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Abstract
The coupled-channel Floquet equations in both length and velocity gauges are solved in a
pseudospectral representation to analyse ionization of the lowest two electronic states of the
H+

2 ion by strong continuous laser fields. A complex absorbing potential is used to obtain
Siegert-type solutions resulting in accurate resonance positions and widths. The roles of two
possible ionization mechanisms, tunnel ionization and resonance excitation multi-photon
ionization are explored. The ionization rates of the lower and upper states, which correspond
to gerade and ungerade states in the field-free case are investigated as a function of
internuclear separation R. The previously investigated double-peak structure at ω = 0.0428 au
is studied systematically as ω is decreased towards zero to understand how it relates to a
similar structure in the dc limit. It is shown that the connection is not straightforward, since the
ionization rates for the two states do mix strongly as ω is reduced for both peak regions. The
mixing becomes pronounced even for the first peak around R = 5 au when ω < 0.02 au. For
the outer peak around R = 9.5 au, we find that the rates for the upper and lower states become
the same at ω = 0.01 au and correspond to 10–15% of the upper-state rate in the dc limit. An
increase in laser intensity from 1.0 × 1014 to 2.0 × 1014 W cm−2 results in a similar outer
peak with an about seven-fold increase in the ionization rate.

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of ionization of atoms and molecules by continuous-
wave (CW) strong-field lasers in the optical and infrared
regimes has evolved to a good level of understanding.
Dissociative ionization of small molecules was reviewed in
[1]. Experimentally, the focus has shifted towards short pulses,
since pulse compression allows for stronger fields, but studies
of the hydrogen molecular ion in intense laser fields were
also carried out in the CW regime [2], particularly for infrared
light [3]. Theoretically, the CW case can be treated by standard
Floquet theory, while short pulses are dealt with by solving the
time-dependent Schrödinger equation directly [4]. In addition,
multi-mode Floquet analysis allows a pulse envelope to be
taken into account [5]. While much focus has shifted towards
understanding detailed phenomena, such as electron spectra

and high harmonic generation from many-electron molecules
[6], there is still some need to explore ionization rates as a
function of internuclear separation R for the simplest molecule,
namely the hydrogen molecular ion H+

2 .
The interest in the R-dependent ionization rates for the

lowest molecular eigenstates arises for several reasons: in
laser-pulse experiments the neutral molecule is often ionized
by the rising pulse and produces a molecular ion in a
dissociating state, i.e., a high vibrational mode of the molecule
is excited [7, 8]. The strong field may also mix the lowest two
electronic eigenstates. As the molecule expands the ionization
rates for both states increase substantially, and the laser may
ionize the molecule efficiently at so-called critical separations
Rc [3]. Vibrational population trapping is also predicted [9]. It
is possible to determine the actual distance R when ionization

0953-4075/13/245005+08$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-4075/46/24/245005
mailto:marko@yorku.ca
http://stacks.iop.org/JPhysB/46/245005


J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 245005 Ts Tsogbayar and M Horbatsch

Table 1. The Keldysh parameter values for the 1sσg and 2pσu states of the H+
2 ion at various separations R (in au), and laser intensity

I = 1014 W cm−2.

States λ (nm) ω R = 2 R = 4 R = 6 R = 8 R = 10 R = 12

1sσg 1064 0.0428 1.18 1.01 0.93 0.89 0.88 0.87
2280 0.02 0.56 0.47 0.44 0.42 0.41 0.40
4560 0.01 0.28 0.24 0.22 0.21 0.21 0.20

2pσu 1064 0.0428 0.93 0.95 0.92 0.90 0.88 0.87
2280 0.02 0.43 0.44 0.43 0.42 0.41 0.40
4560 0.01 0.22 0.22 0.21 0.21 0.21 0.20

occurred from a measurement of the kinetic energies of the
molecular fragments.

Experiments were thus able to confirm at least parts of the
pattern of the ionization rate versus R obtained from theoretical
calculations. However, the structures in the ionization rate
predicted for larger internuclear separations R could not
be found in some experiments [4]. Other experiments with
carefully prepared H+

2 ions with short (100 fs) laser pulses and
a wavelength of 791 nm were able to find evidence of three
larger-R maxima in the ionization rate [10, 11].

Structures in the R-dependent ionization rate were found
theoretically in the dc limit [12–15] for the upper state. The
physical mechanism for strong-field ionization in this limit
is tunnelling for the lower state, and small-barrier tunnelling
or over-the-barrier escape for the upper state depending on
the field strength and separation R. The calculations are
deemed mature, with different methods confirming earlier
results, and resulting in a high degree of precision in
the resonance positions and widths for the single-electron
molecule. Interestingly, the peaking structures in the ionization
rate for the upper state are quite similar to those of ac Stark
calculations. It is therefore deemed interesting to search for a
connection, and particularly to explore the small-ω limit of the
ac case.

In atomic photoionization one can distinguish between
the tunnelling and multi-photon ionization regimes with the
help of the Keldysh parameter, defined as γ = √|Eb|/2Up

where Eb is the electron binding energy and Up = (F/2ω)2

is the pondermotive energy with F the laser electric field
strength and ω the angular frequency in atomic units. A
value of γ � 1 corresponds to tunnelling ionization, γ ∼ 1
indicates the intermediate regime, and γ � 1 multi-photon
ionization. In table 1 we show the Keldysh parameter values
for chosen wavelength λ values and a field intensity of I =
1014 W cm−2, for the ground and first excited states of the H+

2
ion. It is known, however, that in the molecular case matters
are more complicated, especially at intermediate internuclear
separations R [16]. The complicated behaviour was associated
with non-adiabatic electron localization near the nuclei.

The Floquet analysis of the strong-field ac Stark problem
was pioneered for atomic hydrogen by Shakeshaft and co-
workers [17]. For the hydrogen molecular ion the R-dependent
peak structures were analysed by Madsen and Plummer
[18] with ideas based on Floquet channel couplings to
identify which mechanism was responsible for them: as an
alternative to tunneling they offered explanations in terms of
resonance-enhanced multi-photon ionization (REMPI). In a
naive, intuitive picture one might think that in the presence of

a tunnelling barrier the small-ω limit implies that ionization
is effective only during the peak of the field: during a cycle
this will occur twice (once to each side), and re-scattering of
electrons ionized during earlier cycles will also take place.
The Floquet picture, on the other hand, suggests that photo-
ionization in a small-ω CW laser field is a complicated
process, requiring the coupling of very many channels to
make an accurate prediction. It also suggests that the lower
and upper states become highly mixed. It appears then that the
Keldysh parameter values which decrease with ω are perhaps
misleading in the molecular case. This is obviously the case
for the upper state which is not affected by an outer potential
barrier at intermediate and large R. As will be shown below,
the lower state is mixing with the upper state in this R-regime,
and, thus, the Keldysh argument has to be used carefully in the
molecular intermediate-R case.

The purpose of this paper is to illustrate the Floquet results
systematically in the limit of small laser frequency. Using a
methodology similar to previous work at λ = 1064 nm, we
confirm a number of prior results and also find some small
discrepancies. New features are found as the IR wavelength is
pushed further into the μm regime.

2. Theory

2.1. The Floquet Hamiltonian

We treat the hydrogen molecular ion, H+
2 in the Born–

Oppenheimer approximation, in which the two nuclei are fixed,
and only the electronic motion is taken into account. The field-
free electronic Hamiltonian of the H+

2 molecule can be written
in atomic units as

H0 = −1

2
∇2

r − 1∣∣r + R
2 ez

∣∣ − 1∣∣r − R
2 ez

∣∣ , (1)

where r is the electron position vector and R is the internuclear
separation.

If we assume that the interaction of the electron with the
external electric field VL(r, t) is periodic in time with period
T = 2π/ω, that is, H(r, t+T ) = H(r, t), according to Floquet
theory [19, 20], the solution �(r, t) to the time-dependent
Schrödinger equation for the system

i
∂

∂t
�(r, t) = H(t)�(r, t) = [H0 + VL(r, t)]�(r, t), (2)

can be written as

�(r, t) = e(−iEF t)	(r, t), (3)

	(r, t + T ) = 	(r, t) =
∞∑

n=−∞
einωtφn(r), (4)

2
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where EF is called the Floquet quasi-energy, and the φn(r)

obey time-independent coupled-channel equations.
Substitution of the solution (3) into the Schrödinger

equation (2) leads to a time-dependent eigenvalue
problem:

HF (r, t)	(r, t) = EF	(r, t), (5)

where the Floquet Hamiltonian HF (r, t) is defined as

HF (r, t) = H(r, t) − i
∂

∂t
. (6)

In this work we assume that the external field is provided
by a linearly polarized monochromatic laser aligned with
the internuclear axis of the H+

2 ion, and that the dipole
approximation is valid. Then the interaction VL(r, t) takes the
form

V lg
L (r, t) = Fz cos ωt, (7)

in length gauge, and

V vg
L (r, t) = i

F

ω
sin ωt

∂

∂z
+ F2

2ω2
sin2 ωt (8)

in velocity gauge, where F is the laser field strength. The length
gauge is more appropriate for low-frequency fields, while the
velocity gauge is valuable for intermediate-frequency laser
fields. We employ both gauges for ω = 0.0428 au, and the
length gauge alone for smaller values of ω.

For the solution of the Floquet (steady-state) Hamiltonian
(6), the time variable t is treated in analogy to a coordinate
variable, and the Schrödinger equation (5) is solved as for
the stationary states of the time-independent Schrödinger
equation. Once we find 	(r, t) from the steady-state
Schrödinger equation (5), we obtain the solution �(r, t) to
the time-dependent Schrödinger equation (2) via equation (3).

We choose prolate spheroidal coordinates to deal with
the H+

2 ion, in which the Born–Oppenheimer treatment
(equation (1)) gives an analytic solution to the Schrödinger
equation [21–23]. We transform r to prolate spheroidal
coordinates μ, ν, and ϕ, which are related to the Cartesian
coordinates x, y and z as follows:

x = R

2

√
(μ2 − 1)(1 − ν2) cos ϕ, (9)

y = R

2

√
(μ2 − 1)(1 − ν2) sin ϕ, (10)

z = R

2
μν, 1 � μ < ∞, −1 � ν � 1, 0 � ϕ � 2π.

(11)

The field-free Hamiltonian (1) and ∂/∂z are given as

H0 = −1

2

4

R2(μ2 − ν2)

[
∂

∂μ

[
(μ2 − 1)

∂

∂μ

]

+ ∂

∂ν

[
(1 − ν2)

∂

∂ν

]
+ μ2 − ν2

(μ2 − 1)(1 − ν2)

∂2

∂ϕ2

]

− 4μ

R(μ2 − ν2)
, (12)

∂

∂z
= 2

R(μ2 − ν2)

[
ν(μ2 − 1)

∂

∂μ
+ μ(1 − ν2)

∂

∂ν

]
. (13)

Here we limit ourselves to  electronic states (no ϕ

dependence).

Since the solution to the Schrödinger equation with
Hamiltonian (12) is found analytically in terms of Legendre
polynomials, it is natural to employ a Legendre-based
pseudospectral method [24, 25]. We do not discuss the details
of this methodology here, they can be found in [15]. It is
similar to that of [14], except that we do not symmetrize the
Hamiltonian, which yields improved computational efficiency.
We arrived at this conclusion by comparing the convergence
properties of bound-state pseudospectral representations given
in [26]. Photoionization of H+

2 by short UV laser pulses has
been treated recently by analogous grid methods for the time-
dependent Schrödinger equation [27–30].

2.2. AC Stark-resonance Hamiltonian and the complex
absorbing potential method

The ac Stark resonance Hamiltonian in prolate spheroidal
coordinates is given as

Hres(μ, ν, t) = H0(μ, ν) + V (μ, ν, t). (14)

To avoid the calculation of outgoing waves we add an artificial
complex absorbing potential (CAP) to this Hamiltonian. One
needs to choose this CAP only for the coordinate μ:

H = Hres(μ, ν, t) − iηW (μ),

W (μ) = �(μ − μc)(μ − μc)
2, (15)

where � is the Heaviside step function, η is a small positive
parameter, and μc determines the ellipse outside of which the
CAP dampens the outgoing wave in the asymptotic region.
This means that the eigenfunction of the resonance state can
be solved for in a square-integrable basis, that is, one solves
an eigenvalue problem to find complex energy eigenvalues,
whose real part yields the resonance position, and the inverse
of the imaginary part is associated with the lifetime of that
state.

While using a finite basis set, ideally we want η to be small
to produce a small artefact. However, when the parameter η

tends to zero, the computational representation error increases.
Thus, we want η to not be too small to have an easier (or more
accurate) calculation. Then, we remove the artefact due to
the CAP. This can be done by the iterative correction method
of Riss and Meyer [31], or by a Padé extrapolation method
[32–34]. Following [31] we have

E (n) = E (n)(η̃) = Efb(η̃) +
n∑

j=1

(−η̃) j

j!

d jEfb

dη j

∣∣∣∣
η=η̃

, (16)

where η̃ is an optimal value found by the condition [31]∣∣∣∣ ηn+1

(n + 1)!

dn+1Efb

dηn+1

∣∣∣∣
η=η̃

= min, n = 0, 1, 2, 3. (17)

Here Efb stands for finite-basis eigenvalues calculated on an
η-grid.

Following equation (5) in [34], (cf [32]) a Padé
approximant for Efb(η̃) is obtained from

EPadé(η) =
∑N1

i=0 piη
i

1 + ∑N1+1
j=1 q jη j

, (18)

3
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(a) (b) (c)

Figure 1. (a) The ionization rates (in fs−1) as a function of R for the lower and upper states of H+
2 . Curves: present results, solid red for the

lower state, and dashed blue for the upper state; crosses: Chu et al [14]: (b) for the lower and upper states of the ion, the field-dressed
diabatic potential red (lower) and blue (upper) curves are dashed, respectively, and the corresponding adiabatic potential curves are
presented by solid green (lower) and black (upper) curves. (c) The magnified detail of (b), showing clearly true and avoided crossings for the
adiabatic potential curves. The field parameters are F = 0.0533 au and ω = 0.0428 au.

where pi and q j are complex coefficients, and Np = 2(N1 + 1)

is the number of points used in the approximant. We found
that Np = 4 yielded reasonable extrapolations to η = 0. In
the present work we found that the Riss–Meyer method with
order n = 2 and the extrapolation method gave very consistent
results.

With the complex Hamiltonian equation(15), the time-
independent coupled equations are

[H0(μ, ν) − iηW (μ)]φn(μ, ν) + 1
2 Fz[φn−1 + φn+1]

= (EF − nω)φn(μ, ν), (n = 0,±1,±2 . . .) (19)

in length gauge, and

[H0(μ, ν) − iηW (μ)]φn(μ, ν) + 1

2

F

ω

∂

∂z
[φn−1 − φn+1]

= (EF − nω)φn(μ, ν), (n = 0,±1,±2 . . .) (20)

in velocity gauge, and are discretized as shown in [15]. In (20)
we removed the overall phase proportional to F2, as it does
not affect the results.

3. Results and discussion

In figure 1 we show results for the previously studied case
of λ = 1024 nm where the Keldysh parameter is of order
unity (the intensity of the laser field equals 1014 W cm−2).
The ionization rates as a function of separation R (obtained
as −2�(EF )) are shown in panel (a) for the lower and upper
states starting with the equilibrium values (R = 2 au) for the
upper state. The lower state has a very small ionization rate
for R < 4 au due to the large outer tunnelling barrier. The
upper-state ionization rate displays an undulating pattern with
distinct peaks at R = 5.5 au and R = 7.75 au. The lower-state
ionization rate rises to match the upper-state rate between
the peaks, and then surpasses the upper-state rate (peak at
R = 9.5 au).

Our results are in reasonable agreement with those of
Chu and Chu [14] with some notable differences in the
region beyond the first peaks. We carried out a substantial
convergence analysis to confirm our results in both the
length and velocity gauges. The convergence properties of

the Floquet calculations in velocity versus length gauge can
be characterized as follows. For larger ω than of interest in
this work, such as ω = 0.2 au at the equilibrium proton
separation of R = 2 au we found convergence in resonance
position and width for the upper state to be better than 7 digits
for 21 channels in velocity gauge, and 25 channels in length
gauge. At a wavelength of λ = 1024 nm, or ω = 0.0428 au
57 channels were required in length gauge to achieve this
accuracy, while a 65-channel calculation in velocity gauge
only resulted in absolute 5-digit accuracy. For ω = 0.02 au the
length gauge calculation was 7-digits accurate at 49 channels,
while the velocity gauge yielded poor results even at 65
coupled channels. Therefore, the length gauge was deemed
most appropriate for the present low-ω work.

In figure 1(b) we show the Floquet potential energy curves.
One can understand the mixing of the lower and upper states
for R > 4 au on the basis of this diagram. The field-dressed
diabatic potential curves for the lower and upper states are
shown by dashed red (lower) and dashed blue (upper) curves,
which are obtained from equations (19) or (20) in the absence
of an external field, i.e., for F = 0. The non-diagonal coupling
term caused by the external field vanishes in this limit, and the
eigenvalues of the Hermitian Hamiltonian yield the diabatic
curves. These diabatic curve pairs are shifted from each other
by ±nω, where n is the number of photons absorbed or emitted
[18]. The bold dashed red and blue curves represent the zero-
photon lower (1sσg − 0ω) and upper (2pσu − 0ω) states.
While the lowest diabatic curve for the lower state shown
in (b) corresponds to the 1sσg − 2ω state, the highest diabatic
curve for the upper state represents the 2pσu + 2ω state. The
lower/upper state curves for different values of n undergo true
crossings. The corresponding adiabatic potential curves for
the lower and upper states are represented by solid green
(lower) and solid black (upper) curves, which are obtained
in presence of the external field, that is, from the full non-
Hermitian resonance Floquet Hamiltonian calculation (19) or
(20). The adiabatic curves undergo avoided crossings where
true crossings occur in the diabatic levels.

In panel (c) of figure 1 the potential energy curves for the
n = 0 Floquet channel are shown on a fine scale. Following the
methodology of Madsen and Plummer [18] (based on [17]) we

4
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(a) (b) (c)

Figure 2. The same as in figure 1, but F = 0.0533 au and ω = 0.02 au.

(a) (b) (c)

Figure 3. The same as in figure 1, but F = 0.0533 au and ω = 0.01 au.

tracked carefully the real and imaginary parts of the Floquet
eigenvalues as a function of R. The complex energies are not
allowed to cross (the Hamiltonian depends adiabatically on R).
The crossing is avoided either in the real or in the imaginary
part. A true crossing in the real part of the complex energy is
associated with an avoidance structure in the imaginary part,
i.e., the ionization rate acquires complicated behaviour with
maxima and minima as a function of R.

In figures 2 and 3 we proceed with the same strategy
to understand the behaviour as the laser wavelength is
moved further into the infrared regime. The following picture
emerges: starting with R > 4 au the ionization rates for the
two states intertwine; in the first peak region (R ≈ 5.5 au) this
intertwining phenomenon is oscillatory with the number of
oscillations increasing with decreasing ω. In the second peak
region (R ≈ 9.5 au), the ionization rates for the upper and
lower states track each other with apparently a better match as
ω is lowered.

Panels (b) and (c) of figures 2 and 3 show the systematic
reasons for the observed behaviour. On the energy scale set
by the two molecular eigenstates as a function of R the
number of participating Floquet channels increases as ω is
reduced (in inverse proportion). While the figures show only
a limited number of Floquet channels, converged resonance
parameter values were calculated on the basis of at least 64
(ω = 0.0428 au), 80 (ω = 0.02 au) and 100 (ω = 0.01 au)
channel calculations.

We have carried out calculations for smaller ω (further
reduced by a factor of 2 and 4) with the finding that the number

of oscillations in the region of the first peak keeps increasing.
These calculations are more time-consuming, as the number
of Floquet channels to be coupled increases correspondingly.

From the comparison of the ionization rates shown in
figures 1–3(a) we can make an interesting observation: the
scale of the ionization rate appears to be quite independent of
ω. We note that the widths of the Floquet resonances are still
quite reasonable (below 10−3 au). A physical reason for the
independence of the ionization rate on the laser frequency ω

can be given on the basis of the ionization mechanism. In the
strong-field regime ionization can be understood via tunnelling
or an over-barrier mechanism as occurring for certain periods
of time during the laser cycle (when the field is close to its
peak value). Strong ω dependence can be expected in a multi-
photon regime. From the present work it becomes clear that
electron localization in one of the two wells is happening near
the critical radii, and this is determining the upper- and lower-
state ionization rates. The ω parameter plays an important role
in the technical aspects of the calculation only, since it controls
the number of Floquet channels that participate.

In [15] it was shown for the dc Stark problem how the
peak structures in the ionization rates were associated with
changes in the pattern of the localized probability density of the
decaying Siegert states. For the present ac case, an analogous
presentation is more complicated due to the time-dependence
(during one period of the laser field T = 2π/ω). With a certain
caveat, we provide such a presentation in figures 4 and 5 for
the case of ω = 0.01 au in order to illustrate the oscillatory
pattern in the ionization rate. We chose two separations: in

5
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Figure 4. (a) Electronic potential and real parts of electronic quasienergies for the lower and upper states (reference channel n = 0) and (b),
(c) contour plots of log |	(r, t = 0, T )|2 for the lower, and upper states for H+

2 at R = 5.5 au, and F = 0.0533 au and ω = 0.01 au. Note that
the x-axis is scaled differently from the z-axis, i.e., the outflow is mostly along the direction of the laser field. The x- and z-axis are labelled
in au.
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Figure 5. The same as in figure 4, but at R = 6 au, and F = 0.0533 au and ω = 0.01 au.

figure 4 for R = 5.5 au the lower state has a local maximum,
while the upper state has a minimum in the ionization rate; in
figure 5 for R = 6 au the situation is reversed.

The plots represent the time when the field is at its peak,
i.e., they represent a snapshot of the density which has moved
to the left with the laser field. For the range of small ω values
used in this work these (left–right) oscillations track the field
reasonably well.

Panels (a) of figures 4 and 5 show cuts through the
potential along the molecular axis (at t = 0, T ), as well as
the resonance positions for both states (which are averaged
over one cycle). They show the lower state as trapped (internal
and external barrier), and the upper state as untrapped for both
separations.

A comparison of the densities for the lower state shows
that at R = 5.5 au (figure 4(b)) the state is more concentrated in
the right well, and therefore ionizes rather easily. At R = 6 au
(figure 4(b)), on the other hand, the lower state displays more
localization in the left well, resulting in a reduced ionization
rate. This shows that the simple diagram (4(a)) is insufficient
to explain the ionization rate behaviour: the fact that the lower
state localizes in the right-hand well for R = 5.5 au gives
it apparently the ‘over-the-inner-barrier’ higher ionization
property rather than tunnelling behaviour. This localization
(or state-mixing) issue is the main reason why one has to be
careful in applying the Keldysh parameter argument, which
usually works well for atoms and equilibrium-R molecules. In
the language of Floquet theory, this state mixing is referred to
as REMPI [18].

The upper-state densities (figures 4(c) and 5(c) show a
reversed behaviour. The lower- and upper-state densities are
distinct from each other: one can clearly see the remnants
of a nodal structure of the field-free upper state (low-density
region to the left of z = 0), while the lower state resembles the
symmetry character of the field-free state in the internuclear
region.

Therefore, one can argue on the basis of the density plots
that Floquet channel couplings occur in such a way that in
the region of the first peak in the ionization rate the states
maintain some of their identity even though their complex
energies become intertwined. As one varies the separation
R the lower-state density has maxima at either nucleus that
vary dramatically in height. This causes the ionization rate to
be strongly modulated as R is varied. The upper state has a
complementary oscillation pattern. These density plots may
very well give support to the ideas of adiabatic electronic
localization raised in [16].

For large R, when there is an inner tunnelling barrier,
the density localized near the nuclei oscillates with period
T = 2π/ω. For small ω it can, in fact, oscillate out of
phase with the external field. While the individual stationary
Floquet channel functions φn(r) are either symmetric or anti-
symmetric, their superposition with complex amplitudes einωt

can display tunnelling oscillations with period T .
Finally, we show in figure 6 also a density plot for

the larger-R peak region, namely near the maximum in the
ionization rate (R = 9.25 au). The energy levels superimposed
on a snapshot of the potential along the molecular axis show
that both states are energetically above the outer barrier on this

6
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Figure 6. The same as in figure 4, but at R = 9.25 au, and F = 0.0533 au and ω = 0.01 au.

(a) (b) (c) (d)

Figure 7. The ionization rates (in fs−1) as a function of R for the lower and upper states of H+
2 . Curves: present results, solid red for the

lower state, and dashed blue for the upper state. (a) I = 1.25 × 1014 W cm−2: (b) I = 1.5 × 1014 W cm−2: (c) I = 1.75 × 1014 W cm−2:
(d) I = 2.0 × 1014 W cm−2, and ω = 0.0428 au.

(a) (b)

Figure 8. The dc-limit ionization rates (in fs−1) as functions of
internuclear separation R for the lower (red) and upper (blue) states
of H+

2 . The dc field intensities are I = 1.5 × 1014 W cm−2 (a) and
I = 2.0 × 1014 W cm−2 (b). The corresponding results for I = 1.0 ×
1014 W cm−2 are shown in [15].

case, but that there is an inner barrier to overcome. Both states
have similar density patterns, i.e., the upper state has lost its
nodal structure completely (as was observed for the dc case in
[15]). Thus, we can assume that complete state-mixing occurs
in the region of the larger-R peak. Eventually, with increasing
R the inner barrier rises, and ionization becomes less effective.

In figure 7 we present some additional results to show
how the ionization rates change with laser intensity. It can be
seen that the only moderately stronger fields result in some
changes in the ionization patterns for small and intermediate
R values. While the lower state for R � 4 au is still governed
by tunnelling ionization, the regime where it mixes with the

upper state begins at R ≈ 4 au for the doubled intensity. The
ionization rate for the upper state increases dramatically even
at the equilibrium separation. For the outer critical radii we
notice that they are also somewhat reduced with the lower
state experiencing a less dramatic increase in ionization rate.
When we average the outer peaks for the two states we find
approximately a seven-fold increase in ionization rate with
doubled intensity. The intermediate cases (panels (b), (c))
indicate that the changes occur gradually.

In order to test our conclusions about the relation of the
results to the dc limit findings for the upper state we show
the dc limit results for two laser intensities in figure 8. These
results (which are much easier to obtain technically, as there is
no channel convergence to worry about and the analysis of the
complex eigenvalue spectrum is straightforward) also show
similar features as the field intensity increases: at the outer
critical radius (Rc � 8 au) we find an approximately seven-
fold increase in ionization rate (for the upper state), the peak
structure narrows and moves slightly towards smaller R. For
R > 12 au the ionization rates for the upper and lower states
become competitive. In the large-R limit the rates coalesce,
since the two complex eigenvalues become nearly degenerate.
In figure 9 the ionization rates as a function of internuclear
separation R are shown for two laser frequencies at a field
intensity of I = 2.0 × 1014 W cm−2. The results for the lower
and upper states merge for large R as ω → 0. They do resemble
the dc limit for the upper state near R = 8 au with the ac rate
for both states approaching 15% of the dc upper-state value.
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(a) (b)

Figure 9. The same as in figure 7, but the field parameters are
ω = 0.02 au (a) ω = 0.01 au (b) and I = 2.0 × 1014 W cm−2.

4. Conclusions

Floquet calculations in a pseudospectral representation for the
lowest two H+

2 eigenstates are shown to display rather different
behaviour in the small-ω limit for the two peak regions in the
ionization rate.

For the first peak region (R ≈ 5 au) the density plots of
the coupled-channel Floquet eigenfunctions demonstrate that
while the upper state has remnants of a nodal structure (near
z = 0), the ionization rates oscillate against each other as a
function of R. The oscillation pattern becomes more rapid as
ω → 0.

The outer peak region (R ≈ 9 au) shows a different
situation. The upper- and lower-state density plots have similar
structures in between the nuclei. The inner tunnelling barrier
causes localized density to oscillate from one nucleus to the
other as a function of time. The ionization rates for the upper
and lower states become the same in this region.

Finally, we note that for the large-R peak the calculated
ionization rates seem to approach an ω → 0 limit. The rates
are approximately 10–15% of those found in the dc limit for
the upper state [15]. This should be considered reasonable,
since in the ac case the field is at a strength close to its peak
value for about one tenth of the laser cycle.

We tested our findings in a limited range of intensities
for which the lower state at equilibrium separation R = 2 au
has a small ionization rate due to the large tunnelling barrier.
The upper state, however, ionizes quite readily even for R = 2
au via an over-the-barrier mechanism. Since lasers of higher
intensities are becoming available, it will be of interest to
extend these calculations to stronger fields to explore the
regime where the lower state will also experience strong
ionization at small R.
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