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1) supercritcal Dirac: square well example

2) resonance calculations by analytic continuation

3) ditferential equation approach

4) U-U collisions - what will we see ?
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3d square well in Dirac QM

free particle in a box ? W.Greiner: RQM, Exercise 9.5
dg, K
dr“ P8 = (E+me) =V fi (1)
dfie «
d: fo = —E-mIg Vg . (@
Units: 1i=1,c=1 from now also: m,. =1

Angular momentum label: x =-1yields j=1/2
g/ f components - for V(r) = V,, combine+understand
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3d square well in Dirac QM

free particle in a box ? W.Greiner: RQM, Exercise 9.5
dg, K
dTK | rgK = (E+ mE)fK_V(r) f1< y (1)
dfie «
d: fo = —E-mIg Vg . (@
Units: 1i=1,c=1 from now also: m,. =1

Angular momentum label: x =-1yields j=1/2
g/ f components - for V(r) = V,, combine+understand

E scale: 511 keV; r scale: A\c =386 1m = ap/137
y - € : max. wavelength change =2A¢; R, =A¢/137

V (r): vector coupling vs scalar (mass) coupling



Potential step with V; <1
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just 3 states

kinks ?

E_

e o) —fr) —— E1,E2,E3 pap = (T}

V(r)=-0951forr <5

I
. 4 b 8
’

I
10



Potential step with V; <1

e o) —fr) —— E1,E2,E3 pap = (T}

large zero-point E  *-
just 3 states /-\

kinks ?
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deeply bound QM particle squeezed to 51
lower component has a centritugal barrier
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Giant potential step AV > 2

V(r)=-05forr <20 and V(r) =1.65tfor r > 20
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Giant potential step AV > 2

V(r)=-05forr <20 and V(r) =1.65tfor r > 20

Using a trick obtain a resonance solution:
E =0.5123-0.0001531

m——— Relp(r)] = Imlpg(r)] — Re[g(r)] forr=R0 ——— Im[g(r}] for r=R0

smaller zero-point E
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why embedded in
continuous E ?
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Asymptotic region has a mass gap shifted up by AE = 1.65

E... = 0.51 connects with E < —mc” states
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What does it mean?
Dirac sea interpretation: E < —mc* states all occupied

Vacancy at E; < —mc® = positron with E; > mc?

Modern QFT view requires analogous expressions

Spontaneous pair creation:

Generate an empty potential step region with AV > 2:
Each supercritical level E,es — i5 decays

After time 7 = 1/T" expect a Breit-Wigner d. of e™
Electrons are trapped by the potential

et distribution when we look at times ¢t << 7 ?
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What was the trick ?
Algebraic (matrix representation) techniques:
1) complex coordinate scaling
2) imaginary absorbing potential

Sounds artificial ¢

It yields complex E value: E..s and width I

Stabilization: least sensitivity to scaling parameter
Extrapolation to zero imaginary stutt:

compute parametric dependence of Ees + 11'/2

observe complex trajectory, Pade approximate



Example: PRA 76, 022503 9o U8 - oo Cf~! at 20 fm
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Why do the complex trajectories go weird ?

Finite basis can't cope with large-r demand to represent
the oscillatory tail (with minimal attenuation)
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dr r K=+1
d X +00
fK __fK — _(E_l)gK+ Z <X1<,H|V(r;R)|X1_<,u>g1_<
dr r K=+1

kK = —(j +1/2) a coupled-channel problem due to non-spherical V(r, R)
some progress with CAP and SES algebraic methods

Now try to solve as a difterential equation problem

more managable

learn more about CAP and complex energy trajectories

(3)

(4)



The real problem to solve...

dgK K +00
+—8 = ([E+Dfi= )} Xxul VORI x-kudfz
dr r e
d K +00
d]:< ke = —E-Dget > (p V(B X ) 8

k=1
kK = —(j +1/2) a coupled-channel problem due to non-spherical V(r, R)

some progress with CAP and SES algebraic methods

Now try to solve as a difterential equation problem

more managable
learn more about CAP and complex energy trajectories

Implement multipole expanded V (r, R)

Supplement the mass terms with a scalar CAP

Veap = A(r—3)°i for r>3

(3)

(4)



U-Cf CM frame, R =20 fm [k = —1 only]

Introduce cut-off Ry; for r > Ry: V(r) =V (Ry) and Vcap(r) = Veap(Ro)

N\r(g(r))

Ry=6 A=10""
E..=—-1.8751 [ =5.884 keV
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U-Ctf CM frame, R =20 fm [x = —1 only]

A R Ry=20 A=10"
| S(g(r)
' E... = —1.8749 [ =5.876 keV
2 Lifetimes in 10™" sec range !
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Bare U-U collisions at the Coulomb barrier

Need sticky collisions to enhance spontaneous process

Do they exist ?

PRL 103, 042701 (2009) by Golabek and Simenel

TDHEF calculation models nucleonic motion
Nuclear collision times as long as 4 x 10~%! s predicted
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FIG. 3 (color online). Nucleon density (in fm™?) in the colli:
sion plane 1s plotted when the density in the neck reaches its
maximum in the xx configuration at E., = 900 MeV. The hali
cut surface is an isodensity at py/2.

action plays a significant role 1s higher for such compac
configurations.

At all energies, the yx, yy, and yz orientations exhibi
roughly the same behavior, 1.e., arise and fall of 7.,y with ¢
maximum of 3 — 4 X 1072 s at E..., ~ 1200 MeV. This
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Collision calculation
e propagate all target eigenstates, E, < Er and E, > Er

e inclusive e™ spectrum: (Ng) = X y>F \av,q\z

> all 5, e” vacancies; how much flows into E, < -1 at #; ¢

e ‘poor man’s’ exclusive e™ (1S) & free e™:
restrict above sum to v = 1S

e true exclusive spectrum:

(N flq> — <nk><flq> + Zj>F Ol;f,kélj,q

random + true correlations
(small) (most of it)

‘partial inclusive’ may overestimate true exclusive
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Best shot at observing spontaneous pair process ?
exclusive [bound e~ & free e™] pair vs inclusive process

E. Ackad and M.H.: PRA 78, 062711 (2008)
b =0, 740 MeV U-U TD-Dirac solution & analysis

top: inclusive g

bottom: exclusive o T = 10 zsec

Exclusive means:
1S vacancy was filled,

and not depopulated
during 2nd halt of the

collision

Width estimates:

n
T+ 1Ty

dP/dE [102 1/mcT]

Ty = diving time 15 2 T 35
Positron Energy [me?]
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1200 MeV U-U: TDHF predicts T = 3.5 x 107=! sec

inclusivee™: 4L~ T =3.5zs
. T=0
Why so broad ?
450 + 200 keV

T=100T
+ dynamical BG

‘poor man’s’

exclusive

1Se” & freee”




Detail: how accurate?

900 MeV U-U, T=0and T = 2.5 zs, inclusive
N = 256, two mFg basis parameter choices

AdP 00
dE

0.03
0.02 448

|:I I 1 I 1 I 1 I
1 2 3 4 3

Small- E noise: propagation of excited e~ vacancies is non-trivial

Large- N calculations are more stable



Conclusions

1) Pushing the envelope in resonance calculations
2) U%?* or U”* collisions near b = 0 can do it

3) Nuclear theory: go to higher Ecy

will this raise the dynamical background? No!

4) exclusive [bound e~ & free e™] spectrum is cleaner
experimental challenge ?

5) We calculated the inclusive e™ spectrum by
propagating all discretized continuum states
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