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Abstract. In the course of exploring some aspects of atom guiding in a
hollow, optical fibre, a small negative potential energy well was found just in
front of the repulsive or guiding barrier. This results from the optical dipole
and the van der Waals potentials. The ground state for atoms bound in this
negative potential well was determined by numerically solving the Schrédinger
equation and it was found that this negative well could serve as an atom trap.
This trap is referred to as the Annular Shell Atom Trap or ASAT because of
the geometry of the trapped atoms which are located in the locus of points
defining a very thin annular shell just in front of the guiding barrier. A unique
feature of the ASA'T is the compression of the atoms from the entire volume to
the volume of the annular shell resulting in a very high density of atoms in this
trap. This trap may have applications to very low temperatures using evapora-
tive cooling and possibly the formation of BEC. Finally, a scheme is discussed
for taking advantage of the de Broglie wavelength to store atoms in a bottle trap
based on the inability of long de Broglie wavelengths to escape through a
selective de Broglie wavelength filter in the atom bottle trap.

The polarizability of an atom is almost always positive, but it can be negative
and some unusual effects can then be observed. This can occur when a laser or
other monochromatic source is tuned slightly above or to the ‘blue’ of an atomic
resonance. The interaction of the external field on the atom through its negative
polarizability produces a gradient dipole force which tends to drive the atom to
regions of minimum intensity. Cook and Hill [1] suggested using an evanescent
wave to produce an atom mirror outside of a dielectric. Zoller et al. [2, 3] analysed
the case for a clad, hollow fibre in which the external field was confined to the
annular region and used the resulting evanescent field in the hollow region to guide
atoms. In what has become known as ‘blue-guiding’, Renn [4] and Ito [5] have
experimentally demonstrated evanescent wave guiding of rubidium atoms in
hollow optical fibres. More recently, laser-cooled rubidium atoms have been
blue-guided in a hollow optical fibre and have maintained a temperature of
50 x 107 K [6]. The concept of atom guiding in a hollow fibre has been extended
to include atom guiding in a dark, hollow laser beam without using any fibre [7]. A
comprehensive review of evanescent light-wave atom optics has been published by
Dowling and Gea-Banacloche [8].
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Atom guiding in a hollow, metal-coated optical fibre has previously been
analysed [9], [10]. The metal coating is assumed to be a perfect conductor and
this provides both simpler boundary conditions for determining exact solutions of
the T'M,, modes and maximizes the evanescent guiding field for a given laser
electric field injected in the annular region of the fibre. A typical potential for this
interaction is shown in figure 1 and includes both the quantum optical dipole (odp)
and the van der Waal’s (vdW) potentials. Here

U 1hA1 (1+2 aE ) (1)
e n —
odp 2 72 + 4A2

where A =w —w, > 0 is the detuning, w the laser frequency, w, the resonance
frequency of the two-level atom, ~ the decay rate of the upper level, d the
transition dipole moment between levels 1 and 2, and E the evanescent electric
field amplitude in the hollow region of the fibre as calculated from the Helmholtz
equation. The vdW potential is given by

1 (21 1 1
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where ¢ is the vacuum permittivity, 7, = v/5 is the dielectric constant of the
annular region of the fibre, a the inner radius of the fibre, and 7 the distance from
the centre to the atom. The total potential is given by Uy, = U,y + Uyqw. Note
that a synthetic atom has been used here where the resonance wavelength
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Figure 1. The combined effect of the repulsive barrier and vdW potential are shown

here. The barrier is repulsive in the sense that atoms moving towards the inner wall
will be repelled back towards the origin for energies less than the barrier height. For
those atoms either tunneling through the barrier or otherwise getting very close to
the inner wall, the strongly attractive van der Waals force dominates here as it tends
to —oo and the atoms will be strongly drawn towards the inner wall and will quickly
hit it.
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corresponds to 5000 A and the atom mass, Mg, is 4.00 x 1072°kg. Further details
can be found in [9], [10] and references therein.

While figure 1 is familiar because it shows the repulsive or guiding barrier in
front of the inner wall, a new result is obtained when the energy resolution or
magnification is increased by ~ 10*. In this case a small, negative potential energy
well is observed (figure 2). This is a result of the vdW potential dominating both
very far from and very close to the inner wall whereas the odp potential dominates
in the region where the rising leading-edge of the pulse in figure 1 has a strongly
positive slope. The reason for the strongly positive slope is the very fast ‘turn-on’
of the odp potential here. At the point where the potential has a maximum, the
slope quickly becomes strongly negative and the vdW potential becomes dominant
again. Any atoms on this side of the barrier will quickly be drawn into the wall.
These figures display one-dimensional potentials which are radially symmetric but
the energy axis in each figure has a different scale.

When used with a single wavelength odp potential as in equation (1), the
depth of the negative potential well is comparatively shallow. However, using a
two-colour odp potential can significantly increase the well depth [12, 13]. The
two-colour total potential is given by

Us_cotor = Uoiap(A1, E) + Upaw + Us,ap(As, E5) (3)

where the detunings are A; > 0 and A, < 0, and E; and E, are the electric field
amplitudes in the hollow region for the corresponding laser wavelengths \; and ),,
and both wavelengths are injected into the annular region of the hollow fibre.
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Figure 2.  Negative potential energy well. The energy scale is about 10* smaller than in
figure 1. The very strong vdW potential tending to negative infinity (which drives
the atoms into the inner wall) is not shown here. Specific parameters for this plot
are: a =10.0um, A = 1.00 x 10'°Hz, and E; = 1.00 x 10° Vm™!.
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Calculations have shown that the negative well depth can be increased by factors
up to 10*. Note that A, is negative and tuned to the red of the transition frequency.

The two-colour odp potential can be explained using the Red-Blue Pushme-
Pullyou resonator or trap [8]. Blue detuned evanescent radiation pushes atoms
away from the wall and towards regions of lower intensity, while red detuned
evanescent radiation pulls atoms toward the wall and higher intensity regions. By
careful external focusing, it is possible to achieve a spatial separation between
attractive and repulsive regions in the case of the dielectric slab [12] or by using a
three-level atom in quartz microspheres [13]. It is also possible to obtain a useful
spatial separation between the blue and red-detuned light for the two-level atom
used here.

While both wavelengths are injected into the annular region of the fibre, the
two parameters, E; and A;, in equation (3) determine the characteristics of each
evanescent wave. For example, for the red detuned evanescent wave, the radial
dependence of the amplitude can be adjusted to drop (a negative potential here)
before the blue-detuned wave eventually rises for larger values of 7. In moving
toward the inner wall, the atom encounters a region containing a red detuned wave
and then, for increasing values of 7, enters a different region where the blue
detuned wave is also present. As the red odp together with the vdW potential
attracts the atom toward the repulsive barrier, the blue radiation repels the atom as
it approaches the large energy barrier. At some point there is a superposition of
forces such that the repulsive force due to the blue light competes against the
attractive forces of both the red odp plus the vdW potential. If the combined
attraction of the latter is greater than the repulsive blue force, the atom will
continue to move closer towards the inner wall and the well will deepen—vice
versa and the well becomes shallower. While the blue odp potential is usually of
larger magnitude, it is important that the combined red forces are first encountered
at smaller 7 values in moving toward the wall so that the negative well depth can be
enhanced.

Consider an ensemble of atoms inside the hollow fibre. These atoms randomly
interact with the repulsive barrier just in front of the inner wall. Since these
interactions are assumed to be elastic, the atoms must lose energy by collisions
with other atoms through the process of evaporative cooling [11] and many of the
remaining atoms will eventually be trapped in the negative potential well. At high
laser powers, the trapped atoms are expected to have a broad distribution of
energies. Both the negative well and the repulsive barrier are extremely sensitive to
reducing or varying the laser power and/or the laser detuning as shown in figure 3.
In this case, using equation (3), Ay is adiabatically varied with time, and a series of
time-frozen snapshots are shown for Ay; where i =1...5. All other parameters
(E1, E3, and A,) are held constant. This can provide an additional level of control
in that the well can become deeper, and move towards the inner wall, while the
barrier eventually becomes negative and may be very thin where it actually exists.
The hotter atoms escape from the well preferentially to the inner wall because the
barrier has been eliminated or because atom tunneling through what remains of the
barrier provides a significant loss mechanism. By reducing the barrier adiabati-
cally, the evaporative cooling can be made very efficient and the loss of atoms from
the trap can be minimized.

Before calculating the ground-state energy for atoms in this trap, it should be
noted that the ground-state eigenvalue should be as deep as possible. The
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Figure 3. Reduction in barrier to inner wall using two-colour total potential from

equation (3). Here the barrier is reduced adiabatically by sweeping the frequency
from A1 up to A4 or Ays where the Ay are in hertz and given in figure 3.
The fixed values as used in equation (3) are: E; =1.00x10°Vm™', E,=
1.00 x 10 Vm™!, and A; = —1.00 x 108 Hz. This has the potential to reduce the
number of atoms lost in evaporative cooling.

selectivity of this system is complex. Following de Broglie’s approach as described
by Bohm [14] and modifying it to use a stationary wave to represent an atom in a
stationary state requires that the wave must fit continuously on itself after going
around the radial potential well inside the hollow fibre. This requires an integer
number of waves fitting in the above described circumference. The atoms must be
very cold and since their de Broglie wavelength, A\;p, must fit within the
circumference of the hollow fibre, it may be quite long. For example, for
a = 10 pm, then as determined by de Broglie’s constraint, Ay < 207 um. But the
low temperatures desired may give A\yp which would be even longer and therefore
can’t fit within the circumference of the hollow fibre and is not allowed. The
conclusion is that the minimum eigenvalue depends on the inner radius of the
hollow fibre. Larger inner radius fibres sustain lower eigenvalues (as well as a
higher number of states) in the negative energy well and this effect has been
observed in the numerical calculations.

In order to obtain a numerical solution of Schrédinger’s equation, it is helpful
to write it in dimensionless form by letting p = r/a. The result is the scale factor,
SF, given by

aZ
SF = 2m, = (4)

For the case where there is no azimuthal dependence, the radial Schrodinger
equation becomes:
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L R(p)+~ 2 2 (E — U(r)R(p) = 0 (5)

where R(p) is the radial wave function.

The dimensionless radial Schrodinger equation was solved using Maple with a
shooting algorithm based on a stiff ordinary differential equation solver (Gear’s
method). The potential (—2m,a? /A*)U(7) has a large positive barrier at p < 1, and,
thus, the problem can be solved by approximating the long-lived resonance
problem as a bound state. The bound-state problem is defined by setting a
boundary condition such that the wavefunction vanishes inside this potential
barrier.

The results for the eigenenergy were confirmed using three approaches that
determine the eigenvalue by a trial method using a numerical initial-value problem
solver: (7) a shooting algorithm that starts the solution at p = 0 and ensures that the
solution vanishes at p = p; without crossing the p-axis; (i) the same algorithm
which starts the solution at p = pq, and which propagates the solution inwards; (777)
a matching algorithm which combines information from both inside-out and
outside-in integrations, and which is deemed to be numerically more stable.
Condition (7iz) is shown below as

12 !
¥'(p) A0 _o (6)
V(o) ey (D) |
where |p_>pn,mh and |/>—*/>Ltch represent p propagating from left to right, and right to

left, respectively, to the matching point.

The sensitivity of the eigenvalue to the choice of the right-hand boundary p,
where the boundary condition was set to ¥(p;) = 0 was explored. A range was
found for p; values such that the eigenvalue remained constant.

The determined ground-state energy eigenvalue was verified by increasing the
numerical precision. It can be observed from figure 4 that the potential well is
quite narrow, and that the Heisenberg uncertainty principle prevents the atoms
from accumulating near the classical potential energy minimum. For this potential,
the atoms are bound with an energy that corresponds to about one quarter of the
value of the potential at the minimum, and the atoms spend a considerable amount
of time inside the potential barrier. The results are shown in figure 4 where the
ground state energy is —25668 and corresponds to 3.54 x 10731 J. The counter-
propagating solutions are matched at p = 0.97.

An interesting feature of this trap is the increased atom density that results
from the compression of the atoms in the original volume to the much smaller
volume of the annular shell. Consider the following simple model for atom
compression. A hollow fibre of unit length is initially filled at some pressure
which is proportional to 1/7a?. These atoms are compressed and the new pressure
is inversely proportional to the area of the annulus. This can be written as
1/n(r3 — 1) where r, and 7y are the outer and inner radius of the annulus,
respectively. Writing this as

1

m(ry +r1)(ry — 1)

this can be approximated as
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Figure 4. Plot of |¢(p)|2, the probability density (unnormalized), and the negative
potential energy well as a function of p. The results of numerically solving the
Schrodinger equation for the ground state of the negative potential energy well are
shown here where a=10.0pum, mo=4.00x 1072°kg, SF =7.26 x 103*]7!
E=-25668, E;=E/SF=354x1073"], T=257x10"%°K, and puan = 0.97.
Note the differences in tunneling into the inner and outer potential walls: there is
significant tunneling to the left and less tunneling into the much steeper right-hand
side. Specific parameters for this two-colour odp potential are: A; = 1.00 x 10'° Hz,
Ay = —1.00 x 108Hz, Er; = 1.00 x 10° Vm™, and Ez» = 1.17 x 10* Vm™.

_t
71—(27&7)8) (67)

where 7,,, can be approximated by the location of the minimum in the potential
and 6, is the width of the annulus. Since the minimum in the potential occurs
about 0.15pum from the inner wall, 7., =~ a. The distance between the classical
turning points is a good estimate for ¢, but this would be a low estimate whereas
~ 1.5 times this value would account for tunneling which occurs mostly on the
inside. Thhe compression factor, C, becomes

a

36,

C =~ (7)
where in this simple model, the compression is assumed to be lossless. As an
example, consider a hollow fibre where @ = 1072m and §, = 10~ m. This gives
C = 3.33 x 10* which, considering likely losses, still seems quite significant.

The characterization of this trap, particularly as it involves the details of
evaporative cooling, is important for several applications such as the limiting
temperature that can be achieved and whether BEC might be easily achieved in
this trap. An introduction to these issues is discussed by Metcalf [15], but these are
beyond the scope of the present paper. Also, it is expected that the negative
potential energy well will also exist for a slab geometry and for the ‘atom
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trampoline’ in which an atom in a gravitational field will bounce up and down on
top of the dielectric slab.

Finally, these concepts are applicable to a de Broglie atom trap. Instead of
using a hollow fibre, Dowling [16] suggested using a bottle to trap the atoms. The
bottle has a narrow neck and a short bundle of narrow, hollow optical fibres are
arranged side by side and fused to form a porous plug for sealing the neck of the
bottle trap. Blue detuned light can then be coupled from the walls of the bottle via
contact coupling into the non-hollow parts of the plug in such a way that very little
scattered light will exist in the hollow regions of the plug and the plug can
effectively repel cold atoms which would otherwise come in contact with it.
Relatively warm atoms, having short de Broglie wavelengths, can then be injected
directly through the small open areas of the fibre plug directly into the bottle
where the atoms are subsequently cooled using laser cooling with fibre couplers
followed by evaporative cooling as has been described. By cooling the atoms inside
the bottle, the de Broglie wavelength will increase to the point where the atoms will
be unable to pass through the small diameter hollow fibres in the porous plug and
will now be trapped for considerable times inside the bottle to form an atom bottle
trap. The atom bottle geometry has the additional benefit that even lower
temperatures can be achieved together with higher compression factors by going
to a larger inner diameter of the bottle as compared to the hollow fibre.

In conclusion, a small negative potential energy well has been found just inside
the repulsive or guiding barrier in a hollow fibre. A numerical solution of the
Schrédinger equation has determined the ground state for an atom in this well and
suggests that atoms can be trapped in the locus of points defining a very thin
annular shell just inside the guiding barrier. The efficient trapping of atoms will
require their compression from the nearly full volume of the hollow cylinder to the
volume of the annular shell. This has been analysed and provides a very large
increase in atom density in this trap. Finally, sealing one end of this trap to form a
test-tube-like structure and using a de Broglie wavelength selective atom filter at
the input end suggests the possibility of a fillable atom bottle trap.
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