{VERSION 4 0 "IBM INTEL NT" "4.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Input" 2 19 "" 0 1 255 0 0 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 1 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 261 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 264 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 265 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 266 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 267 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 268 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 269 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 270 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 271 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 272 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 273 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 274 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 275 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 276 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 277 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 278 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 279 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Warning" -1 7 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 2 2 2 2 2 1 1 1 1 1 } 1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE " " -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 12 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Map le Plot" -1 13 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT 256 16 "Poisson equation" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 407 "We solve the Poisson problem in cylindrical coordinates to find the variation \+ of electrostatic force and potential with radial distance between two \+ concentric cylinders in the presence of a charge cloud at the cathode \+ (the inner cylinder which represents a heated filament). For the case \+ withoud the charge cloud we solved Laplace's equation with the boundar y condition that the potential is held constant (" }{TEXT 264 1 "V" } {TEXT -1 1 "(" }{TEXT 263 1 "l" }{TEXT -1 61 ")=0 at the inner cylinde r, i.e, the filament of a diode, and " }{TEXT 262 1 "V" }{TEXT -1 1 "( " }{TEXT 260 1 "d" }{TEXT -1 2 ")=" }{TEXT 261 1 "V" }{TEXT -1 57 "0 a t the anode cylinder). This was done in the worksheet " }{TEXT 19 11 " Laplace.mws" }{TEXT -1 413 ". Our interest here is to take the electro n plasma in a diode into account, i.e., once the filament is heated an d a current flows, such that there is a stable equilibrium. The electr onic charge cloud develops its own potential which can impede the flow of current (space-charge-limited region of the current-voltage charac teristic). We attempt to solve precisely this part of the problem in t he present worksheet." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 64 "We need to solve the equation given in Cartesian coord inates as " }}{PARA 0 "" 0 "" {TEXT 19 53 "diff(V,x$2)+diff(V,y$2)+dif f(V,z$2) = 4*Pi*rho(x,y,z)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 64 "The problem reduces to one dimension in cylindric al coordinates." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "restart; with(linalg):" }}{PARA 7 "" 1 "" {TEXT -1 80 "Warning, the protected \+ names norm and trace have been redefined and unprotected\n" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 153 "Maple can remind us of the Laplacian in \+ various orthogonal coordinate systems (without explicit computations). We are interested in the radial part only:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 61 "v1 := [r, theta, z]:\nlaplacian(f(r), v1, coords=c ylindrical);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,&-%%diffG6$-%\"fG6# %\"rGF+\"\"\"*&F+F,-F&6$F(-%\"$G6$F+\"\"#F,F,F,F+!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 557 "We need to make some assumptions about t he radial distribution of the charge cloud. A heated filament results \+ in a constant flow of charge in and out of the filament to avoid a net charge on it. If an electric field is applied between the anode (oute r cylinder) and cathode (filament), then one has an electron charge de nsity that extends between both cylinders. We will not attempt to mode l a self-consistent situation, but rather calculate the electrostatic \+ repulsion originating from an assumed charge cloud. We simply assume a n exponential distribution:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "rho0:=1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%rho0G\"\"\"" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "rho:=rho0*exp(-r/10);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$rhoG-%$expG6#,$%\"rG#!\"\"\"#5" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 88 "This is a surface density really, \+ as we do not take into account what happens along the " }{TEXT 265 1 " z" }{TEXT -1 6 " axis." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "e valf(2*Pi*int(rho*r,r=1..100));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\" +q%\\1D'!\"(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 443 "This is the tota l amount of charge. It is controlled by the heating current of the fil ament. At higher temperatures (more heating current) a larger number o f electrons will overcome the work function. The electrons are assumed to be distributed in an exponential fashion (this means that in princ iple some of them reach the anode at a distance of 100 filament radii. (This results in the diode acting as a battery when the filament is h eated)." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "evalf(2*Pi*int(r ho*r,r=1..infinity));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+(G(y`i!\" (" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 32 "We formulate Poisson's equat ion:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "DE:=diff(V(r),r$2)+ diff(V(r),r)/r=rho;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#DEG/,&-%%dif fG6$-%\"VG6#%\"rG-%\"$G6$F-\"\"#\"\"\"*&-F(6$F*F-F2F-!\"\"F2-%$expG6#, $F-#F6\"#5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 215 "This differential \+ equation has a solution that combines the result from the density-free case (which is incorporated through the boundary condition which spec ifies the potential) and the electron-electron repulsion:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "dsolve(DE,V(r));" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#/-%\"VG6#%\"rG,**&%$_C1G\"\"\"-%#lnG6#,$F'#!\"\"\"#5F +F+*&\"$+\"F+-%$expGF.F+F+*&F4F+-%#EiG6$F+,$F'#F+F2F+F+%$_C2GF+" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 199 "The boundary conditions of zero p otential at the filament and potential V0 at the cylinder can be impos ed, but the thickness of the filament has to be taken into account due to the log-divergence at " }{TEXT 257 1 "r" }{TEXT -1 3 "=0." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "BC:=V(l)=0,V(d)=V0;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%#BCG6$/-%\"VG6#%\"lG\"\"!/-F(6#%\"dG %#V0G" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "sol:=dsolve(\{DE,B C\},V(r));" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%$solG/-%\"VG6#%\"rG,** &*&,,-%$expG6#,$%\"dG#!\"\"\"#5!$+\"*&\"$+\"\"\"\"-%#EiG6$F9,$F2#F9F5F 9F4*&F8F9-F/6#,$%\"lGF3F9F9*&F8F9-F;6$F9,$FCF>F9F9%#V0GF9F9-%#lnG6#,$F )F3F9F9,&-FJF0F4-FJFAF9F4F4*&F8F9-F/FKF9F9*&F8F9-F;6$F9,$F)F>F9F9*&,,* &FOF9F.F9F6*(F8F9FOF9F:F9F4*&FOF9FHF9F9*(F8F9F@F9FNF9F9*(F8F9FEF9FNF9F 9F9FMF4F9" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "Vp:=simplify(r hs(sol));" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%#VpG*&,>*&-%$expG6#,$% \"dG#!\"\"\"#5\"\"\"-%#lnG6#,$%\"rGF.F0\"$+\"*(F6F0-%#EiG6$F0,$F,#F0F/ F0F1F0F0*(F6F0-F)6#,$%\"lGF-F0F1F0F.*(F6F0-F96$F0,$FAFF0FLF0F0*(F6F0FCF0FLF0F0F0,&FLF.FPF0F." }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 88 "The solution is in terms of the ex ponential integral. Maple can evaluate it numerically:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "evalf(subs(l=1,d=100,V0=100,r=2,Vp) );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#^$$!+;a.`7!\")$\"+YM)GI\"!#;" }} }{EXCHG {PARA 0 "" 0 "" {TEXT -1 94 "The above result shows that we ne ed to remove the imaginary part in order to graph the result:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 73 "plot([subs(l=1,d=100,V0=100, Re(Vp)),10*r*rho],r=1..100,color=[red,blue]);" }}{PARA 13 "" 1 "" {GLPLOT2D 303 303 303 {PLOTDATA 2 "6&-%'CURVESG6$7hn7$$\"\"\"\"\"!$F*F *7$$\"+m&z%R:!\"*$!+dp<1zF/7$$\"+J\"f*y?F/$!+kcx>8!\")7$$\"+(pQ%=EF/$! +5[90F77$$\"+L[r'4%F/$!+ytefBF77$$\"+/9^N]F/ $!+v,%Qf#F77$$\"+p))RjbF/$!+Agy%o#F77$$\"+MjG\"4'F/$!+B9A_FF77$$\"+*zt \">mF/$!+tt^*z#F77$$\"+k71ZrF/$!+lJNHGF77$$\"+5zWywF/$!+&zcR%GF77$$\"+ bX$)4#)F/$!+F[\"\\%GF77$$\"+,7AT()F/$!+(euP$GF77$$\"+Yygs#*F/$!+X_&=\" GF77$$\"+'*H.L5F7$!+:T]SFF77$$\"+3_!)Q6F7$!+5D?QEF77$$\"+nR$\\L\"F7$!+ )[EaQ#F77$$\"+QR,Q:F7$!+jW\"41#F77$$\"+M&R![ F7$!+$He:F\"F77$$\"+#)ets@F7$!+'f]:L)F/7$$\"+l7TiBF7$!+AB@$R%F/7$$\"+A 3%fd#F7$\"+N8:6l!#67$$\"+^rM!z#F7$\"+m\"[._%F/7$$\"+yt'p*HF7$\"+\"*=#) f()F/7$$\"+R$)f%=$F7$\"+'))>WD\"F77$$\"+*p4xS$F7$\"+Org%p\"F77$$\"+(G9 nf$F7$\"+\"e@#e?F77$$\"+a:d;QF7$\"+`wwpCF77$$\"+!\\#=6SF7$\"+2(yM#GF77 $$\"+H:qCUF7$\"+\"p(***>$F77$$\"+[@-GWF7$\"+WoLZNF77$$\"+%)e;SYF7$\"+' *QG)*QF77$$\"+e+)\\$[F7$\"+?t[5UF77$$\"+jM6X]F7$\"+<`uOXF77$$\"+9IQj_F 7$\"+E8]k[F77$$\"++tQ`aF7$\"+#fF49&F77$$\"+LrfecF7$\"+14cIaF77$$\"+s*) fqeF7$\"+%pn/s&F77$$\"+59+ygF7$\"+!eP`*fF77$$\"+LRnyiF7$\"+3/V`iF77$$ \"+dl[,lF7$\"+\\HPJlF77$$\"+5Op,nF7$\"+\"eTPx'F77$$\"+rtX:pF7$\"+.2>Dq F77$$\"+6\"f\"4rF7$\"+pn!oC(F77$$\"+wi#4K(F7$\"+r1j#[(F77$$\"+uE=?vF7$ \"+#)Qk)p(F77$$\"+CIYGxF7$\"+MFj=zF77$$\"+O^4KzF7$\"+9nBG\")F77$$\"+'3 z_9)F7$\"+M:9U$)F77$$\"+n0g]$)F7$\"+XI0V&)F77$$\"+P9dg&)F7$\"+o.dV()F7 7$$\"+TO!)o()F7$\"+D/rP*)F77$$\"+7u9g*)F7$\"+P>97\"*F77$$\"+l*[%z\"*F7 $\"+sJf2$*F77$$\"+*)[fv$*F7$\"+(3L&y%*F77$$\"+ats%e*F7$\"+Y4$pl*F77$$ \"+4Q*[y*F7$\"++'*4C)*F77$$\"$+\"F*F\\^l-%'COLOURG6&%$RGBG$\"*++++\"F7 F+F+-F$6$7]o7$F($\"3u%ff.=u$[!*!#<7$$\"35+D\"GyR(p7Fj^l$\"32hIp#oJ$=6! #;7$$\"3****\\il&z%R:Fj^l$\"3L2nyW9#)>8F`_l7$$\"3))*\\P%[$>#4=Fj^l$\"3 \"3R7PX%z4:F`_l7$$\"3)****\\78f*y?Fj^l$\"3uu=)***4s)o\"F`_l7$$\"3v**\\ (opQ%=EFj^l$\"3`([(Rc?B:?F`_l7$$\"3'*****\\i#=z:$Fj^l$\"3#f&3c#[*y-BF` _l7$$\"3#*\\(oza;ti$Fj^l$\"3&[>wmL*yBDF`_l7$$\"3')*\\PM$[r'4%Fj^l$\"3e ,?5P\"z'>FF`_l7$$\"3#)\\i!*=J6mXFj^l$\"3Y2*3//(H#*GF`_l7$$\"3y**\\P/9^ N]Fj^l$\"3)fP)*RUlL/$F`_l7$$\"3_+D1MjG\"4'Fj^l$\"3yz#es%4f7LF`_l7$$\"3 S++vj71ZrFj^l$\"3G^x(*4OJ(\\$F`_l7$$\"3[+++bX$)4#)Fj^l$\"3uPa2;nJ7OF`_ l7$$\"3c++DYygs#*Fj^l$\"3Su@q-rdoOF`_l7$$\"3!e7y]PQq`*Fj^l$\"3iUp3\\\" GZn$F`_l7$$\"3.^i!R!*o9!)*Fj^l$\"3OkmO`(f!yOF`_l7$$\"3jPMFV**e15F`_l$ \"3MT_j\")[ryOF`_l7$$\"3)*\\i:'*H.L5F`_l$\"3]lZFe4$on$F`_l7$$\"3%[(=#> 5>f3\"F`_l$\"3y]Rk!4pfm$F`_l7$$\"3*)*\\(o2_!)Q6F`_l$\"3Uqw2[)pkk$F`_l7 $$\"3!**\\ivepoB\"F`_l$\"3!yol4kF0f$F`_l7$$\"3\"**\\Pu'R$\\L\"F`_l$\"3 KX:]^)>K^$F`_l7$$\"3))*\\Pz$R,Q:F`_l$\"3^YY]$>mPI$F`_l7$$\"33+v$R`R![< F`_l$\"3FkK=d#)fVIF`_l7$$\"3#**\\(=v:Rd>F`_l$\"3+$z)fs?NkFF`_l7$$\"37+ +D#)ets@F`_l$\"3iwaR6-+uCF`_l7$$\"3=+]7l7TiBF`_l$\"3YX9?:>ADAF`_l7$$\" 3E++v@3%fd#F`_l$\"3-5F$zoK)f>F`_l7$$\"3y***\\7:Z.z#F`_l$\"3E5:fD-F83Yf!*f)*Fj^l7$$\"3s*\\PWbrl\"QF`_l$\"3)HQ`5oVwR)Fj^l7$$\"3!)** **\\*[#=6SF`_l$\"3)pu*HI)R]E(Fj^l7$$\"3P+vVH:qCUF`_l$\"3yj)Qq%=h!='Fj^ l7$$\"3T+DJ[@-GWF`_l$\"3M/!>sT2iG&Fj^l7$$\"3i+]P%)e;SYF`_l$\"3aOJ+%e)e ![%Fj^l7$$\"3<+v=e+)\\$[F`_l$\"3LSwLzXGUQFj^l7$$\"3'***\\7jM6X]F`_l$\" 3!)**=**H6U\\KFj^l7$$\"3-+v$R,$Qj_F`_l$\"3NS3]!o__s#Fj^l7$$\"3k*\\i&*H (Q`aF`_l$\"3_alUD&=]L#Fj^l7$$\"3E+]PLrfecF`_l$\"3%4*)y^Y#Qt>Fj^l7$$\"3 U****\\r*)fqeF`_l$\"3KcpL8M?c;Fj^l7$$\"3W**\\()49+ygF`_l$\"3G3[3>k`$R \"Fj^l7$$\"3'**\\PM$RnyiF`_l$\"3_Z'RW'z!y<\"Fj^l7$$\"3))**\\7dl[,lF`_l $\"37,7[6+2g(*!#=7$$\"38****\\4Op,nF`_l$\"3Hat!>MN_B)Fg]m7$$\"3g***\\7 Pda\"pF`_l$\"3/3m0v%)RioFg]m7$$\"3E+v$46f\"4rF`_l$\"3q<\\RR>K7eFg]m7$$ \"3&****\\dFE4K(F`_l$\"3j,GydD:V[Fg]m7$$\"3x*\\PWn#=?vF`_l$\"3G)Qi\\C \">wSFg]m7$$\"3r+v=CIYGxF`_l$\"3/!45Ma^9S$Fg]m7$$\"3r***\\i8&4KzF`_l$ \"3')oGr*3()y%GFg]m7$$\"3++v$f3z_9)F`_l$\"3/&**>G7fHO#Fg]m7$$\"3w+++n0 g]$)F`_l$\"3'epGdqnG(>Fg]m7$$\"3#)**\\iO9dg&)F`_l$\"3#R(yu^NVR;Fg]m7$$ \"3e+vVTO!)o()F`_l$\"3+?KT(RKOO\"Fg]m7$$\"3?++]6u9g*)F`_l$\"31o;\"\\sF 2:\"Fg]m7$$\"3Q+]7l*[%z\"*F`_l$\"3A6b?'QSuY*!#>7$$\"3#*******))[fv$*F` _l$\"314V$3&[[ZzFiam7$$\"3)**\\PWNFZe*F`_l$\"3ax%R)H)>:f'Fiam7$$\"3!3] i&3Q*[y*F`_l$\"3AIUP " 0 "" {MPLTEXT 1 0 15 "E:=-diff(Vp,r);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%\"EG,$*&,4*&- %$expG6#,$%\"dG#!\"\"\"#5\"\"\"%\"rGF/\"$+\"*&*&F3F1-%#EiG6$F1,$F-#F1F 0F1F1F2F/F1*&*&F3F1-F*6#,$%\"lGF.F1F1F2F/F/*&*&F3F1-F76$F1,$F@F:F1F1F2 F/F/*&%#V0GF1F2F/F/*(F0F1-F*6#,$F2F.F1-%#lnG6#,$F-F/F1F1*(F0F1FIF1-FM6 #,$F@F/F1F/*&*(F3F1FIF1FLF1F1F2F/F1*&*(F3F1FIF1FQF1F1F2F/F/F1,&FLF/FQF 1F/F/" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 49 "We graph the radial forc e acting on an electron (" }{TEXT 271 1 "F" }{TEXT -1 1 "=" }{TEXT 270 2 "qE" }{TEXT -1 7 ", with " }{TEXT 269 1 "q" }{TEXT -1 51 "=-1) u sing as a distance scale the filament radius " }{TEXT 258 1 "l" } {TEXT -1 50 ", and assume that the anode cylinder has a radius " } {TEXT 259 1 "d" }{TEXT -1 34 " of 100 times the filament radius." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "plot(subs(l=1,d=100,V0=100,- E),r=1..100);" }}{PARA 13 "" 1 "" {GLPLOT2D 645 202 202 {PLOTDATA 2 "6 %-%'CURVESG6$7jn7$$\"\"\"\"\"!$!+M#)ee=!\")7$$\"+Y\\Vn5!\"*$!+OMGN#4=F 1$!+Yf#*G(*F17$$\"+J\"f*y?F1$!+3`+f#)F17$$\"+9*)p[BF1$!+4&yn5(F17$$\"+ (pQ%=EF1$!+1?8vhF17$$\"+z%y\"))GF1$!+4;>.aF17$$\"+i#=z:$F1$!+)[Y3v%F17 $$\"+L[r'4%F1$!+=:w%3$F17$$\"+/9^N]F1$!+2p4r>F17$$\"+MjG\"4'F1$!+fxHx5 F17$$\"+k71ZrF1$!+y/DUT!#57$$\"+Yygs#*F1$\"+&e8`1&Fip7$$\"+3_!)Q6F-$\" +t>D%4\"F17$$\"+nR$\\L\"F-$\"+7F[g9F17$$\"+QR,Q:F-$\"+Y'4$=F-$\"+wvk,?F17$$\"+#)ets@F-$\"+*e@G1#F17$ $\"+l7TiBF-$\"+#G\"y&3#F17$$\"+A3%fd#F-$\"+be@'3#F17$$\"+^rM!z#F-$\"+h [*o1#F17$$\"+yt'p*HF-$\"+&)e#\\.#F17$$\"+R$)f%=$F-$\"+v-(y*>F17$$\"+*p 4xS$F-$\"+zJ.Z>F17$$\"+(G9nf$F-$\"+1b?+>F17$$\"+a:d;QF-$\"+(GKK%=F17$$ \"+!\\#=6SF-$\"+-4u\"z\"F17$$\"+H:qCUF-$\"+\"e'4N\"F17$$\"+rtX:pF-$\"+EM:f6F17$$\"+6\"f\"4rF-$\"++JHH6F17$$\"+wi#4K( F-$\"+=Q;)4\"F17$$\"+uE=?vF-$\"+FaCq5F17$$\"+CIYGxF-$\"+yuSU5F17$$\"+O ^4KzF-$\"+#)pW;5F17$$\"+'3z_9)F-$\"+ezB0**Fip7$$\"+n0g]$)F-$\"+wy+n'*F ip7$$\"+P9dg&)F-$\"+&Q;VV*Fip7$$\"+TO!)o()F-$\"+'4OQ@*Fip7$$\"+7u9g*)F -$\"+%=`(>!*Fip7$$\"+l*[%z\"*F-$\"+GXw1))Fip7$$\"+*)[fv$*F-$\"+ihLC')F ip7$$\"+ats%e*F-$\"+8/uP%)Fip7$$\"+4Q*[y*F-$\"+7mOm#)Fip7$$\"$+\"F*$\" +w$H'*3)Fip-%'COLOURG6&%$RGBG$\"#5!\"\"$F*F*Fb_l-%+AXESLABELSG6$Q\"r6 \"Q!6\"-%%VIEWG6$;F(Fg^l%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 358 "The force due to the electron-electron repulsion pushes the nearb y electrons back into the filament (a stable density can be maintained if the heating mechanism ejects as many electrons as are re-absorbed) . The electron-electron repulsion potential overshadows the electric f ield due to the applied external voltage for distances out to 10-15 fi lament radii." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 273 11 "Exercise 1:" }}{PARA 0 "" 0 "" {TEXT -1 81 "Explore what happens when one reduces (increases) the electron charge by varying \+ " }{TEXT 275 3 "(i)" }{TEXT -1 12 " the factor " }{TEXT 19 4 "rho0" } {TEXT -1 2 "; " }{TEXT 274 4 "(ii)" }{TEXT -1 40 " the factor controll ing the fall-off of " }{TEXT 19 6 "rho(r)" }{TEXT -1 1 "." }}{PARA 0 " " 0 "" {TEXT -1 90 "What are the implications for the current-voltage \+ characteristic of a diode (vacuum tube)?" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 272 11 "Exercise 2:" }}{PARA 0 "" 0 "" {TEXT -1 80 "Repeat the calculation for a Gaussian shape of the radial electron distribution." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 156 "Other examples of charge densities for which the po tential can be readily calculated in terms of elementary functions are bell-shaped functions of the type " }{TEXT 19 13 "1/(a^2+r^2)^n" } {TEXT -1 1 "." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}} {MARK "0 0 0" 16 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }