[l+_xpy=Ffp7$F^z$!+[E>V >Ffp7$$\"+i2/P)*F5$!+]#zz'>Ffp7$F\\am$!+ytu&)>Ffp7$$\"+a-oX**F5$!+lOV' *>FfpF_dl-Fhz6&FjzF)F)F)-F$6$7erF'7$Ffam$\"+EDKpIF57$F+$\"+/h#f1'F57$F ^bm$\"+ocve&)F57$F1$\"+<(*z*3\"Ffp7$Ffbm$\"+=IJH8Ffp7$F7$\"+(Qo'Q:Ffp7 $F^cm$\"+*zYTr\"Ffp7$F<$\"+P.A]=Ffp7$$\"+:ddC%*F-$\"+L2UV>Ffp7$FA$\"+_ &oB*>Ffp7$$\"+A>1u5F5$\"+rsD(*>Ffp7$$\"+ac#))4\"F5$\"+b$)p**>Ffp7$$\"+ 'Q*eB6F5$\"+7))o**>Ffp7$Ficm$\"+b'Gs*>Ffp7$$\"+$e!)y>\"F5$\"+b:(\\)>Ff p7$FF$\"+Ar)H'>Ffp7$Ffdm$\"+v*[q)=Ffp7$FK$\"+md]r\"Ffp7$FU$\"+'oo\"*R*F57$F]gl$\"+aSg %e'F57$FZ$\"+'*3o9OF57$Fjgl$\"+5old#*F-7$Fin$!+EG5!y\"F57$Fbhl$!+5dz%y %F57$F^o$!+'='[ywF57$Fjgm$!+AQZS5Ffp7$Fco$!+UGw)G\"Ffp7$Fbhm$!+OYd*\\ \"Ffp7$Fho$!+L(3yn\"Ffp7$Fjhm$!++8<3=Ffp7$F]p$!+h-81>Ffp7$$\"+\\r4sJF5 $!+#*oE[>Ffp7$Fbim$!+O)\\!y>Ffp7$$\"+H!4mD$F5$!+jlC))>Ffp7$$\"+b'zZG$F 5$!+V-H&*>Ffp7$$\"+#G]HJ$F5$!+/(p\"**>Ffp7$Fbp$!+%zy)**>Ffp7$$\"+C^)\\ O$F5$!+q!)*z*>Ffp7$$\"+R$\\))Q$F5$!+QM%Q*>Ffp7$$\"+bNr7MF5$!+E'>u)>Ffp 7$Fjim$!+XRty>Ffp7$$\"+,iI%[$F5$!+y!>Y&>Ffp7$Fhp$!+'e3;#>Ffp7$$\"+cO2V OF5$!+Z4I6=Ffp7$F]q$!++3Xc;Ffp7$$\"+K5S_QF5$!+(>]_[\"Ffp7$Fbq$!+^!>aG \"Ffp7$Fhjm$!+SP#y.\"Ffp7$Fgq$!+)QV:m(F57$Fe[n$!+E[V3\\F57$F\\r$!+1]1_ ?F57$Fb\\n$\"+i;QL(*F-7$Far$\"+mCXwRF57$$\"+UrT%o%F5$\"+?HmbmF57$Ffr$ \"+ssI1#*F57$$\"+Ah$*))[F5$\"+X&yc<\"Ffp7$F[s$\"+')3J/9Ffp7$$\"+]7I0^F 5$\"+uRK3;Ffp7$F`s$\"+zSNtFfp7$$ \"+$e#GfaF5$\"+IY]\")>Ffp7$F[^n$\"+h?0'*>Ffp7$$\"+!e8q`&F5$\"+8HJ**>Ff p7$$\"+8R#Hc&F5$\"+#\\\"*)**>Ffp7$$\"+XU$))e&F5$\"+Aqy(*>Ffp7$Fjs$\"+E B+$*>Ffp7$Fg[m$\"+3v+X>Ffp7$F_t$\"+5E`_=Ffp7$F_\\m$\"+vu/@.6Ffp7$F]bn$!+'=&)= M\"Ffp7$Fbv$!+ik&*\\:Ffp7$Fjbn$!+u_^8Ffp7$F\\w$!+;Nd*)>Ffp7$$\"+I$H7t(F5$!+\"4rc*>Ffp7$$\"+b/%pv(F5 $!+&GK\"**>Ffp7$$\"+\"e^Ey(F5$!+ED&***>Ffp7$$\"+1FO3yF5$!+I28)*>Ffp7$$ \"+d\\yfyF5$!+WTd')>Ffp7$Faw$!+rN_k>Ffp7$Fhcn$!+ra%\\)=Ffp7$Ffw$!+2(z< w\"Ffp7$F`dn$!+3;g/;Ffp7$F[x$!++-+89Ffp7$Fhdn$!+]eu&=\"Ffp7$F`x$!+K#4* =$*F57$F`en$!+w\"[Zf'F57$Fex$!+s%y]s$F57$Fhen$!+*eTT,\"F57$Fjx$\"+3Yp: Ffp7$Fign$\"+3-;Z>Ffp7$F\\am$\"+QyXw>Ffp7$$\"+\"Q?&=**F5$\"+ Ohu')>Ffp7$Fahn$\"+ud5%*>Ffp7$$\"+F,%G(**F5$\"++f_)*>FfpFbz-Fhz6&Fjz$ \")#)eqkF][l$\"))eqk\"F][lFccp-%+AXESLABELSG6$Q\"x6\"Q!Ficp-%%VIEWG6$; F(Fcz%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" "Curve 3" "Curve 4" "Curve 5" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 67 "These functions look familiar. So let us \+ understand why that is so." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 233 "The differential equation for the spatial modes \+ is asking: which functions are proportional to their second derivative . This selects the class of exponentials, including complex exponentia ls. Then we asked the functions to vanish at " }{TEXT 19 3 "x=0" } {TEXT -1 165 ", and we wanted real-valued functions. This selected fro m sines and cosines just sine functions. Next we asked only for those \+ functions which had zero derivative at " }{TEXT 19 3 "x=1" }{TEXT -1 25 ". This selected from all " }{TEXT 19 15 "sin(sqrt(c1)*x)" }{TEXT -1 54 " those with an appropriate wavenumber, i.e., value of " }{TEXT 19 2 "c1" }{TEXT -1 91 ". Of those we plotted the lowest four. Functio ns which do not have too much variation with " }{TEXT 19 1 "x" }{TEXT -1 216 " should be representable with a few low-lying modes to a reaso nable degree of accuracy. This is where our hope comes from: we procee d even though we know that in principle there are infinitely many prod uct solutions." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 51 "Let us now understand how the modes evolve in time." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "sol_t:=dsolve(\{eq1\},F2(t));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%&sol_tG<#/-%#F2G6#%\"tG*&%$_C1G\"\"\"-%$expG6#*&%#c1GF-F*F-F-" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 43 "We observe that we want negative v alues of " }{TEXT 19 2 "c1" }{TEXT -1 185 ", because this generates dy ing solutions. Each of the spatial modes dies with time with a time co nstant of its own! The higher modes (many oscillations) die faster tha n the lower modes." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 113 "Now one might ask, why do we need to worry about dying m odes, when the solution to the heat equation starts from " }{TEXT 19 8 "u(x,0)=0" }{TEXT -1 286 " ? The answer is that we have the additive asymptotic piece. To be consistent with it, and with the stated initi al condition we have to superimpose the modes in such a way that they \+ cancel the asymptotic piece. This we do by a projection method (formal ly we construct a Fourier series)." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "solDE;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%\"wG6#%\" xG,&*&#\"\"\"\"\"#F+*$)F'F,F+F+!\"\"F'F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 54 "basis:=seq(evalc(subs(c1=sol_c1[i],I*sol_x1)),i=1..5) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&basisG6',$*&\"\"#\"\"\"-%$sinG 6#,$*&$\"+Fjzq:!\"*F)%\"xGF)F)F)F),$*&F(F)-F+6#,$*&$\"+!)*)Q7ZF1F)F2F) F)F)F),$*&F(F)-F+6#,$*&$\"+M;)R&yF1F)F2F)F)F)F),$*&F(F)-F+6#,$*&$\"+Hu b*4\"!\")F)F2F)F)F)F),$*&F(F)-F+6#,$*&$\"+%p;PT\"FKF)F2F)F)F)F)" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 130 "We claim that the inner product ( dot product) of two basis functions is just the integral of the produc t of functions from 0 to 1." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "int(basis[1]*basis[2],x=0..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# $\"+$)=QEV!#>" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "int(basis[ 1]*basis[3],x=0..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$!+pm+D#)!#@" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 81 "To numerical accuracy the funct ions are orthogonal! What about the normalization?" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "int(basis[1]*basis[1],x=0..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+++++?!\"*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "int(basis[2]*basis[2],x=0..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+++++?!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 353 " OK, so the functions are normalized in a funny way, but that shouldn't deter us. Verify the orthogonality and normalization for some of the \+ other basis functions (or basis vectors in the Hilbert space). Let us \+ expand by calculating projections. To make up for the wrong normalizat ion we re-define the basis functions by dividing by the square root of 2." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "b[1]:=int(rhs(solDE) *basis[1]/sqrt(2),x=0..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"bG6 #\"\"\"$\"+#fW)[O!#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "b[2 ]:=int(rhs(solDE)*basis[2]/sqrt(2),x=0..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"bG6#\"\"#$\"+IRU^8!#6" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 46 "b[3]:=int(rhs(solDE)*basis[3]/sqrt(2),x=0..1);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"bG6#\"\"$$\"+wc2>H!#7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "b[4]:=int(rhs(solDE)*basis[4]/sqrt( 2),x=0..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"bG6#\"\"%$\"+GH!Q1 \"!#7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "b[5]:=int(rhs(solD E)*basis[5]/sqrt(2),x=0..1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"b G6#\"\"&$\"+2KF0]!#8" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 168 "Good new s: the projection of the function to be expanded onto higher basis sta tes are getting smaller. We are ready to compare the expansion with th e original function:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "FE: =add(b[i]*basis[i]/sqrt(2),i=1..5);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6 #>%#FEG,,*($\"+#fW)[O!#5\"\"\"-%$sinG6#,$*&$\"+Fjzq:!\"*F*%\"xGF*F*F* \"\"##F*F4F**($\"+IRU^8!#6F*-F,6#,$*&$\"+!)*)Q7ZF2F*F3F*F*F*F4F5F**($ \"+wc2>H!#7F*-F,6#,$*&$\"+M;)R&yF2F*F3F*F*F*F4F5F**($\"+GH!Q1\"FCF*-F, 6#,$*&$\"+Hub*4\"!\")F*F3F*F*F*F4F5F**($\"+0KF0]!#8F*-F,6#,$*&$\"+%p;P T\"FSF*F3F*F*F*F4F5F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "pl ot([FE,rhs(solDE)],x=0..1,color=[red,blue]);" }}{PARA 13 "" 1 "" {GLPLOT2D 992 227 227 {PLOTDATA 2 "6&-%'CURVESG6$7S7$$\"\"!F)F(7$$\"3e mmm;arz@!#>$\"3_mb*\\kU**3#F-7$$\"3[LL$e9ui2%F-$\"3i#)RDI&*R+RF-7$$\"3 nmmm\"z_\"4iF-$\"3Qb\"4w?`!>fF-7$$\"3[mmmT&phN)F-$\"3#)=B-LO2CzF-7$$\" 3CLLe*=)H\\5!#=$\"3%G3n?0x[))*F-7$$\"3gmm\"z/3uC\"FB$\"3o#)>m#FB7$$\"3$******\\PAvr#FB$\"33o0Dm(=AN#FB7$$\"3)******\\nHi#HFB$ \"3tY972Rj+DFB7$$\"3jmm\"z*ev:JFB$\"3,^In\"p\"[JEFB7$$\"3?LLL347TLFB$ \"3QS8?QnT#y#FB7$$\"3,LLLLY.KNFB$\"3_!>ez[uk!HFB7$$\"3w***\\7o7Tv$FB$ \"3]Ct^v)Ql/$FB7$$\"3'GLLLQ*o]RFB$\"3QY*=*)[#zmJFB7$$\"3A++D\"=lj;%FB$ \"3q!4aCfTZH$FB7$$\"31++vV&R!Rro7MFB7$$\"3WLL$e9Ege%FB$\" 3b!pDmqT;`$FB7$$\"3GLLeR\"3Gy%FB$\"3^b#\\ws'4POFB7$$\"3cmm;/T1&*\\FB$ \"3KaZ))\\!omu$FB7$$\"3&em;zRQb@&FB$\"3c?J%3n_d&QFB7$$\"3\\***\\(=>Y2a FB$\"3'3(zkHfnYRFB7$$\"39mm;zXu9cFB$\"3\\W_C0ebSSFB7$$\"3l******\\y))G eFB$\"3+nNdD$\\F8%FB7$$\"3'*)***\\i_QQgFB$\"3xQmJR&y\"=UFB7$$\"3@***\\ 7y%3TiFB$\"3!ostLzQjH%FB7$$\"35****\\P![hY'FB$\"3%H/T70ozP%FB7$$\"3kKL L$Qx$omFB$\"39]p14_uYWFB7$$\"3!)*****\\P+V)oFB$\"3Jq]4F-\\:XFB7$$\"3?m m\"zpe*zqFB$\"3#RIiTA)otXFB7$$\"3%)*****\\#\\'QH(FB$\"3,qdqx+'Hj%FB7$$ \"3GKLe9S8&\\(FB$\"3+j\"*z[jm%o%FB7$$\"3R***\\i?=bq(FB$\"38i@_*e\"eMZF B7$$\"3\"HLL$3s?6zFB$\"39Xd/_QNzZFB7$$\"3a***\\7`Wl7)FB$\"3\"yvhhg()># [FB7$$\"3#pmmm'*RRL)FB$\"3%=sMBIZ*e[FB7$$\"3Qmm;a<.Y&)FB$\"3K)fyIfZD*[ FB7$$\"3=LLe9tOc()FB$\"3Qv5`2%=;#\\FB7$$\"3u******\\Qk\\*)FB$\"3Ruc\"[ LIX%\\FB7$$\"3CLL$3dg6<*FB$\"3KRF-/#>i'\\FB7$$\"3ImmmmxGp$*FB$\"3ICK5^ wR\")\\FB7$$\"3A++D\"oK0e*FB$\"3On'42'*3J*\\FB7$$\"3A++v=5s#y*FB$\"3eJ 09aM$***\\FB7$$\"\"\"F)$\"3%))3P![8W-]FB-%'COLOURG6&%$RGBG$\"*++++\"! \")F(F(-F$6$7SF'7$F+$\"3w%Ry,iff:#F-7$F1$\"3O(Qt74%>$*RF-7$F6$\"3qc`r* *[Q;gF-7$F;$\"3-y7i%pTq+)F-7$F@$\"3a->]]&oC%**F-7$FF$\"3=.j,1ngp6FB7$F K$\"3!**e3e!e/Z8FB7$FP$\"35Giudt7E:FB7$FU$\"3pBaM#eb,q\"FB7$FZ$\"3?o!* ye$*\\u=FB7$Fin$\"3!HJ#e[B9C?FB7$F^o$\"3s>Tf)p7#)=#FB7$Fco$\"3'zro?)fF [BFB7$Fho$\"3qpuXp')3)\\#FB7$F]p$\"3yTl9d\"f.j#FB7$Fbp$\"3=D#G@YmHy#FB 7$Fgp$\"3aE+y+7F3HFB7$F\\q$\"3u'*Q2!eW%\\IFB7$Faq$\"3E(>aJ0#HqJFB7$Ffq $\"3'HQt+CN%)H$FB7$F[r$\"3/F1$=@MhT$FB7$F`r$\"3p')*>`NWW`$FB7$Fer$\"3J /,eaa/ROFB7$Fjr$\"3e\\*HR$3`ZPFB7$F_s$\"3%*3&4*ejWbQFB7$Fds$\"3_GMh)pH a%RFB7$Fis$\"3m#f-Zuw%QSFB7$F^t$\"3Q=hgr64ITFB7$Fct$\"3-S6eL/G:UFB7$Fh t$\"3Y\"[7*=y_$H%FB7$F]u$\"3QWnN:XfvVFB7$Fbu$\"3bdd+PX,XWFB7$Fgu$\"3pU (QBz?Y^%FB7$F\\v$\"3UtjqRzmtXFB7$Fav$\"3WPFzZ;%Qj%FB7$Ffv$\"3cH^v>BG'o %FB7$F[w$\"38*[2\\mnnt%FB7$F`w$\"3ioSnLs%=y%FB7$Few$\"3*e`I.B3X#[FB7$F jw$\"3!pYm#)>77'[FB7$F_x$\"3#pT0q\"))H%*[FB7$Fdx$\"3Jm\")=())oE#\\FB7$ Fix$\"3/fy!zfP[%\\FB7$F^y$\"3!R$H.g7ll\\FB7$Fcy$\"3#R=OR55,)\\FB7$Fhy$ \"3CM]UeB?\"*\\FB7$F]z$\"3I[`@#\\Rw*\\FB7$Fbz$\"3++++++++]FB-Fgz6&FizF (F(Fjz-%+AXESLABELSG6$Q\"x6\"Q!Ffdl-%%VIEWG6$;F(Fbz%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 202 "We see that the expansion is \+ better than 1% accurate (otherwise we would notice a difference in the graph). Repeat the graph with less than five basis states and observe how the convergence comes about!" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 218 "Now we are ready to put everything toget her. The total solution is obtained by multiplying the basis functions with the appropriate time-factors, and by adding the transient and st eady-state parts together as required:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "sol_t;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#<#/-%#F2G6#% \"tG*&%$_C1G\"\"\"-%$expG6#*&%#c1GF+F(F+F+" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 67 "FEt:=rhs(solDE)-add(b[i]*basis[i]/sqrt(2)*exp(sol_c 1[i]*t),i=1..5);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%$FEtG,0*&\"\"#! \"\"%\"xGF'F(F)\"\"\"**$\"+#fW)[O!#5F*-%$sinG6#,$*&$\"+Fjzq:!\"*F*F)F* F*F*F'#F*F'-%$expG6#,$*&$\"++6SnCF6F*%\"tGF*F(F*F(**$\"+IRU^8!#6F*-F06 #,$*&$\"+!)*)Q7ZF6F*F)F*F*F*F'F7-F96#,$*&$\"+!*4m?A!\")F*F?F*F(F*F(**$ \"+wc2>H!#7F*-F06#,$*&$\"+M;)R&yF6F*F)F*F*F*F'F7-F96#,$*&$\"+^F]ohFPF* F?F*F(F*F(**$\"+GH!Q1\"FTF*-F06#,$*&$\"+Hub*4\"FPF*F)F*F*F*F'F7-F96#,$ *&$\"+Rl-47!\"(F*F?F*F(F*F(**$\"+0KF0]!#8F*-F06#,$*&$\"+%p;PT\"FPF*F)F *F*F*F'F7-F96#,$*&$\"+\"*[f)*>FjoF*F?F*F(F*F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 81 "plot([seq(subs(t=j*0.25,FEt),j=1..5)],x=0..1,col or=[red,blue,green,black,brown]);" }}{PARA 13 "" 1 "" {GLPLOT2D 877 291 291 {PLOTDATA 2 "6)-%'CURVESG6$7S7$$\"\"!F)F(7$$\"3emmm;arz@!#>$\" 3(Hx9x$4%>?\"F-7$$\"3[LL$e9ui2%F-$\"3j7tH[['*4AF-7$$\"3nmmm\"z_\"4iF-$ \"3#zuUP$4c-LF-7$$\"3[mmmT&phN)F-$\"3wz%=+Q_&fVF-7$$\"3CLLe*=)H\\5!#=$ \"37nrFeT*)p`F-7$$\"3gmm\"z/3uC\"FB$\"3)Gw3()oF/F'F-7$$\"3%)***\\7LRDX \"FB$\"3/e5O%\\*4nrF-7$$\"3]mm\"zR'ok;FB$\"3sHUE(*=6d!)F-7$$\"3w***\\i 5`h(=FB$\"3\\3$*)H4'[2*)F-7$$\"3WLLL3En$4#FB$\"3/(pTYhB\\u*F-7$$\"3qmm ;/RE&G#FB$\"3)*)**4-M1_/\"FB7$$\"3\")*****\\K]4]#FB$\"3$\\#z5p8\\@6FB7 $$\"3$******\\PAvr#FB$\"3U^]z6sk%>\"FB7$$\"3)******\\nHi#HFB$\"3+faWzm (>E\"FB7$$\"3jmm\"z*ev:JFB$\"3y99&z[)\\?8FB7$$\"3?LLL347TLFB$\"3Oer%)R W$pQ\"FB7$$\"3,LLLLY.KNFB$\"3&)e5fB4hS9FB7$$\"3w***\\7o7Tv$FB$\"3)\\5H xY2aFB$ \"3g(z8xmOS&=FB7$$\"39mm;zXu9cFB$\"3saftGQQ))=FB7$$\"3l******\\y))GeFB $\"3*\\5u&yHv@>FB7$$\"3'*)***\\i_QQgFB$\"3scoy+/Q_>FB7$$\"3@***\\7y%3T iFB$\"3u%zO*\\*p,)>FB7$$\"35****\\P![hY'FB$\"323(=[ti*3?FB7$$\"3kKLL$Q x$omFB$\"3'>q>xCNI.#FB7$$\"3!)*****\\P+V)oFB$\"35*Hb3*3\"p0#FB7$$\"3?m m\"zpe*zqFB$\"3M%y.?%)ep2#FB7$$\"3%)*****\\#\\'QH(FB$\"3Y!R:FT%>(4#FB7 $$\"3GKLe9S8&\\(FB$\"3s.hen'oY6#FB7$$\"3R***\\i?=bq(FB$\"3RC)=$e&\\88# FB7$$\"3\"HLL$3s?6zFB$\"3Ejc>7l7Y@FB7$$\"3a***\\7`Wl7)FB$\"3?\"4!\\2\" 3+;#FB7$$\"3#pmmm'*RRL)FB$\"31!)p7w8(=<#FB7$$\"3Qmm;a<.Y&)FB$\"3=6&R%* )>]#=#FB7$$\"3=LLe9tOc()FB$\"3S>nL,#p:>#FB7$$\"3u******\\Qk\\*)FB$\"3) G$\\zaNi)>#FB7$$\"3CLL$3dg6<*FB$\"3_n3gQ?A0AFB7$$\"3ImmmmxGp$*FB$\"3'4 !))o(z\"z4AFB7$$\"3A++D\"oK0e*FB$\"3.U2$yq*G8AFB7$$\"3A++v=5s#y*FB$\"3 ALY*4_;`@#FB7$$\"\"\"F)$\"3\\%4oF=fg@#FB-%'COLOURG6&%$RGBG$\"*++++\"! \")F(F(-F$6$7SF'7$F+$\"3lx_gW!R:k\"F-7$F1$\"3l$p3=I[;.$F-7$F6$\"3c/)Ha =RIb%F-7$F;$\"3*HmSL*)H-/'F-7$F@$\"3q\"ft^l.oZ(F-7$FF$\"3!G'4H!zq.x)F- 7$FK$\"3=nUU)pTr+\"FB7$FP$\"3HD_*3lTw8\"FB7$FU$\"3/%zHYLtOE\"FB7$FZ$\" 3-g'Gdu\\\"*Q\"FB7$Fin$\"3-tcQxx@'\\\"FB7$F^o$\"3XZe/NG$Hh\"FB7$Fco$\" 33E&pQ#36EFB7$Fbp$\"3&o?SW 12+.#FB7$Fgp$\"3I#=/k[cm6#FB7$F\\q$\"3(4L8PciP@#FB7$Faq$\"3'4qT\\t\\kH #FB7$Ffq$\"31m8\\P[o$Q#FB7$F[r$\"3y@$*pdZSjCFB7$F`r$\"345#e%o_9VDFB7$F er$\"3f2k\"Hd:Lh#FB7$Fjr$\"3K;$)GLAw&o#FB7$F_s$\"3'4@$>@Q\\dFFB7$Fds$ \"3<=?Ol%\\q\"GFB7$Fis$\"3)43=!GkQyGFB7$F^t$\"3-Vso4J`QHFB7$Fct$\"3q\" G7%R;C%*HFB7$Fht$\"3/-^*>5B_/$FB7$F]u$\"3ck:x:$*\\)4$FB7$Fbu$\"3_XWDD, TVJFB7$Fgu$\"3Y)*))=\")yH)=$FB7$F\\v$\"3IV0-@KEEKFB7$Fav$\"3MA-65e%[E$ FB7$Ffv$\"35'3Y0n\"Q)H$FB7$F[w$\"31.\\v)4*eILFB7$F`w$\"3?b*za0$GfLFB7$ Few$\"3/HMb&4\"Q'Q$FB7$Fjw$\"3.G3OR7l4MFB7$F_x$\"3&*\\<4RIfIMFB7$Fdx$ \"3Wx5A7J_[MFB7$Fix$\"3;M%**3(o^iMFB7$F^y$\"3_()[Ao;kvMFB7$Fcy$\"3#R6K pW^Z[$FB7$Fhy$\"3!)3YG$zN<\\$FB7$F]z$\"3#o0E!ysy&\\$FB7$Fbz$\"3UWhvZEF (\\$FB-Fgz6&FizF(F(Fjz-F$6$7SF'7$F+$\"3;*R`y^e$y=F-7$F1$\"3Ymph)F-7$FF$\"3)3 (44`[s65FB7$FK$\"3'\\\"yUB/ij6FB7$FP$\"3mV>BVa[;8FB7$FU$\"3ooqRYGhk9FB 7$FZ$\"3!Q$p)*eee7;FB7$Fin$\"3i*Gklq`#Rt)p#FB7$Ffq$\"3uznj)R*z/GFB7$F[r$\"3\\OFB7$F]u$\"3%>x'z46U'o$FB7$Fbu$\"3dh? ,(z9Eu$FB7$Fgu$\"3w\"4Yzw\")))z$FB7$F\\v$\"3!=\\%yc@bYQFB7$Fav$\"3s]*z 0Du]*QFB7$Ffv$\"3Co*\\U'HJPRFB7$F[w$\"3'y'o&)[Y$z(RFB7$F`w$\"30Q'pKtrT ,%FB7$Few$\"37_=<(=M%[SFB7$Fjw$\"3O1Iq%f))y2%FB7$F_x$\"3$pSC>E@W5%FB7$ Fdx$\"3\\Nt'eQdr7%FB7$Fix$\"3F!3i5[9\\9%FB7$F^y$\"3imS\"Q%)y:;%FB7$Fcy $\"3[TSph5:tTFB7$Fhy$\"3OQR%4[E?=%FB7$F]z$\"3i)z!e(>wr=%FB7$Fbz$\"3/wx [OW1*=%FB-Fgz6&FizF(FjzF(-F$6$7SF'7$F+$\"3J')G)\\bah+#F-7$F1$\"38(RQ=7 \"=8PF-7$F6$\"3%=#f&)>@C!f&F-7$F;$\"3*3b:r(QGMuF-7$F@$\"3,mO6A!RWA*F-7 $FF$\"3_))Qj6rS%3\"FB7$FK$\"33h@qj=1[7FB7$FP$\"3'>IHx)e*HT\"FB7$FU$\"3 -,b'\\&p/t:FB7$FZ$\"3C6Ky$GTFB7$F\\v$\"3]#ykq4'G\"=%FB7$Fav$\"3 pKv65@q!G)\\QWFB7$F_x$\"39fY!\\6[! oWFB7$Fdx$\"3Ud_htyP$\\%FB7$Fix$\"3(fh(H$*e;8XFB7$F^y$\"3/eh2@/uJXFB7$ Fcy$\"3WZZj@:kWXFB7$Fhy$\"3Ivarzu`aXFB7$F]z$\"3!\\(\\rp)z-c%FB7$Fbz$\" 3e1%*e@bQiXFB-Fgz6&FizF)F)F)-F$6$7SF'7$F+$\"3[*zJAf=^2#F-7$F1$\"3Y=PVw u3UQF-7$F6$\"39vM(od?ky&F-7$F;$\"3'fnP]\"y&zp(F-7$F@$\"3Olj-H+*\\b*F-7 $FF$\"3\"QeA.ZHO7\"FB7$FK$\"39u$HU'*HOH\"FB7$FP$\"3Enf=Bp2l9FB7$FU$\"3 $zM>Q\\i:j\"FB7$FZ$\"3-Qo'HwE#)z\"FB7$Fin$\"3X)>aV4z6%>FB7$F^o$\"3[L8T _v!y4#FB7$Fco$\"3)Gr\"3+G]]AFB7$Fho$\"35I^Kw>K$R#FB7$F]p$\"3h3'yG.R$>D FB7$Fbp$\"3mjrX3*QYm#FB7$Fgp$\"3qMEpR*oQy#FB7$F\\q$\"3S$yP+6<\"=HFB7$F aq$\"3SAQSfw'H.$FB7$Ffq$\"3u=at,@oaJFB7$F[r$\"3K!oM[i7kE$FB7$F`r$\"35, &*p/:myLFB7$Fer$\"3y+Ulf<&yZ$FB7$Fjr$\"3mQy9.On!e$FB7$F_s$\"3]J>gmF!Ho $FB7$Fds$\"3m$[jMM/\"oPFB7$Fis$\"3#['fw$4oh&QFB7$F^t$\"3-D120t$G%RFB7$ Fct$\"3U0q'3h$RBSFB7$Fht$\"3#po_()4ct4%FB7$F]u$\"3;k,r1$)*[<%FB7$Fbu$ \"3%=&HS[mYSUFB7$Fgu$\"39e\"o7L)=1VFB7$F\\v$\"3Q;q6>C#>O%FB7$Fav$\"3>z 06EIq=WFB7$Ffv$\"3CEKebF!HeX FB7$Few$\"3;&[M(Ha])f%FB7$Fjw$\"3)ou%oJ#)4LYFB7$F_x$\"3Sv)fZDwUm%FB7$F dx$\"3aq4uYc+\"p%FB7$Fix$\"3[I3\"yj*)=r%FB7$F^y$\"3Qz!\\,(\\\\JZFB7$Fc y$\"3[3&=6>8^u%FB7$Fhy$\"3-#fNW()fbv%FB7$F]z$\"3S8Sl&4A;w%FB7$Fbz$\"3# QZ;E2XQw%FB-Fgz6&Fiz$\")#)eqkF\\[l$\"))eqk\"F\\[lFc`n-%+AXESLABELSG6$Q \"x6\"Q!Fi`n-%%VIEWG6$;F(Fbz%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" "Curve 3" "Curve \+ 4" "Curve 5" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 154 "We observe how t he solution rapidly approaches the steady state. Explore the time beha vior in detail (by choosing different time intervals and more steps " }{TEXT 19 1 "j" }{TEXT -1 2 ")." }}{PARA 0 "" 0 "" {TEXT -1 120 "Repea t the observation for a more approximate solution by selecting a small er expansion in the Fourier series, i.e., in " }{TEXT 19 3 "FEt" } {TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 165 "Here is a graph in three dimensions. It shows, how well \+ the Fourier expansion approximates the initial condition, and how quic kly the asymptotic values are attained." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "plot3d(FEt,x=0..1,t=0..2,axes=boxed);" }}{PARA 13 "" 1 "" {GLPLOT3D 495 495 495 {PLOTDATA 3 "6%-%%GRIDG6%;$\"\"!F($\"\"\"F( ;F'$\"\"#F(X,%)anythingG6\"6\"[gl'!%\"!!#\\bm\":\":0000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000003F4EA1A036DE109A3F8A1105CDA04C343F92C6B 641C4D2563F971CF8055E49E23F9A9780AC1D8F8E3F9D6A6CF6C8BBC73F9FB6A8E2CC9 7D63FA0CAC201C3F42C3FA18DAED059E1083FA22C6124D789083FA2AD94D7C618293FA 316C54137E3533FA36C68E308C0943FA3B221E72305243FA3EAE5972F3C153FA4191C7 DEBEA6A3FA43EBC8FB7BD893FA45D5E76829BAE3FA4764EE878F31D3FA48A9CC5BC14E 83FA49B249679D2013FA4A899E636A99B3FA4B38EE1EAC7E73FA4BC7A8BAED44E3FA4C 3BDC754F6403F4B42B03699AB3E3F986EE05300F1C23FA1F02D3880715A3FA643B55AC C16863FA9BC47EA2FD8EB3FAC8DA5C3CFE92E3FAED89EEBE0C1C73FB05B39C3669BB53 FB11DBBB97B6F443FB1BC1711DFCCE63FB23D03F3788BC33FB2A5FAB506F2883FB2FB6 F66280E733FB3410232EF165A3FB379A6C5EFA9223FB3A7C457F895603FB3CD4FCA477 75C3FB3EBE0E6CD7AA93FB404C3AD59C1523FB419066995020C3FB429852ACC89DD3FB 436F31A1B85313FB441E2145B1B5A3FB44AC8DA69020A3FB452081AFC03E63F33624D4 C9D8B363FA12BD6B288D2AC3FA9B3691E562A293FB014F5D52AFEA63FB2ACF17B78B12 43FB4C806B694C1C23FB67EAED24DE6453FB7E3C6AF6587593FB9067EF86D6CF43FB9F 32EE6216BF63FBAB3E17AD237503FBB50C3B8A3A1853FBBD07D9C12FB1F3FBC387A6ED 239223FBC8D23A4D1832D3FBCD210C7E23C183FBD0A2E7B3BBE7F3FBD37DE3EC085F13 FBD5D104B05F0E83FBD7B589EFE51B03FBD940023F0D4653FBDA812A1EACE6B3FBDB86 A1C3C43633FBDC5B81165E9733FBDD08D02EFC047BF2EC2ADD9EF9FA03FA5735F4A34B 30A3FB05CEE9B05E3023FB4A5A366FF89993FB81665A49730923FBAE18F17D0B5833FB D27815EEAA6983FBF013F42F027393FC0417794CA4AD23FC0DE781AAB371B3FC15E4A9 FA8C7633FC1C65B7F23D8D73FC21B1507C8F4373FC2600F74DA70753FC29837F9EC598 83FC2C5F08C65385C3FC2EB29C48690573FC30977EF26C2743FC3222434F710093FC33 63A91A5B3B43FC34695328B293C3FC353E5B860BBEE3FC35EBCC08ACDF33FC3679007D 1ACA63FC36EBF692D3698BF40FC107ABADF063FA91F675EB589B53FB38810E56952B33 FB8D8E59546F0DC3FBD1E8F9272BC783FC04B5CA3A57B863FC1B4BB93807D7F3FC2DAE 9D216035F3FC3CA6A2B8B08463FC48D6723D614F43FC52C26C3F9128D3FC5AD654F757 78A3FC6169E8E48C2AD3FC66C496153E6723FC6B208407A5DC93FC6EAD0B4F8A3F83FC 7190B7D5417E13FC73EAEB81361E63FC75D533178BD7E3FC77645BBA1F6313FC78A954 D703DF23FC79B1E8196E11A3FC7A894F2AE9FE73FC7B38AD9F6750F3FC7BC774385BB4 BBF4062B87017414E3FAC40974FA6B71F3FB661440C6828EC3FBCB3A7197DEBDD3FC0E 4B612C349903FC2F561E61036F63FC4A39A1EB32F1B3FC601D51D9DB2693FC71EF74E5 E15663FC8071AF82A3B7C3FC8C419ACF5F83A3FC95DF835EFCD953FC9DB3DD17D4EA33 FCA413B2140768F3FCA9443E569C0B43FCAD7DDFC9C43B73FCB0EE7A78912D73FCB3BB 6AFF6C6643FCB6031C5957EF93FCB7DE524195EED3FCB961362E229463FCBA9C324C7D 5D73FCBB9CA3CB455A53FCBC6D6C011D1C83FCBD176699648C3BF3122805CBD686C3FA EE6BF761B2F273FB8EE851B2DD4F23FC01D5ACE3124B23FC30D70CAC020E93FC5706D7 18FDBE83FC761A6EB9ADC0A3FC8F66EAB6AC8143FCA3FFA1E5D03423FCB4C45FECB5FB 03FCC26B4998C70873FCCD88A72DDEF393FCD69531770113F3FCDDF331612F3F93FCE3 F2AB8E9EC543FCE8D4C57563D3F3FCECCE88F4B829E3FCF00B2467FDA183FCF2ADBFA8 BFA6E3FCF4D2F9E5D5E703FCF6922082FDF6A3FCF7FE2C3172FF63FCF9268EFE7EF233 FCFA17DC16173BD3FCFADC5057A21C43F09EE30F7762E403FB0905DA244B3523FBB359 E0414179B3FC1B95E25AA09ED3FC50B5D92733B0E3FC7BE0A81B73B143FC9F023BB697 1EF3FCBB9BC6F126AED3FCD2E47DF9DEE893FCE5D95D8D5CA7E3FCF5484E5C157563FD 00EC78E45BA253FD0609E095AEA963FD0A33EC42CD6C63FD0D97D6B0742CA3FD105A72 AA708F83FD1299BAF8352A23FD146E17FBDE28B3FD15EB68CC808FF3FD1721DB0B2E32 B3FD181E9A9AED5C33FD18EC60B0320683FD1993E849AF8083FD1A1C4D038F75F3FD1A 8B584AFD9EA3F32EF3E364F49983FB17E2D818DF3353FBD3C1EB1D43C433FC3301F512 E203E3FC6E0527A511A1E3FC9DFB7BDB53C063FCC50481531D6203FCE4CBC093894FE3 FCFEAAF0F69446D3FD09DD95183E5B93FD12709B7DD7D023FD196BAD08D7D2D3FD1F1A 9BDDBEF9B3FD23BB22A0F4EAC3FD277F82F5D2DB43FD2A90A75AF6AB03FD2D0FDF9253 50A3FD2F184A70C3D783FD30BFFC6F0BF0D3FD3218EF7BB46EA3FD3331C63A8CEFF3FD 34166AFA7EAAD3FD34D0912038FDA3FD35681E835DE4D3FD35E38136954263F3834CE9 FAA47AB3FB2432A2FE08EF03FBF0756BD200B6D3FC483C9B8BC8F153FC88E13FE11419 33FCBD6E594C18C4E3FCE833FF06248743FD05830D8C352303FD13AFB40EEBC033FD1F 39F1EBBBD8B3FD289F200DB961B3FD30454A62F73513FD367F856A04D5C3FD3B9174BF 7E9933FD3FB229CDA12353FD430E79EB6225B3FD45CAE550CFD5A3FD4805238A911D83 FD49D5663EADBE43FD4B4F5FF45D6DE3FD4C831A050A09C3FD4D7DA2CA3A1C33FD4E49 9B6C397733FD4EEFAB55BA4183FD4F76DE32668453F326F20AEE998FE3FB2E51CDEEE9 55D3FC04E27E7A8DD853FC5B670117A52D73FCA1653154910883FCDA4F4AA5256563FD 0451535F99AA83FD172CB9579FC9D3FD2686E43FC66EA3FD33069CD0F69B93FD3D33A6 0C92EF13FD457C8691D28043FD4C3B3A25C67863FD51B9033746DFF3FD563186996A6E 83FD59D55355AC9F43FD5CCBF216C9F5B3FD5F35928D92F7B3FD612C6907A792F3FD62 C5CB0D276803FD64131718AD00D3FD6522713E5F3603FD65FF5CC321B643FD66B33928 1ADC83FD6745A7F8B96033F15EDD72C58EB183FB3693BF5F92D743FC0FFE45B16947F3 FC6CA0A23D1B2433FCB7AAB5AA87BC63FCF4B3453D4ABD63FD1330C49D962A63FD2769 D61C30AC13FD37E0B0F7C16073FD45483098052FE3FD5031ED33F09403FD59146EF058 1033FD60503633F2BFE3FD6633D3F094F0A3FD6AFF3F000386A3FD6EE68AE2F4B883FD 72141D603BC413FD74AA7B04376EA3FD76C5BE0A45B753FD787CC798540983FD79E238 3FCF0C63FD7B053A4F0C5693FD7BF22688A3F553FD7CB30A3DC70383FD7D50147C1F7A ABF20E1652AFBBD7C3FB3D42CD4B389183FC19B1894063AFB3FC7C072B68187F73FCCB CA14BCC856E3FD0657094C619DE3FD20C061A82D9BF3FD3640F30508A963FD47C2714F 7D1003FD560306450510F3FD619D7FABF28E73FD6B0FE53CC02163FD72C0D235C6E4A3 FD7903CFEB5BBD93FD7E1CE11F5046B3FD824364B32C0AF3FD85A46F0F990983FD8864 B3C59DA5C3FD8AA2142FCB2213FD8C74E3FD12AF03FD8DF0F16A3EF333FD8F265C5FEC 7DF3FD902245957B2323FD90EF5D273354D3FD919656AC508E4BF3179FF9D92CA6A3FB 42A081B209DF43FC221D319B8FD873FC89B65A02667A93FCDDDA0A374E34D3FD11291D 613EF4A3FD2D07B62325C5B3FD43B834C79C1B73FD563125B3B10413FD653B304BFBF5 A3FD7179AE29F1E053FD7B719C6FD02843FD838F40B8609743FD8A2AC1272B6963FD8F 8BE1D7D605A3FD93ED1059C65493FD977DDE4C87F543FD9A65060A121833FD9CC20F4A B33B43FD9EAEA59B6513C3FDA03FAF2E291BB3FDA1862FD8BE5573FDA29001E32D0513 FDA3686C7D6C0103FDA4189E3E53DE8BF3259E2239281F43FB46E6001D7D0363FC295F 7A880EBBA3FC95C7E005BCA653FCEDEFACFC304723FD1AD878040890A3FD380DC2A659 FF63FD4FD54EE7CCEEB3FD633172698DC823FD72F4761A13B673FD7FC98C4E1F0223FD 8A3C15C763D563FD92BD8BCC0E5283FD99AA50AD1ED473FD9F4D9B33F92973FDA3E4A7 90EF5C23FDA7A15074F0C133FDAAAC2C8E793483FDAD2647631B95A3FDAF2A8839E997 B3FDB0CED6510E5243FDB22506C46A8F63FDB33B9E3D239533FDB41E6EA1D82D93FDB4 D7177833EAABF26C4109F9271E53FB4A4484373D1C43FC2F93E05BCC2E53FCA0534A13 02E063FCFC1E58601223E3FD236CFE170873E3FD41D8F511C1A9E3FD5A9D7D78206CB3 FD6EC79A782588B3FD7F324FF1157F13FD8C8FED44168A83FD97719E077A2113FDA04D 92C801E733FDA78404BDEBAAB3FDAD634AECA5FA13FDB22B2D04B45BC3FDB60F98218D 48C3FDB93AD2C79A2403FDBBCF48101A7C03FDBDE8FD7E2B6243FDBF9EC3594BC113FD C1032C7713DB13FDC22557F7741833FDC31195829CE073FDC3D1EB0075B29BEA2BB7CF 787A4003FB4CE5F13D1D7123FC34D31173CDD763FCA96DE814F05363FD043BCBAA461C E3FD2AEDD7986B8943FD4A6F21826568D3FD64157F5CE8B8D3FD78F77AFC6F0053FD89 F7E319AED4C3FD97CF60AA1E4DC3FDA3144AF4C8F603FDAC41083CD8A2D3FDB3B93F26 13B7D3FDB9CE110D048CB3FDBEC18B37738293FDC2C9743F0C37F3FDC61194262A27C3 FDC8BD8FDEB904D3FDCAEA6C700D2123FDCCAFCA28AD3443FDCE20E53B830543FDCF4D 66ABA43153FDD0420E63E0D053FDD1093DB188C283F2563140441F1D03FB4EED6A386F 2BD3FC3932E357A760A3FCB12AB86F884A63FD098588C9CC0363FD316167D2067943FD 51D57BEFEFB3D3FD6C419118AA5063FD81C486ED018003FD9347FE70ABD3C3FDA18A2F C26FFF73FDAD25F90B9B0413FDB6997018391AB3FDBE4B3BBA0C7D63FDC48EEEB6B597 E3FDC9A89380C86783FDCDCF8F3CC4E513FDD130FB6C6695F3FDD3F18FC7386DE3FDD6 2F3108D6F6D3FDD80235A078DAF3FDD97E6E0849CB63FDDAB3FBFBB6A723FDDBB001AE 2D1993FDDC7D307160E103F305EB2A5FEAD083FB5077EB498F7283FC3CC64AF7121A93 FCB79A55BA341AE3FD0DF33D6E5A04F3FD36CD4660BCB0F3FD58109279CBFF03FD7325 68276F5393FD8931C3522E5AF3FD9B251752EE5023FDA9C25AF1A53183FDB5A8497579 2AA3FDBF581DFB90D3D3FDC73B0EFC063383FDCDA6C507F25693FDD2E0FD280F3CA3FD D7227E51E145E3FDDA998215F841D3FDDD6BAAB13AD213FDDFB79BCE6366C3FDE19647 4F595173FDE31BFC3CEE72A3FDE459435BC2A933FDE55B92C2213D03FDE62DE00D65A5 B3F2DB38276F3014C3FB519CDCFFDAC863FC3F9D576BC30673FCBCCAE6FF7100E3FD11 8AC229173FC3FD3B36391ADEAFB3FD5D24486A074DD3FD78C42EEE1DB543FD8F41C3F6 9C7673FDA19146EB81AD03FDB079978D0402E3FDBC9CA03FDC1633FDC67E33C7C3F763 FDCE89A4ECCDBFE3FDD5165424C479C3FDDA6B649B7A56A3FDDEC2C0D9CAD153FDE24B 8FD2C710C3FDE52C350756FC93FDE783F17AD9C883FDE96C37297FF283FDEAF9BD6769 65E3FDEC3D61E2513C93FDED44DFD1AAF893FDEE1B651ADF84D3F1C25D268A36C763FB 526E9B8877E5F3FC41C52EAD5D98F3FCC0C8127B3C4E83FD1450E8016C1763FD3EA02E DBE34A73FD6113D1F35E38E3FD7D208142433DF3FD93F6A894069F33FDA68E47E6BFAE 83FDB5B14DFB143AD3FDC20422D5DB6023FDCC0CA05F673823FDD437C00915ECB3FDDA DE3A6464B173FDE0484AC4964823FDE4B0BFC88D9DD3FDE8477A154FB753FDEB33745A 8E3513FDED946AB1570493FDEF84334B4E3613FDF117D71234FDF3FDF260761FB50713 FDF36C01BEEC7D53FDF445D3DC04EA4BF0CDE2B0A313AD83FB52FAEC6B263093FC4348 0BAF807FA3FCC39AF2D0905213FD16497355255793FD410E3B3AEA2473FD63E1B0AF18 34C3FD803C698E235113FD97521A7F353B73FDAA1D748D0BBFD3FDB96A98288A5D33FD C5DFB6BE861073FDD0041EA0E04233FDD845F874437A63FDDEFEF3A3A6B1B3FDE47814 7AF88C53FDE8ECCD37CAC933FDEC8D83B4F839E3FDEF819F16097553FDF1E933BFD732 B3FDF3DE5FC6C95C93FDF576669B263353FDF6C297FC890A63FDF7D10C00F54B83FDF8 AD3C29C4EFDBF291481EFB5096C3FB534B5E85C30DC3FC442D3D71DCC2C3FCC54A0EAE 4F1A23FD177717D7F76963FD428293307CE5B3FD658FB0DE7EFC73FD82195E942753E3 FD99554AD5C07C73FDAC3FC547389DD3FDBBA6405339D053FDC83000A1451E73FDD265 34998BC953FDDAB4BB51A5C5C3FDE178D8BD30FD93FDE6FB0A15B3ADC3FDEB77240CB8 49E3FDEF1DDCA4C9DFA3FDF216DC4371A373FDF4826C6EA429C3FDF67AD67C0FCF73FD F81581133B5593FDF963D89F7B0B13FDFA740C8E6B9C53FDFB51A96268063BF2FFFCDF ED877343FB536590F393AB23FC4479269F505493FCC5D952DCCAA3D3FD17DB75B5832D 43FD42FE8AAF097E93FD661EE772EC55F3FD82B841D4241D63FD9A00F12F99FAE3FDAC F5CF8E387DA3FDBC64C02C60DE53FDC8F563915BC213FDD33032F2C9C4F3FDDB844A4C D2D633FDE24C1F28154FF3FDE7D1571C0A1623FDEC4FE7B790D273FDEFF8A1BEE0EB53 FDF2F343602434E3FDF56027DD7E3E73FDF759A6FCFB9053FDF8F533278413A3FDFA44 425A7E5D43FDFB550BCE3DBD73FDFC33225D199DD-%*AXESSTYLEG6#%$BOXG-%+AXESL ABELSG6%%\"xG%\"tGQ!F1" 1 2 0 1 10 0 2 1 1 2 2 1.000000 63.000000 -49.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 69 "Rotat e the graph to look at the solution from different perspectives." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 106 "To remin d ourselves that we do not have an exact solution we show the deviatio n from the intial condition:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "plot(subs(t=0,FEt),x=0..1);" }}{PARA 13 "" 1 "" {GLPLOT2D 651 304 304 {PLOTDATA 2 "6%-%'CURVESG6$7[r7$$\"\"!F)F(7$$\"3ALL$3FWYs#!#?$ \"3Abl#*>Y%Q1\"!#@7$$\"3WmmmT&)G\\aF-$\"3IDUbgZZb?F07$$\"3m****\\7G$R< )F-$\"3_;eR%e6p(HF07$$\"3ILLL3x&)*3\"!#>$\"3_^v%3\"Q$\"3mPt#y#)H-M&F07$$\"3emmm;arz@F>$\"3?DGG=vp,mF07$$\"3IL$e*) 4bQl#F>$\"3Ig)z2dc%4vF07$$\"3.++D\"y%*z7$F>$\"3%3(eM2=\\^#)F07$$\"3vm; ajW8-OF>$\"3Z\\*yd&45Q))F07$$\"3[LL$e9ui2%F>$\"3=4/%>5c%z#*F07$$\"3xm; H2Q\\4YF>$\"3:cC@#yZZh*F07$$\"33++voMrU^F>$\"3WE\"*z=%HIz*F07$$\"32n\" z%*HB$4aF>$\"3)3V;GX%fF)*F07$$\"3QL$3-8Lfn&F>$\"3H-W#Q(>.G)*F07$$\"3o* \\P4'HaUfF>$\"3#)*Q)*4c3gz*F07$$\"3nmmm\"z_\"4iF>$\"3rC,i5#pJt*F07$$\" 3emmmm6m#G(F>$\"3ZFt6m5#4?*F07$$\"3[mmmT&phN)F>$\"3C(z&*)fh!oH)F07$$\" 36++v=ddC%*F>$\"3\"eqv!3Z(>7(F07$$\"3CLLe*=)H\\5!#=$\"3)z/#[V)\\\"fdF0 7$$\"3')***\\(=JN[6Fiq$\"3-mCj(=6gR%F07$$\"3gmm\"z/3uC\"Fiq$\"3Q'[?VN) [%*HF07$$\"33LLe*ot*\\8Fiq$\"3O7/n>=^b:F07$$\"3%)***\\7LRDX\"Fiq$\"3uR X3E[ge/x\"Fiq$!3!4F#H\\ARMLF07$$\"3w***\\i5`h(=Fiq$!3) G\\kJZ`_:%F07$$\"3gm;HdG\"\\)>Fiq$!37M7^Ng@#z%F07$$\"3WLLL3En$4#Fiq$!3 &4I9v:yT@&F07$$\"3xm;HK/dT@Fiq$!3G(R/:K,AL&F07$$\"33++Dc#o%*=#Fiq$!3ne Tifs_4aF07$$\"3tm\"H#orT8AFiq$!3=11ivU=LaF07$$\"3RL$3-3mtB#Fiq$!3k1ni< 4+ZaF07$$\"3/+v=#*\\JhAFiq$!37h2Xuh6^aF07$$\"3qmm;/RE&G#Fiq$!3A9&4;_\" oXaF07$$\"3ZL3x1ZA7BFiq$!3buGR62MGaF07$$\"3)***\\P4b=RBFiq$!3O$*pY\"=b $*R&F07$$\"3[m\"z>JYhO#Fiq$!3kX6J%R$**e`F07$$\"3CLLe9r5$R#Fiq$!37*G>Sm SvI&F07$$\"3am;z>(GqW#Fiq$!3ObGi*o#es^F07$$\"3\")*****\\K]4]#Fiq$!3/qt T*ynq*\\F07$$\"3()******\\jB4EFiq$!3\")\\kL6=eLXF07$$\"3$******\\PAvr# Fiq$!3aK-&==%yURF07$$\"3)******\\nHi#HFiq$!3u%>xRmP_a#F07$$\"3-L$eky#* 4-$Fiq$!3[$['=FL2U=F07$$\"3jmm\"z*ev:JFiq$!3(z\"*3l_MD7\"F07$$\"3>+]7. %Q%GKFiq$!3^dklX``2FF`s7$$\"3?LLL347TLFiq$\"3!\\cY)o#Rs\\&F`s7$$\"3QLL $3xxlV$Fiq$\"3/h_F6#Q3?\"F07$$\"3,LLLLY.KNFiq$\"3Eo_$=#Gr'z\"F07$$\"3w ***\\7o7Tv$Fiq$\"34=@dcXq0HF07$$\"3Im;HK5S_QFiq$\"3/=q9^ZQ^KF07$$\"3'G LLLQ*o]RFiq$\"3kX6DNUc*\\$F07$$\"3G*\\7GL3Y+%Fiq$\"3/<*[y)>F$f$F07$$\" 3Em;H#GF&eSFiq$\"3QfV$**eJnl$F07$$\"3w\\7.dn[&3%Fiq$\"3;v8w'[]rn$F07$$ \"3CL3xJiW7TFiq$\"3?#pUodt+p$F07$$\"3t;/^1dSRTFiq$\"3%\\z-&p8b&p$F07$$ \"3A++D\"=lj;%Fiq$\"3YD>H>wk$p$F07$$\"3/+](=x3x@%Fiq$\"3753v\"4$*)pOF0 7$$\"3')****\\iB0pUFiq$\"3*y#*)=,-J?OF07$$\"3C+]7`fR?VFiq$\"3WLl**oXrX NF07$$\"31++vV&RF07$$\"3cmm;/T1&*\\Fiq$\"3hqH&>XSyi)F`s7$$\"3&em;zRQb@&Fiq$!3]#[>hL> J1$F`s7$$\"3\\***\\(=>Y2aFiq$!33IDaM5BY7F07$$\"39mm;zXu9cFiq$!3'R(=lU0 1z?F07$$\"3*GL$e9i\"=s&Fiq$!3EQRMtYW3CF07$$\"3l******\\y))GeFiq$!3+Q([ u'R:eEF07$$\"3[**\\7.AE\")eFiq$!3I%=t**Gf&\\FF07$$\"3I***\\ibOO$fFiq$! 3]!4pd[o,#GF07$$\"39**\\P44,')fFiq$!3uzc![^@(pGF07$$\"3'*)***\\i_QQgFi q$!3)=q)\\Nd5)*GF07$$\"3-*\\(=U,1*3'Fiq$!3(>I3d(*\\a!HF07$$\"34**\\(=- N(RhFiq$!3'*)G=@0nJ*GF07$$\"39*\\i:!*4/>'Fiq$!3#pa'f)RS:'GF07$$\"3@*** \\7y%3TiFiq$!3;!fX7Yu4\"GF07$$\"3;**\\P4kh`jFiq$!3y,*ev\"\\vLEF07$$\"3 5****\\P![hY'Fiq$!3wd')H%)e`tBF07$$\"3kKLL$Qx$omFiq$!3*ek#>h?nIF07$$\"3C+++]oi\"o*Fiq$!3'\\VeL'RH#F07$$\"3;+D1k2/P)*Fiq$!3Qg*Q[Z'3eBF07$ $\"35+]P40O\"*)*Fiq$!3]56d(GHUS#F07$$\"31+voa-oX**Fiq$!3\"pu;#z70KCF07 $$\"\"\"F)$!3nT$*3P![8W#F0-%'COLOURG6&%$RGBG$\"#5!\"\"F(F(-%+AXESLABEL SG6$Q\"x6\"Q!F[_m-%%VIEWG6$;F(F\\^m%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT 257 9 "Exercise:" }}{PARA 0 "" 0 "" {TEXT -1 103 "Increase the e xpansion to 10 basis functions and observe how well the initial condit ion can be matched." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} }{MARK "62 0 0" 69 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }