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Abstract: We propose a simple model to calculate high harmonic spectra from closed-shell diatomic molecules based on
the time-dependent Schrödinger equation. Quasi-Coulomb potentials are used to represent the two-center geometry of a
diatomic molecule in two dimensions. A few outer occupied molecular orbitals are evolved independently using a single-
electron Hamiltonian, and the harmonic spectra are evaluated from a coherent sum of single-electron dipole accelerations.
According to this independent particle model, harmonic spectra from individual orbitals follow the semiclassical cutoff law,
but their relative strengths vary depending on molecular orientations. When the contributions from different orbitals are of
comparable strength, their net spectrum extends to the inner-orbital cutoffs, and in some cases acquires a local minimum
where harmonic spectra from different molecular orbitals interfere destructively because of their phase difference.

PACS Nos: 33.20.Xx, 32.80.Rm, 42.65.Ky

Résumé : Nous proposons un modèle simple pour calculer, à partir de l’équation de Schrödinger dépendante du temps, les
spectres hautement harmoniques de molécules diatomiques à couches fermées. Nous utilisons des potentiels quasi-coulombiens
pour représenter la géométrie à deux centres d’une molécule diatomique en deux dimensions. Un Hamiltonien à un
électron permet d’évaluer l’évolution indépendante de quelques orbitales extérieures occupées et nous calculons les
spectres harmoniques à partir d’une somme cohérente d’accélérations dipolaires de simples électrons. Selon ce modèle à
électrons indépendants, les spectres harmoniques à partir d’orbitales à une particule suivent la loi de coupure semi-
classique, mais leurs forces relatives varient suivant les orientations moléculaires. Lorsque les contributions de différentes
orbitales sont de force comparable, leur spectre net s’étend aux coupures des orbitales intérieures et, dans certains cas,
acquière un minimum local là où les spectres harmoniques de différentes orbitales moléculaires interfèrent de façon des-
tructive à cause de leur différence de phase.

[Traduit par la Rédaction]

1. Introduction

Advances in molecular high harmonic generation (HHG)
in the last several years have raised some questions, such as
the geometric interference [1] and the orbital–orbital interfer-
ence [2, 3] effects, which are not present in atomic HHG.
There are two different, equally successful, approaches in
atomic HHG theories; one uses the numerical solution of the
time-dependent Schrödinger equation (TDSE) [4, 5], and the
other uses the path-integral method known as the strong field
approximation (SFA) [6, 7]. Extended SFA theories for mo-
lecular HHG that include geometric and multielectron effects
have emerged in recent years. Le et al. developed a quantita-
tive rescattering theory [8], which takes the orientation de-
pendence of molecular ionization into account in the
evaluation of the SFA propagation amplitude. Santra and
Gordon used many-body perturbation theory to derive cor-
rections to the SFA recombination amplitude [9]. Smirnova
et al. incorporated self-consistent field (SCF) calculations for
the bound-state orbitals into the three-step SFA theory of

ref. 10, to include the effect of ionic-state transitions during
HHG [11]. Most of these molecular HHG theories, however,
avoid direct solution of the TDSE, because it is computation-
ally demanding to model HHG from molecules based on the
TDSE. The problem is fully three dimensional (3D) even for
the simplest diatomic molecule H2

+ [12], when the bonding
axis of the molecule is not aligned with the field polarization.
In addition, one must solve for the multielectron TDSE to ac-
count for the orbital–orbital interference in molecular har-
monic spectra; this is in contrast to atomic HHG where the
single-active-electron approximation proved adequate to ex-
plain the experimental spectra from multielectron noble gas
atoms.
A computationally tractable alternative to the multielectron

TDSE is time-dependent density functional theory (TDDFT).
Attempts to calculate high harmonics from molecules using
TDDFT have been made for H2 [13, 14], N2 [15, 16], F2
[17], CO2 [18, 19], CO [16], etc. Recently, Abu-samha and
Madsen [20] solved the 3D TDSE for multielectron mole-
cules in a TDDFT framework, and demonstrated that the mo-
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lecular tunneling theory commonly used in the SFA formula-
tion of molecular HHG has shortcomings in predicting the
peak-ionization angles for CO2. Their findings show that the
TDSE-based theories can complement the SFA approach for
molecular HHG. However, the spatial grids required in 3D
calculations are often too limiting to calculate HHG spectra
with full details.
To understand a complicated system, it is useful to isolate

each component and observe its influence on the results. For
molecular HHG, that includes: (i) electronic structure,
(ii) multicenter geometry and rovibrational degrees of free-
dom, (iii) multielectron ionization, and (iv) macroscopic
propagation effects. One frequently employed model for such
studies in strong-field physics is a reduced-dimensional atom
or molecule based on quasi-Coulomb potentials [21]. In this
model, essential characteristics of strong-field interactions
can be addressed separately, for example, the elliptic polar-
ization effect [22, 23], two-center geometry [24], nuclear mo-
tion [25, 26], and electron–electron correlation [13, 27–29].
The reduced dimensionality allows to carry out numerical
calculations with high accuracy.
In this paper, we study the effect of orbital–orbital interfer-

ence in molecular HHG using two-dimensional (2D) quasi-
Coulomb potentials. The TDSE is solved for a few outer
occupied molecular orbitals (MOs) in the limit of an inde-
pendent particle model (IPM), that is, each MO is evolved
independently under a single-electron Hamiltonian. The ef-
fect of electron–electron screening is represented by a model
potential, but exchange (and correlation) effects are ne-
glected. It is interesting to observe whether such a simple
IPM calculation does, in fact, produce orbital–orbital interfer-
ence structures. The harmonic spectrum is evaluated in two
different ways, that is, either from a coherent sum of individ-
ual MO spectra, or from the net dipole acceleration as it
arises in the framework of TDDFT. These two different pre-
scriptions do not yield identical spectra because we use an
approximate single-electron potential.
We focus on modeling HHG from closed-shell diatomic

molecules, whose ground state energies are adjusted for the
outermost occupied MOs of N2 and F2. The resulting spectra
are examined by using the recently measured molecular spec-
tra by Wörner et al. [30] as references. Given that the theo-
retical supporting argument in ref. 30 used a SFA approach
[10, 11] without macroscopic propagation effects [31], we
consider it meaningful to verify their findings against the sin-
gle-molecule calculation according to the TDSE. The present
work is accomplishing this task in a reduced geometry.
The outline of the paper is as follows. In Sect. 2, we intro-

duce the model, and describe the numerical methods for the
TDSE and the initial value problem. Section 3 comprises our
results; the ground-state MOs of the N2- and F2-like 2D
model molecules are presented in Sect. 3.1; the connection
between ionization probabilities and harmonic yield for these
two model molecules is discussed in Sect. 3.2, and their har-
monic spectra are examined in Sect. 3.3. The phase differ-
ence among the individual MO spectra from the F2-like 2D
molecule are investigated in Sect. 3.4 for some evidence of
the orbital–orbital interference. Section 4 summarizes the re-
sults. Atomic units (ℏ = me = e = 1) will be used through-
out, unless stated otherwise.

2. Methods

2.1. Model
Let (x1, y1) and (x2, y2) be the coordinates of the two nu-

clei in a diatomic molecule, such that

xi ¼ �R

2
cos q yi ¼ �R

2
sin q i ¼ 1; 2 ð1Þ

where R is the internuclear distance, and q is the angle be-
tween the molecular axis and the driving-laser polarization.
For simplicity, the nuclear motion is neglected. The interac-
tion of a diatomic molecule and a laser field E(t) polarized
along the x-axis is modeled by the following set of 2D sin-
gle-electron TDSEs

i
@

@t
jnðx; y; tÞ ¼ Hjnðx; y; tÞ ð2Þ

Here n = 1, 2, …, N runs through the number of active MOs.
The model Hamiltonian in length gauge is given by

H ¼ �1

2

@2

@x2
þ @2

@y2

� �
þ Uðx; yÞ þ veeðx; yÞ þ xEðtÞ ð3Þ

where E(t) = Eo(t) sin uot for a given pulse-envelope function
Eo(t), and

Uðx; yÞ ¼
X
i¼1;2

�Ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ2 þ e

p ð4Þ

veeðx; yÞ ¼ �1þ Z1 þ Z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ m

p ð5Þ

Here, Zi (i = 1, 2), e, and m are constants determined as
follows. For N2 (F2), the first four (five) eigenfunctions corre-
sponding to the lowest energies are chosen to represent occu-
pied MOs, so that the highest-occupied molecular orbital
(HOMO) has the same symmetry as real N2 (F2) when pro-
jected on a plane. Given the spin degeneracy, the effective
charge numbers are therefore set to be Z1 = Z2 = 4 for N2
and Z1 = Z2 = 5 for F2. The innermost electrons correspond-
ing to the 1sg and 1su states are assumed frozen. The nuclear
screening parameter e in (4) is set to 0.5, a typical value for
2D calculations [1], while the electron–electron screening pa-
rameter m in (5) is adjusted to produce the correct energy for
the HOMO of N2 or F2. This prescription for the model pa-
rameters naturally leads to the correct HOMO-1 energy as
well (cf. Table 1 in Sect. 3). For all results shown in this pa-
per, the pulse-envelope function Eo(t) has a cos2 shape cen-
tered around t = 0 with a total duration of 20 cycles
including rise and fall.
Potential (5) models a static electron–electron screening ef-

fect. The exact TDDFT potential would have to include the
time-dependent Hartree potential and the exchange–correlation
potential. Neither of them is represented by model potential
(5). Note that a time-depenedent mean-field potential would
lead to the problem of nonexponential decay in a mono-
chromatic laser field [32]. The overall potential in model
Hamiltonian (3) has the correct asymptotic behavior for sin-
gle electron removal. Because all the MOs are propagated
in the same potential, their orthogonality is preserved at all
times.

538 Can. J. Phys. Vol. 90, 2012

Published by NRC Research Press

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

Y
O

R
K

 U
N

IV
 o

n 
06

/2
7/

12
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



2.2. Integration scheme
The time-evolution operator is split as

e�iHdt=2 ’ e�iVdt=2e�iTdte�iVdt=2 ð6Þ
where

V ¼ Uðx; yÞ þ veeðx; yÞ þ xEðtÞ ð7Þ

T ¼ �1

2

@2

@x2
þ @2

@y2

� �
¼ p21

2
þ p22

2
ð8Þ

The propagator for the kinetic energy operator T is applied in
momentum space using fast Fourier transforms. Equation (2)
is solved on a 2D cartesian spatial grid whose x-axis is
aligned with the laser polarization, and extends either to ±5
times the classical oscillator radius ao = Eo(0)/u2

o or
to ±140 au, whichever is larger, whereas the y-axis range is
kept at a quarter of this size. The parts of the wave function
that reach the spatial boundaries are absorbed by a gobbler
function to avoid wraparound flow [33]. The results in this
paper are obtained using resolutions of Dx = Dy = 0.2 and
Dt = 0.05.

2.3. Initial states
To find the initial MOs, we solve the eigenvalue problem

Hounðx; yÞ ¼ 3nunðx; yÞ ð9Þ
for n = 1, 2, …, N, where

Ho ¼ �1

2

@2

@x2
þ @2

@y2

� �
þ Uðx; yÞ þ veeðx; yÞ ð10Þ

Eigenvector–eigenvalue pairs are obtained by propagating an
orthogonal set of initial wave functions in negative imaginary
time t = –it. This is equivalent to evolving a set of diffusion
equations, given by

� @

@t
fnðx; y; tÞ ¼ Hofnðx; y; tÞ ð11Þ

for sufficiently long time (i.e., fn(x, y, t → ∞) = un(x, y)).
Equations (11) are solved using the same spatial grid and nu-
merical scheme used for the TDSE (Sect. 2.2) but with a
temporal resolution of Dt = 0.01, while imposing the ortho-
normality condition among the fn at each time step.

2.4. Harmonic spectra
From the solutions of (2), the dipole acceleration is found

by using Ehrenfest’s theorem. Two alternative calculations
are possible for the net dipole acceleration of a molecule.
The more intuitive approach is the following:
IPM perspective: for each of the N active MOs, we calcu-

late the dipole acceleration along the laser polarization axis
as

anðtÞ ¼ hjnðtÞjrV � bexjjnðtÞi ð12Þ
where V is given by (7). The net dipole acceleration is found
as their coherent sum, that is,

aVðtÞ ¼
XN
n¼1

gnanðtÞ ð13Þ

where gn is the occupation number for the nth active MO.
Equation (12) is used to calculate the individual harmonic

spectrum of each MO.
If a Kohn–Sham type calculation with the exact exchange–

correlation potential were used (i.e., if the orbital densities
obtained from (2) would sum up to the exact one-particle
density of the many-electron system) then the zero-force the-
orem [34, 35] of TDDFT would apply and nee in (3) would
not contribute to the dipole acceleration. Accordingly, we
also consider the following alternative.
TDDFT perspective: the net dipole acceleration along the

laser polarization axis is given by

aWðtÞ ¼
XN
n¼1

gnhjnðtÞjrW �bexjjnðtÞi ð14Þ

where

W ¼ Uðx; yÞ þ xEðtÞ ð15Þ
Note that, as nee in our model given by (5) is approximate,
net dipole accelerations (13) and (14) are different, and it is
not clear a priori which one is to be preferred [36]. One of
the aims of the present work is to provide a comparison of
both prescriptions. The TDDFT perspective does not allow
an evaluation of the individual harmonic spectrum.
The occupation number gn for each active MO is deter-

mined as follows. The N2 molecule has 14 electrons in total,
four of which are frozen in the 1sg and 1su states (Sect. 2.1).
In SCF Hartree–Fock (HF) calculations in 3D, the 10 remain-
ing electrons are distributed over four MOs as [37] (2sg)2
(2su)2(1pu)4(3sg)2. The pu orbital is degenerate because of
its ±1 magnetic quantum numbers. In our 2D model, the
analogous orbitals o1–o4 are found, and are assumed to ac-
commodate electrons in a similar manner as (o1)2(o2)2(o3)4
(o4)2.
Similarly, the SCF–HF configuration for 14 electrons in

the five outermost occupied MOs of the F2 molecule is [38]
(2sg)2(2su)2(3sg)2(1pu)4(1pg)4 and therefore we assume their
configuration in 2D according to (o1)2(o2)2(o3)2(o4)4(o5)4.
Model hamiltonian (3) does not depend on the occupation
numbers, as the IPM we adopt does not involve a SCF calcu-
lation.
In the analysis below, the individual MO spectrum in

Sect. 3.3.1 is found as jeanðuÞj2, where eanðuÞ is the Fourier
transform of (12). The net dipole spectrum D(u) in Sect.
3.3.2 on the other hand, is evaluated in two ways, either
from (13) as jeaVðuÞj2 or from (14) as jeaWðuÞj2. In practice,
only a few valence MOs (i.e., the HOMO (n = N), the
HOMO-1 (n = N – 1), and the HOMO-2 (n = N – 2)) are
necessary for the convergence of D(u) in both cases. All the
dipole accelerations (i.e., (12), (13), and (14)) are multiplied
by a Welch window before the Fourier transform to obtain
clean spectra. Because of the absorbing boundaries
(Sect. 2.2), the norm of the wave function used to evaluate
the dipole acceleration becomes less than one during the
time evolution of the TDSE.
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3. Results

3.1. Ground states of 2D model molecules

3.1.1. N2-like molecule
To model the N2 molecule in 2D, we let the internuclear

distance be R = 2.1 (to reflect the experimentally measured
equilibrium distance R = 2.068 [39]) and use the effective
charge numbers Z1 = Z2 = 4, to obtain four orthogonal MOs
that have symmetries analogous to the first four valence MOs
of the real N2 molecule predicted by SCF–HF calculations
[37]. Figure 1 shows the six lowest-energy MOs of the 2D
N2 molecule obtained with m = 2.5. The energies and the
corresponding experimental values are summarized in Ta-
ble 1. We find that our 2D model produces correct energies
for the first two valence MOs of N2. However, the ionization
energies of the innermost MOs (o1 and o2) in the 2D model
are too large in comparison with the experimental values.
This limits our analysis in that the harmonic contribution
from the HOMO-2 orbital of N2 must be disregarded,
although its experimentally measured ionization energy sug-
gests that a sizeable contribution from this orbital is indeed
possible.

3.1.2. F2-like molecule
By increasing the effective charge numbers in the Hamilto-

nian to Z1 = Z2 = 5, we can investigate the case when the
HOMO is the antibonding p state (which has four lobes
with alternating signs), as is the case for the O2 and F2 mole-
cules. We will consider only the F2 molecule because the O2
molecule has additional complications associated with its
open-shell structure [40–42]. Choosing the parameters m =
2.6 and R = 2.7 (experimental value: R = 2.712 [43]) yields
the correct HOMO energy of F2 for the o5 state. As Table 1
shows, the stationary-state energies of the first three valence
MOs of the 2D F2 molecule are in good agreement with the
experimental values. The six lowest-energy MOs of F2 are
found in Fig. 2. Notice that, as compared to the N2 molecule
in Fig. 1, the symmetries of the o3 and o4 states (viz., bond-
ing p state or s state) are reversed in Fig. 2. This behavior is
consistent with SCF–HF calculations [37, 38].

3.2. Ionization probabilities
As mentioned in Sect. 2, the norm of the wave functions

becomes less than one during the time evolution of (2) be-
cause of the absorbing boundaries. These absorbed parts of
the wave functions can physically be interpreted as ionizing
to infinity, that is, we can infer the (permanent) ionization
probabilities of the MOs from the norm of the wave func-
tions [19, 40, 41].
Figure 3 shows the norm of a few valence-MO wave func-

tions of the 2D N2 and F2 molecules as a function of time
while driven by an 800 nm laser field of peak-intensity 2 ×
1014 W cm–2. Our model calculation predicts that the
HOMO of F2 (o5), which has antibonding character, ionizes
less than the HOMO of N2 (o4) when q = 0 and p/2, despite
their similar binding energies (cf. Table 1). This is consistent
with the prediction in ref. 44, that the ionization from anti-
bonding MOs is suppressed when their nodal plane is paral-
lel to the driving laser field.
When comparing the orientational dependence for the

bonding s orbitals (o4 in N2 and o3 in F2) in Fig. 3, we no-
tice a common trend: ionization is favored when the molecu-
lar axis is aligned with the laser field (q = 0), and suppressed
when q = p/2. The situation is not as obvious in the case of
the bonding p orbitals (o3 in N2 and o4 in F2): the ionization
of the o3 state in N2 is strongly suppressed when q = 0,
while the o4 state in F2 is ionized preferentially for small q.

Fig. 1. The six lowest-energy MOs of the 2D N2 molecule. The
molecular axis is in the horizontal direction. Contour lines are drawn
in intervals of ±0.1.

Table 1. Absolute values of the six lowest stationary-state
MO energies of the model molecules (2D) and the corre-
sponding experimental ionization energies (Exp.) in eV.

N2 F2

2D Exp. [39] 2D Exp. [43]
o6 8.6 — — o6 14.7 — —
o5 9.2 — — o5* 15.7 1pg 15.7
o4* 15.2 3sg 15.5 o4 19.0 1pu 18.98
o3 16.9 1pu 16.8 o3 19.7 3sg 21.0
o2 40.7 2su 18.6 o2 55.6 — —
o1 49.7 2sg 37.3 o1 57.7 — —
*HOMO

Fig. 2. Same as Fig. 1, but for the 2D F2 molecule.
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The wave-function contours of the o3 state in Fig. 1 and the
o4 state in Fig. 2 show that these orbitals of equal MO sym-
metry do have qualitative differences, that is, the electron
density within a p-lobe is somewhat separated in F2 but not
in N2, which could cause electrons in F2 to ionize along the
molecular axis more easily than in the perpendicular direc-
tion. As illustrated by this example, the orientational depend-
ence of molecular ionization in a strong laser field implied
from Fig. 3 seems far from trivial. The conclusion drawn in
ref. 19, for the case of CO2, that the MOs ionize most when
they have maximum density along the laser axis, perhaps
should not be generalized to all linear molecules.
The 2D model utilizing a quasi-Coulomb potential ionizes

more easily than the real 3D case, and thus the ionization
probabilities of the 2D model molecules are expected to be
comparable with experimental data using higher driving-laser
intensities. Nevertheless, as the scope of this paper is to cal-
culate the harmonic spectra in accordance with what is meas-
ured in ref. 30, the same driving-laser intensities as used in
the experiment (1–2 × 1014 W cm–2) are chosen to generate
high harmonics.

3.3. Harmonic spectra from 2D diatomic molecules

3.3.1. Individual MO spectra
In this section, we present individual MO spectra (i.e., the

squared modulus of the Fourier transform of (12)). The fre-

quency and the peak intensity of a driving laser field are the
same as in the ionization analysis of Sect. 3.2 (i.e., 800 nm
and 2 × 1014 W cm–2). For both N2 and F2 molecules mod-
eled in this work, the lowest two MOs (o1 and o2) are ne-
glected in the following analysis because their harmonic
contributions are negligibly small due to the large ionization
energies (cf. Table 1).
Figure 4 shows the high harmonic spectra from the first

two valence MOs of the 2D N2 molecule. Our IPM calcula-
tion predicts that each MO spectrum strictly follows the
semiclassical cutoff law of ref. 45, regardless of molecular
orientation and electronic structure (i.e., their intensities al-
ways fall off at the cutoff frequencies given by Ip + 3.17Up,
where Ip is the ionization potential of the MO considered,
and Up is the ponderomotive energy of the driving laser
field). This finding that the cutoff law holds true for molecu-
lar HHG may appear to be in conflict with the previous ex-
periment by Shan et al. [46] in which harmonic spectra of O2
were shown to extend beyond those of Xe despite their simi-
lar ionization energies. However, the harmonics in ref. 46,
were generated at saturation intensities, which were different
for O2 and Xe. In Sect. 3.3.2, we find that the position of the
cutoff in our 2D N2 spectra is in agreement with the experi-
ment in ref. 30, using moderate driving laser intensities.

Fig. 3. Norm of valence MOs during the HHG driven by an
800 nm, 2 × 1014 W cm–2 peak-intensity laser field as a function of
time given in laser cycles.

Fig. 4. Individual harmonic spectra jeanðuÞj2 (in arbitrary units) from
valence MOs of the 2D N2 molecule driven by an 800 nm, 2 ×
1014 W cm–2 peak-intensity laser field. Vertical lines indicate the
positions of semiclassical cutoffs.
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Another important observation in Fig. 4 is that the overall
intensity of the individual MO spectra weakens when the mo-
lecular orientation causes ionization suppression, which can
be inferred from the less diminishing norm in Fig. 3 (i.e.,
q = 0 for o3 and q = p/2 for o4). This makes sense from the
point of view that less ionization means fewer electrons are
available to participate in HHG.
The same general trend as known for atomic high har-

monic spectra is found in Fig. 4 (i.e., each MO spectrum ex-
hibits a plateau region with uniform intensity followed by an
abrupt falloff [4, 5, 47]). The harmonics in the plateau do not
have clear peaks because of the interference between the
well-known short and long trajectories, according to the SFA
description of HHG [7]. This degeneracy is not observed in
experiments because the propagation through the atomic–
molecular gas jet selects only the short electron path and
locks the plateau harmonics in phase [48]. Beyond the
semiclassical cutoff frequency, the short-path solution and
the long-path solution merge into one. As a result, the spec-
tra in Fig. 4 beyond the cutoff exhibit well-resolved har-
monics appearing only at odd orders due to the inversion
symmetry of the system along the driving laser field.
In Fig. 5, harmonic spectra from the first three valence

MOs of the 2D F2 molecule are shown. Here, in addition to
the remarks made for the N2 spectra, we observe the follow-
ing. The harmonic intensity from the HOMO (o5) of F2

weakens when q = 0 and p/2 because of the ionization sup-
pression described in Sect. 3.2. As a result, the harmonic
spectra from the inner MOs become competitive in strength
at these molecular orientations. The HOMO-1 (o4) dominates
when q = p/2, which is understandable, as it is ionizing most
among the three valence MOs at this orientation in Fig. 3.
On the other hand, the HOMO-2 (o3) dominates when q = 0
although its final ionization probability in Fig. 3 is smaller
than that of the HOMO-1. Looking at the ionization profiles
of these two MOs in Fig. 3 more closely, however, one noti-
ces that the HOMO-2 survives through the peak of the driv-
ing laser (t = 0) better than the HOMO-1 does. This should
enhance the harmonic intensities particularly in the cutoff re-
gion, as is confirmed in Fig. 5.
Moreover, the o5 spectrum for q = p/2 exhibits an unusual

behavior, namely, the spectral peaks are well-resolved at all
odd harmonic orders even in the plateau region. The sharp
peaks below the 20th harmonic indicate that they originate
from short-path recollisions, which are known to induce the
smallest dipole chirp [6]. Above the 20th order, the harmonic
peaks gradually increase their widths, suggesting that they
are from the long-path recollisions, which induce larger di-
pole chirp. The same trend is recognizable for q = p/3 as
well, although there is a narrow region of irregularity around
the 30th order. The mechanism for this natural selection of a
single-electron path in the o5 state is unclear, but it is not a
multielectron effect in our model, as the signatures are found
in the individual MO spectrum. In a separate calculation with
a 1200 nm/1 × 1014 W cm–2 driving laser field, the spectra
did not exhibit this behavior. Aside from this, the individual
MO spectra for the 1200 nm/1 × 1014 W cm–2 driving laser
field are found to have the same qualitative features as for the
800 nm/2 × 1014 W cm–2 field, and therefore are not shown
in this paper.
The finding that many orbitals can contribute to multi-

photon ionization and to HHG was demonstrated originally
in a TDDFT model of ref. 15, using a semiempirical local
exchange–correlation functional. In the more recent work us-
ing a time-dependent optimized effective potential [17], it
was found that a considerable amount of orbital switching oc-
curred as a function of molecular orientation angle, that is,
that even the HOMO-2 in N2 could dominate ionization
from the molecule. A similar set of calculations, however,
with a frozen molecular potential displayed the absence of
such strong orbital switching effects in multiphoton ioniza-
tion [42]. Given these substantial discrepancies of TDDFT
calculations with and without dynamical screening effects,
more model calculations are needed to understand the orbital
response in molecule–laser interactions. It is desirable to ex-
tend our 2D model such that the role of the HOMO-2 in N2
can be fully investigated, because in the present 2D model
the HOMO-2 state (o2) is bound so deeply (cf. Table 1) that
its contribution to HHG is negligible.

3.3.2. Net spectra
In this section, we examine the net dipole spectra D(u) of

the 2D N2 and F2 molecules, obtained either from aV(t) of
(13), or from aW(t) of (14). Two sets of driving-laser fre-
quency and peak-intensity settings are chosen in accordance
with the experimental setups of ref. 30 (i.e., 800 nm/2 ×
1014 W cm–2, and 1200 nm/1 × 1014W cm–2).

Fig. 5. Same as Fig. 4 but for the 2D F2 molecule.
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Figure 6 shows the square modulus of net dipole accelera-
tion for N2, for q = 0 (solid line) and for the angle-average
(dashed line). They are shown vs. photon energy as well as
vs. harmonic order, as in ref. 30. The results obtained from
aV(t) using the two previously mentioned driving-laser set-
tings are displayed in Figs. 6a and 6b, to be compared with
the ones from aW(t) in Figs. 6c and 6d directly below. The
angle-averaged spectra are based on seven calculations be-
tween q = 0 and p/2, Dq = 15°. The net dipole accelerationseaVðuÞ or eaWðuÞ for these different orientations are averaged
coherently in frequency space to form the angle-averaged
spectra.
Both aV- and aW-prescriptions predict the position of the

harmonic cutoff between 50 and 60 eV, which is in agree-
ment with the N2 spectra of ref. 30. Here we define the cut-
off in our single-molecule response spectra (without the
propagation effect) as the location where the interference
from degenerate electron paths gives way to well-resolved
peaks at odd harmonic orders. Given the simplicity of our
model, this agreement is encouraging and may justify an
IPM description of molecular HHG.
The details of the spectra based on the two different pre-

scriptions for the net dipole acceleration are rather different.
For instance, the harmonic spectra based on aV(t) in Figs. 6a
and 6b predict much smaller harmonic yield than the ones
based on aW(t) in Figs. 6c and 6d for both the q = 0 and an-
gle-averaged cases, which might mean that the inclusion of
∇nee in the aV(t) cancels the nuclear-potential contribution
∇U in the net harmonic spectrum. Because we are solving
the TDSE with rather simplistic model potential (5) for nee,
the calculation based on aV(t) is considered more consistent

in our model than the one based on aW(t). One of the chal-
lenges of realistic TDDFT calculations for molecular HHG
will be to demonstrate consistency in this regard, that is, to
show that the net spectra calculated from both (13) and (14)
do agree.
The experimental N2 spectra in ref. 30, showed a local

minimum around 40 eV regardless of the applied driving-
laser intensities and frequencies, and therefore its origin
was claimed to be not dynamical but structural. The fact
that the observed minima in ref. 30, appeared at the same
place for both the aligned (q = 0) and random-orientation
cases could not be explained in terms of the the two-center
interference effect [24]. In a follow-up paper by Jin et al.
[49], it was shown that the 40 eV minimum in N2 spectra
is a property of the HOMO, similar to the Cooper mini-
mum, which occurs in atomic HHG. The spectra of our 2D
N2 molecule in Fig. 6 fail to produce this minimum, as it must
depend sensitively on the details of the molecular potential.
Figure 7 shows the net spectra for the 2D F2 molecule:

Figs. 7a and 7b are obtained from aV(t), while Figs. 7c and
7d from aW(t). Unlike for N2, the spectra based on the two
prescriptions are not very different for F2, and the important
spectral features are found in both cases. For instance, we
find a broad minimum just below the HOMO cutoff in the
q = 0 spectra of Figs. 7a and 7c driven by 800 nm/2 ×
1014 W cm–2 laser fields, which resembles what is observed
in ref. 30, for the CO2 molecule, that is, the minimum does
not occur in the angle-averaged spectrum but only when the
molecule is aligned at q = 0. Because the first few valence
MOs of CO2 have similar symmetries as F2, it is not surpris-
ing to see common features in their harmonics. The local

Fig. 6. Net harmonic spectra (in arbitrary units) from the 2D N2 molecule driven by (a and c) 800 nm/2 × 1014 W cm–2 and (b and d)
1200 nm/1 × 1014 W cm–2 laser fields, evaluated from (a and b) (13) as jeaVðuÞj2 and (c and d) (14) as jeaW ðuÞj2: solid line, q = 0; dashed
line, the angle-average; vertical lines indicate the positions of the semiclassical cutoffs for the HOMO.
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minimum in the CO2 spectra of ref. 30, was found to shift its
location depending on the driving-laser intensity, and there-
fore its cause was attributed to the orbital–orbital interference
effect that depends on electron dynamics. In the following
section, we will examine the phase differences between dif-
ferent MO contributions for our F2 spectra to find some evi-
dence for the orbital–orbital interference effects similar to the
one in ref. 30. The spectra in Figs. 7b and 7d driven by
1200 nm/1 × 1014 W cm–2 laser fields do not exhibit a well-
modulated minimum, but simply extend to the inner-MO cut-
off for q = 0 where the HOMO-2 contribution dominates
(Sect. 3.3.1).

3.4. Phase difference effects
It is known that the location of a dynamically-induced har-

monic minimum in the CO2 molecule is determined by the
phase difference between the HOMO and HOMO-2 har-
monic spectra [3]. For a given pair of MOs, labeled by n
and n′, one can write

DðuÞ � jeanðuÞ þ ean0 ðuÞ 2
��

¼jeanðuÞ 2þ�� ��ean0 ðuÞ 2þ�� ��eanðuÞjjean0 ðuÞj cosDfnn0 ðuÞ
ð16Þ

where eanðuÞ and ean0 ðuÞ are the Fourier transforms of the di-
pole accelerations given by (12), and Dfnn0 ðuÞ is their phase
difference. In situations where the two dipole accelerations
are of similar magnitude, the interference term (∼cosDfnn0 )
determines the structure of the harmonic minimum [3, 30].
The individual MO spectra shown in Fig. 5 suggest that

harmonics from the three outermost MOs of the 2D F2 mole-
cule, driven by an 800 nm/2 × 1014 W cm–2 laser field, all
have comparable magnitudes in the plateau region when q =
0. We therefore expect to find the orbital–orbital interference

effect in this case. In Fig. 8, we plot the phase difference for
each pair of MO harmonics shown in Fig. 5 for q = 0. The
harmonic phases are adjusted by adding some multiple of 2p

Fig. 7. Same as Fig. 6 but for the 2D F2 molecule.

Fig. 8. Top panel: phase differences (in radians) among three differ-
ent MO harmonics of the 2D F2 molecule shown in Fig. 5 for q = 0:
solid line, Df45; dashed line, Df34; and dash-dotted line, Df35.
Horizontal lines are drawn at odd integer multiples of p to indicate
destructive interference of an orbital pair. Middle panel: the solid
line is the net harmonic spectrum of Fig. 7a at q = 0, i.e., the co-
herent sum of MO spectra in Fig. 5 given by (13). The dashed line
shows an incoherent sum to highlight the predominant occurrence of
destructive interferences. Bottom panel: same as the middle panel,
but with the net spectrum of Fig. 7c given by (14).
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so that all three phase difference plots appear in the same
frame between –25 and 25 radians. Horizontal lines are
drawn at odd integer multiples of p where two orbital contri-
butions can interfere destructively. Also shown in Fig. 8 are
the corresponding net harmonic spectra evaluated from two
different acceleration forms, that is, Figs. 7a and 7c for q =
0 (solid lines). The amount of orbital–orbital interference is
represented by the difference between the coherent sum
(solid line) found from (13) and (14) and the incoherent sum
(dashed line) in the bottom two panels of Fig. 8, given by

jeaincðuÞj2 ¼ XN
n¼1

jgneanðuÞj2 ð17Þ

In the top panel of Fig. 8, the phase differences Df34

(dashed line) and Df35 (dash-dotted line) exhibit similar pro-
files. On the other hand, the phase difference Df45 (solid
line) follows a distinctive pattern; it tends to stabilize at odd
integer multiples of p. The net spectra in the bottom two
panels show clearer harmonic peaks than the incoherent sum
in the plateau region, which is the effect of destructive inter-
ference due to Df45, as the locations where Df45 stabilizes
often correspond to the suppressions in the net harmonics.
Figure 5 shows that all three MOs have similar strengths in
the plateau when q = 0. The o4 and o5 states of the 2D F2
molecule, however, have occupation numbers of four, as
compared to two for the o3 state. The net spectra in the pla-
teau region must therefore be dominated by the o4 and o5
orbitals, as their amplitude is weighed more in the sum ac-
cording to (13) or (14). This is why the phase difference
Df45 controls the structure in the plateau in the net spec-
trum.
Beyond the 33rd harmonic, the o3 spectrum dominates

over the outer two MO spectra in Fig. 5 for q = 0. As the
intensities of the o4 and o5 harmonics fall off rapidly beyond
their cutoffs, their contribution to the coherent sum is re-
duced, and their phase differences with respect to the o3 har-
monics start to affect the net spectrum. The suppressions in
the net harmonic spectra at the 33rd and 35th harmonic or-
ders are indeed caused by Df34 and Df35, as their phase dif-
ferences in Fig. 8 are at odd integer multiples of p at the
33rd and 35th orders, while Df45 (solid line) is not. Beyond
the 37th order, the o3 spectra are two orders of magnitude
stronger than the other two in Fig. 5 for q = 0, and therefore
interference effects are not visible in the net spectra.
These main findings are independent of the acceleration

forms; both aV- and aW-prescriptions predict destructive in-
terference between harmonic orders 30 and 38. The net har-
monic spectrum based on the aW-prescription that is
motivated by TDDFT produces more pronounced interfer-
ence minima.
The phase differences in Fig. 8 are more complicated than

the results of a SFA model presented in ref. 30, for two rea-
sons. First, our TDSE calculation follows the complete evolu-
tion of the MO wavepacket, including strong-field dynamics,
which leads to ionization, rescattering, and recombination in
the three-step picture [45]. The calculation in ref. 30, is sim-
pler, as it neglects the phase acquired during the ionization
step. Secondly, our calculation does not distinguish different
quantum paths of an ionized electron, whereas ref. 30, disre-

gards the higher-order paths to be consistent with their exper-
imental measurement, as the propagation effect selects only
the short-path solution. The phases observed for the individ-
ual-MO spectrum jeanðuÞj2 in the present model calculation
are similar to those found in full-dimensional TDSE calcula-
tions for atomic HHG [47], and thus they are deemed to be
accurate representations in 2D.

4. Conclusion
In this paper, HHG spectra from closed-shell diatomic

molecules in 2D are calculated by solving the single-electron
TDSE for a few outermost occupied MOs. The net harmonic
spectra from multiple orbitals are evaluated in two ways, ei-
ther as a coherent sum of individual MO spectra, or from the
net dipole acceleration according to TDDFT. Our IPM calcu-
lations predict that the high harmonic spectra from individual
MOs obey the semiclassical cutoff law. However, the relative
strengths among these MOs vary depending on molecular
orientations, as the overall harmonic yield decreases when
the molecule is oriented at an angle that suppresses the ion-
ization. Such ionization-suppressing angles cannot be deter-
mined for all linear molecules simply based on the binding
character of their MOs, as they may also depend on the inter-
nuclear separation and other structural factors.
Concerning the net spectrum, the contributions from differ-

ent MOs become comparably strong when a molecule is ori-
ented in such a way that the spectral strength of the HOMO
harmonic weakens due to the ionization suppression. This
causes the net spectrum to extend to the inner MO cutoffs,
and in some cases creates a local minimum due to destructive
interferences. Our finding is consistent with the explanations
given for the intensity-dependent minimum of CO2 spectra
based on the SFA approach [3, 30].
The 2D IPM calculation presented in this work cannot pro-

vide a complete explanation of experimental spectra. A recent
experiment–theory collaboration has accomplished that by
dealing with both the single-molecule response in the strong
laser field and the harmonic propagation in the ionizing me-
dium [50]. Nevertheless, our work demonstrates how far a re-
duced-dimensional TDSE calculation can account for
structural and multielectron effects beyond the single-active-
electron approximation. The present model should serve as a
useful testing ground for relevant ideas concerning multielec-
tron dynamics in molecular HHG.
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