

Supercritical Dirac states: an update

Marko Horbatsch, York University, Toronto

Collaborators: Dr. Eddie Ackad

Alain Marsman, Johannes Schindler, Fabian Bock
Lisbon, September 2009

- 1) supercritcal Dirac: square well example
- 2) resonance calculations by analytic continuation
- 3) differential equation approach
- 4) U-U collisions - what will we see ?

Deutscher Akademischer Austausch Dienst
German Academic Exchange Service

3d square well in Dirac QM

free particle in a box ?

W.Greiner: RQM, Exercise 9.5

$$\frac{dg_\kappa}{dr} + \frac{\kappa}{r} g_\kappa = (E + m_e) f_\kappa - V(r) f_\kappa \quad , \quad (1)$$

$$\frac{df_\kappa}{dr} - \frac{\kappa}{r} f_\kappa = - (E - m_e) g_\kappa + V(r) g_\kappa \quad . \quad (2)$$

Units: $\hbar = 1, c = 1$

from now also: $m_e = 1$

Angular momentum label: $\kappa = -1$ yields $j = 1/2$

g/f components - for $V(r) = V_0$ combine+understand

3d square well in Dirac QM

free particle in a box ?

W.Greiner: RQM, Exercise 9.5

$$\frac{dg_\kappa}{dr} + \frac{\kappa}{r} g_\kappa = (E + m_e) f_\kappa - V(r) f_\kappa , \quad (1)$$

$$\frac{df_\kappa}{dr} - \frac{\kappa}{r} f_\kappa = - (E - m_e) g_\kappa + V(r) g_\kappa . \quad (2)$$

Units: $\hbar = 1, c = 1$

from now also: $m_e = 1$

Angular momentum label: $\kappa = -1$ yields $j = 1/2$

g/f components - for $V(r) = V_0$ combine+understand

E scale: 511 keV; r scale: $\lambda_C \approx 386$ fm $\approx a_B/137$

γ - e^- : max. wavelength change = $2\lambda_C$; $R_e = \lambda_C/137$

3d square well in Dirac QM

free particle in a box ?

W.Greiner: RQM, Exercise 9.5

$$\frac{dg_\kappa}{dr} + \frac{\kappa}{r} g_\kappa = (E + m_e) f_\kappa - V(r) f_\kappa , \quad (1)$$

$$\frac{df_\kappa}{dr} - \frac{\kappa}{r} f_\kappa = - (E - m_e) g_\kappa + V(r) g_\kappa . \quad (2)$$

Units: $\hbar = 1, c = 1$

from now also: $m_e = 1$

Angular momentum label: $\kappa = -1$ yields $j = 1/2$

g/f components - for $V(r) = V_0$ combine+understand

E scale: 511 keV; r scale: $\lambda_C \approx 386 \text{ fm} \approx a_B/137$

γ - e^- : max. wavelength change = $2\lambda_C$; $R_e = \lambda_C/137$

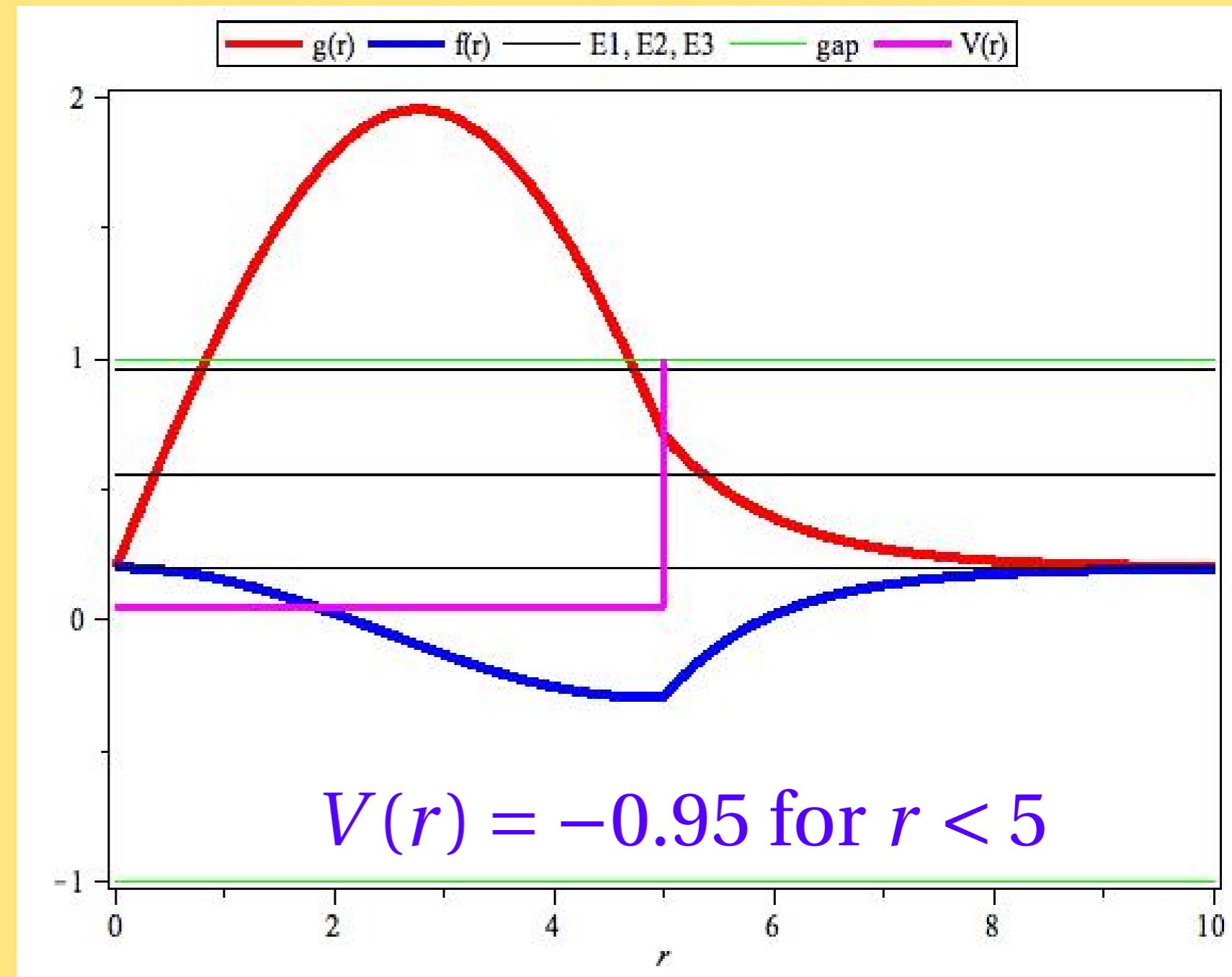
$V(r)$: vector coupling vs scalar (mass) coupling

Potential step with $V_0 < 1$

large zero-point E

just 3 states

kinks ?

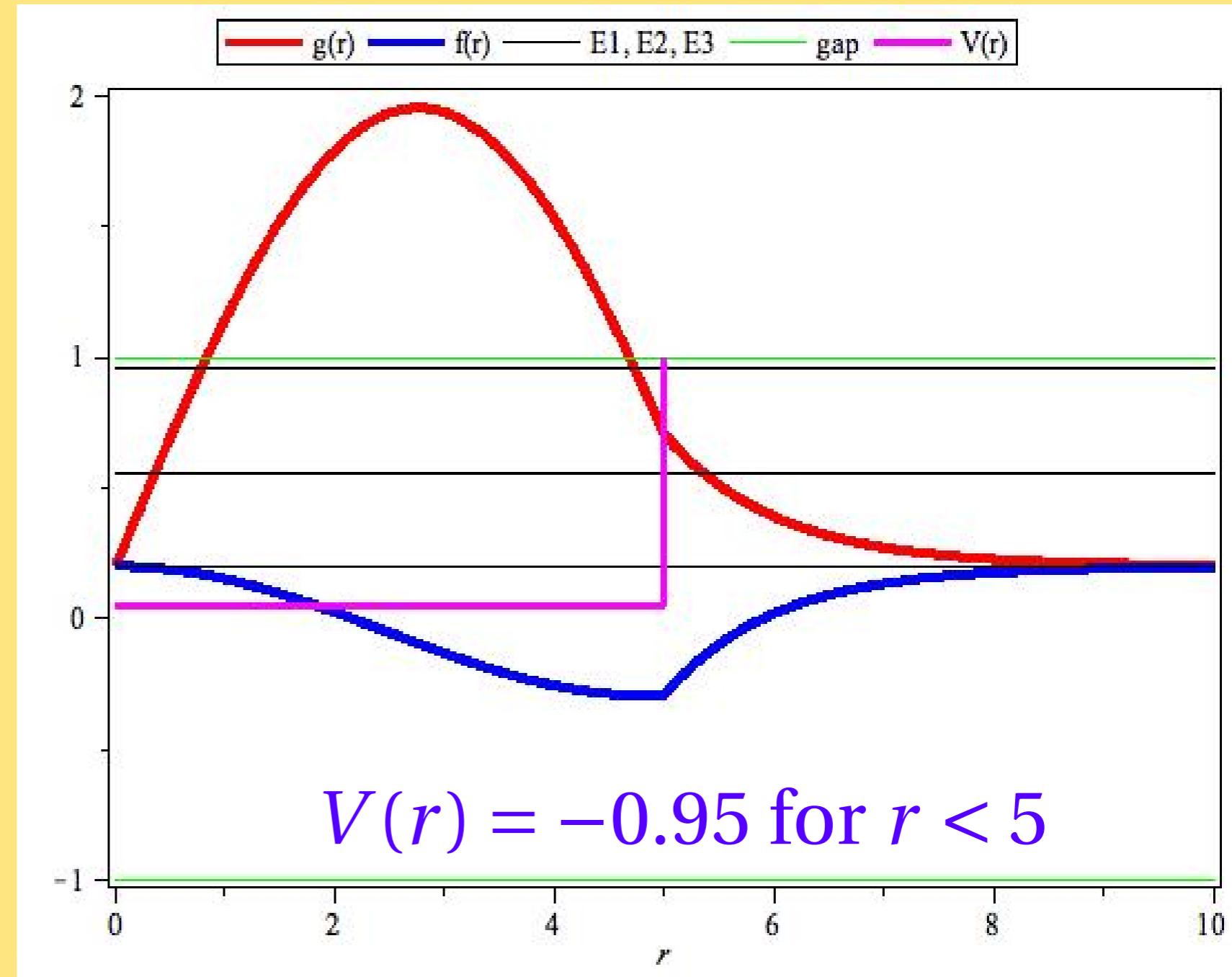


Potential step with $V_0 < 1$

large zero-point E

just 3 states

kinks ?



deeply bound QM particle squeezed to $5\lambda_C$

lower component has a centrifugal barrier

Giant potential step $\Delta V > 2$

$V(r) = -0.5$ for $r < 20$ and $V(r) = 1.65$ for $r > 20$

Using a trick obtain a resonance solution:

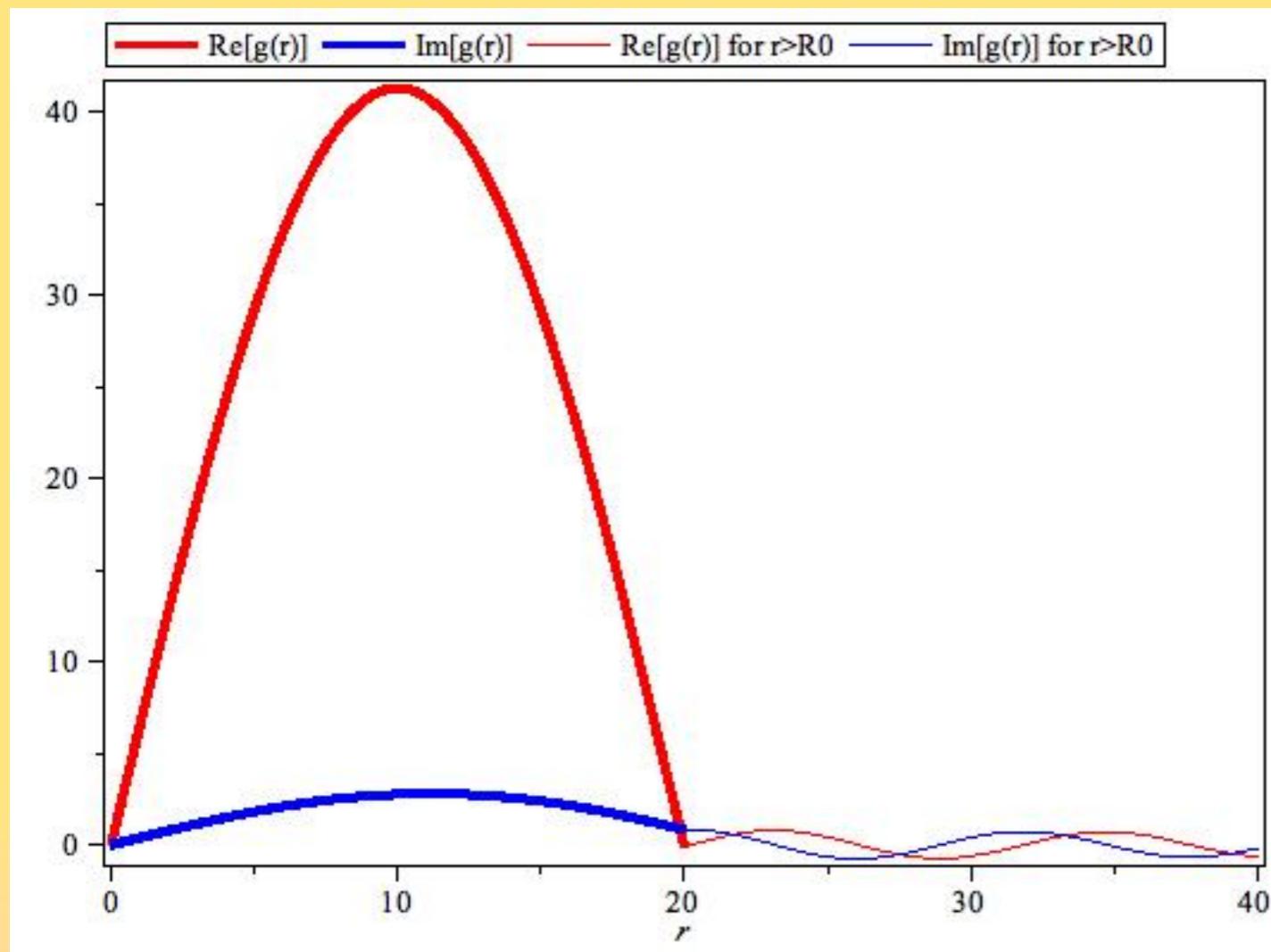
$$E \approx 0.5123 - 0.000153i$$

Giant potential step $\Delta V > 2$

$V(r) = -0.5$ for $r < 20$ and $V(r) = 1.65$ for $r > 20$

Using a trick obtain a resonance solution:

$$E \approx 0.5123 - 0.000153i$$



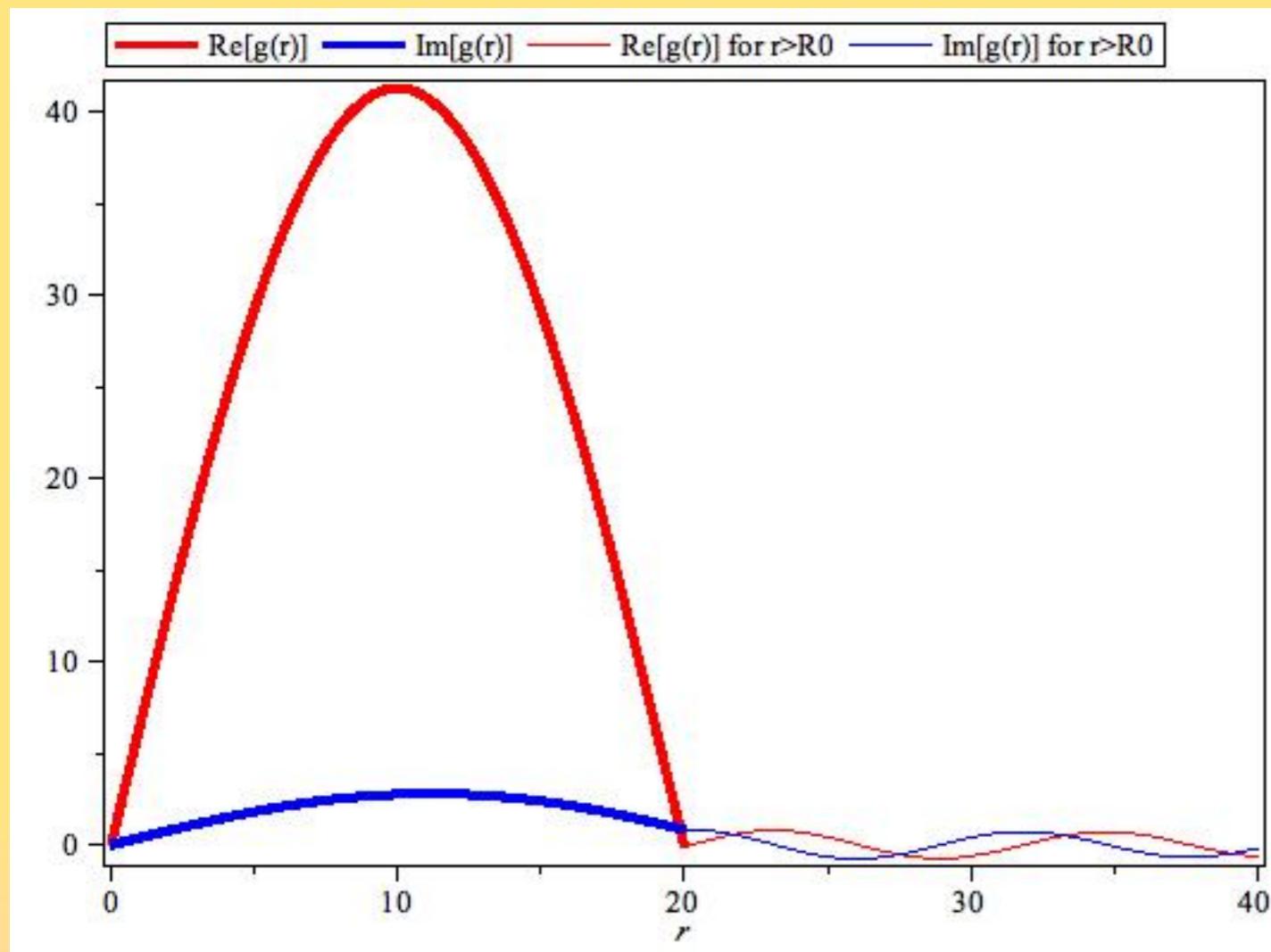
smaller zero-point E
barrier region ?

Giant potential step $\Delta V > 2$

$V(r) = -0.5$ for $r < 20$ and $V(r) = 1.65$ for $r > 20$

Using a trick obtain a resonance solution:

$$E \approx 0.5123 - 0.000153i$$



smaller zero-point E

barrier region ?

why embedded in
continuous E ?

Asymptotic region has a mass gap shifted up by $\Delta E = 1.65$

$E_{\text{res}} \approx 0.51$ connects with $E < -mc^2$ states

What does it mean?

Dirac sea interpretation: $E < -mc^2$ states all occupied

What does it mean?

Dirac sea interpretation: $E < -mc^2$ states all occupied

Vacancy at $E_j < -mc^2$ = positron with $E_j > mc^2$

What does it mean?

Dirac sea interpretation: $E < -mc^2$ states all occupied

Vacancy at $E_j < -mc^2$ = positron with $E_j > mc^2$

Modern QFT view requires analogous expressions

What does it mean?

Dirac sea interpretation: $E < -mc^2$ states all occupied

Vacancy at $E_j < -mc^2$ = positron with $E_j > mc^2$

Modern QFT view requires analogous expressions

Spontaneous pair creation:

Generate an empty potential step region with $\Delta V > 2:$

What does it mean?

Dirac sea interpretation: $E < -mc^2$ states all occupied

Vacancy at $E_j < -mc^2$ = positron with $E_j > mc^2$

Modern QFT view requires analogous expressions

Spontaneous pair creation:

Generate an empty potential step region with $\Delta V > 2:$

Each supercritical level $E_{\text{res}} - i\frac{\Gamma}{2}$ decays

What does it mean?

Dirac sea interpretation: $E < -mc^2$ states all occupied

Vacancy at $E_j < -mc^2$ = positron with $E_j > mc^2$

Modern QFT view requires analogous expressions

Spontaneous pair creation:

Generate an empty potential step region with $\Delta V > 2:$

Each supercritical level $E_{\text{res}} - i\frac{\Gamma}{2}$ decays

After time $\tau = 1/\Gamma$ expect a Breit-Wigner d. of e^+

What does it mean?

Dirac sea interpretation: $E < -mc^2$ states all occupied

Vacancy at $E_j < -mc^2$ = positron with $E_j > mc^2$

Modern QFT view requires analogous expressions

Spontaneous pair creation:

Generate an empty potential step region with $\Delta V > 2:$

Each supercritical level $E_{\text{res}} - i\frac{\Gamma}{2}$ decays

After time $\tau = 1/\Gamma$ expect a Breit-Wigner d. of e^+

Electrons are trapped by the potential

What does it mean?

Dirac sea interpretation: $E < -mc^2$ states all occupied

Vacancy at $E_j < -mc^2$ = positron with $E_j > mc^2$

Modern QFT view requires analogous expressions

Spontaneous pair creation:

Generate an empty potential step region with $\Delta V > 2:$

Each supercritical level $E_{\text{res}} - i\frac{\Gamma}{2}$ decays

After time $\tau = 1/\Gamma$ expect a Breit-Wigner d. of e^+

Electrons are trapped by the potential

e^+ distribution when we look at times $t \ll \tau$?

What was the trick ?

Algebraic (matrix representation) techniques:

What was the trick ?

Algebraic (matrix representation) techniques:

- 1) complex coordinate scaling
- 2) imaginary absorbing potential

What was the trick ?

Algebraic (matrix representation) techniques:

- 1) complex coordinate scaling
- 2) imaginary absorbing potential

Sounds artificial ?

What was the trick ?

Algebraic (matrix representation) techniques:

- 1) complex coordinate scaling
- 2) imaginary absorbing potential

Sounds artificial ?

It yields complex E value: E_{res} and width Γ

What was the trick ?

Algebraic (matrix representation) techniques:

- 1) complex coordinate scaling
- 2) imaginary absorbing potential

Sounds artificial ?

It yields complex E value: E_{res} and width Γ

Stabilization: least sensitivity to scaling parameter

What was the trick ?

Algebraic (matrix representation) techniques:

- 1) complex coordinate scaling
- 2) imaginary absorbing potential

Sounds artificial ?

It yields complex E value: E_{res} and width Γ

Stabilization: least sensitivity to scaling parameter

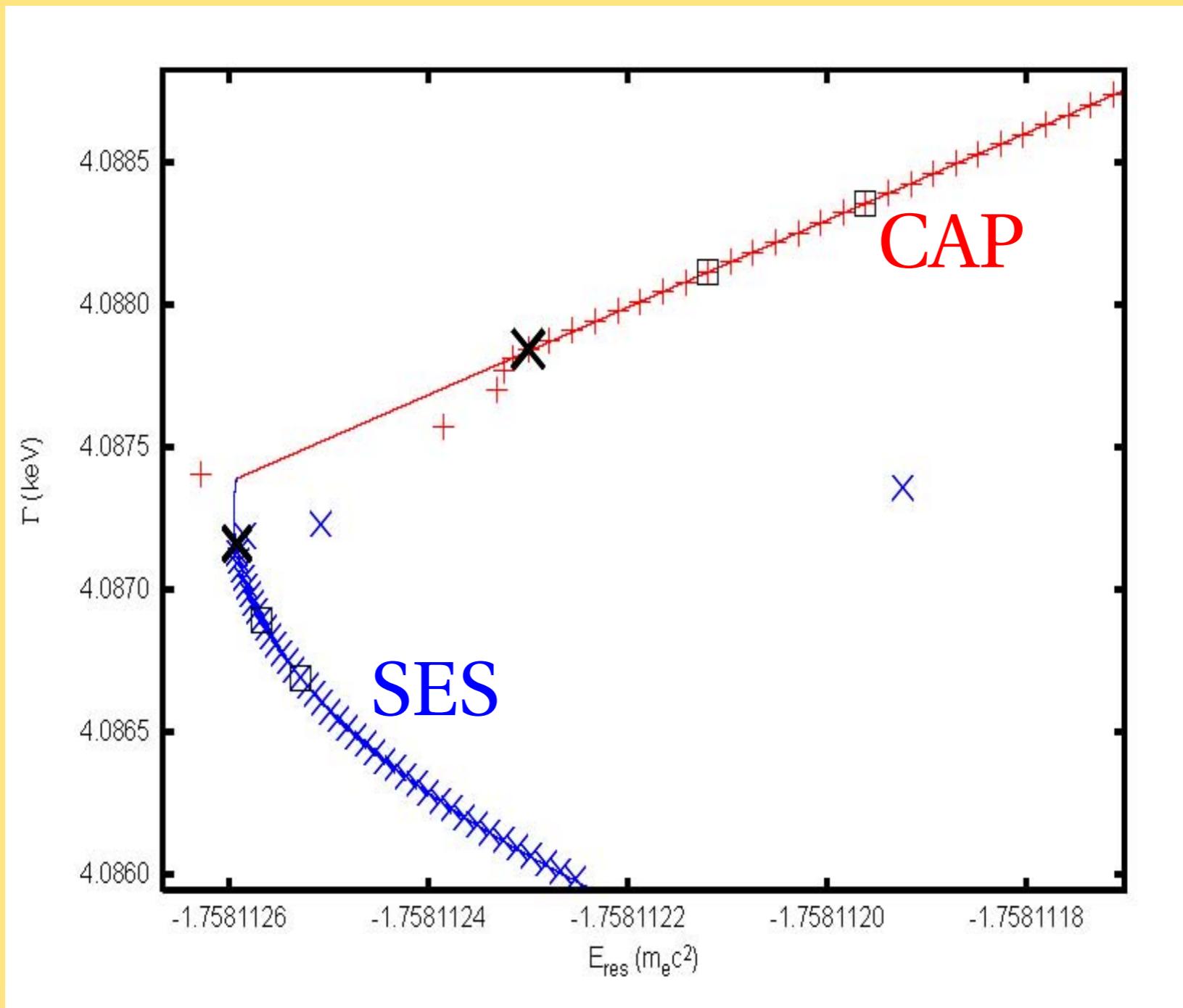
Extrapolation to zero imaginary stuff:

compute parametric dependence of $E_{\text{res}} + i\Gamma/2$

observe complex trajectory, Pade approximate

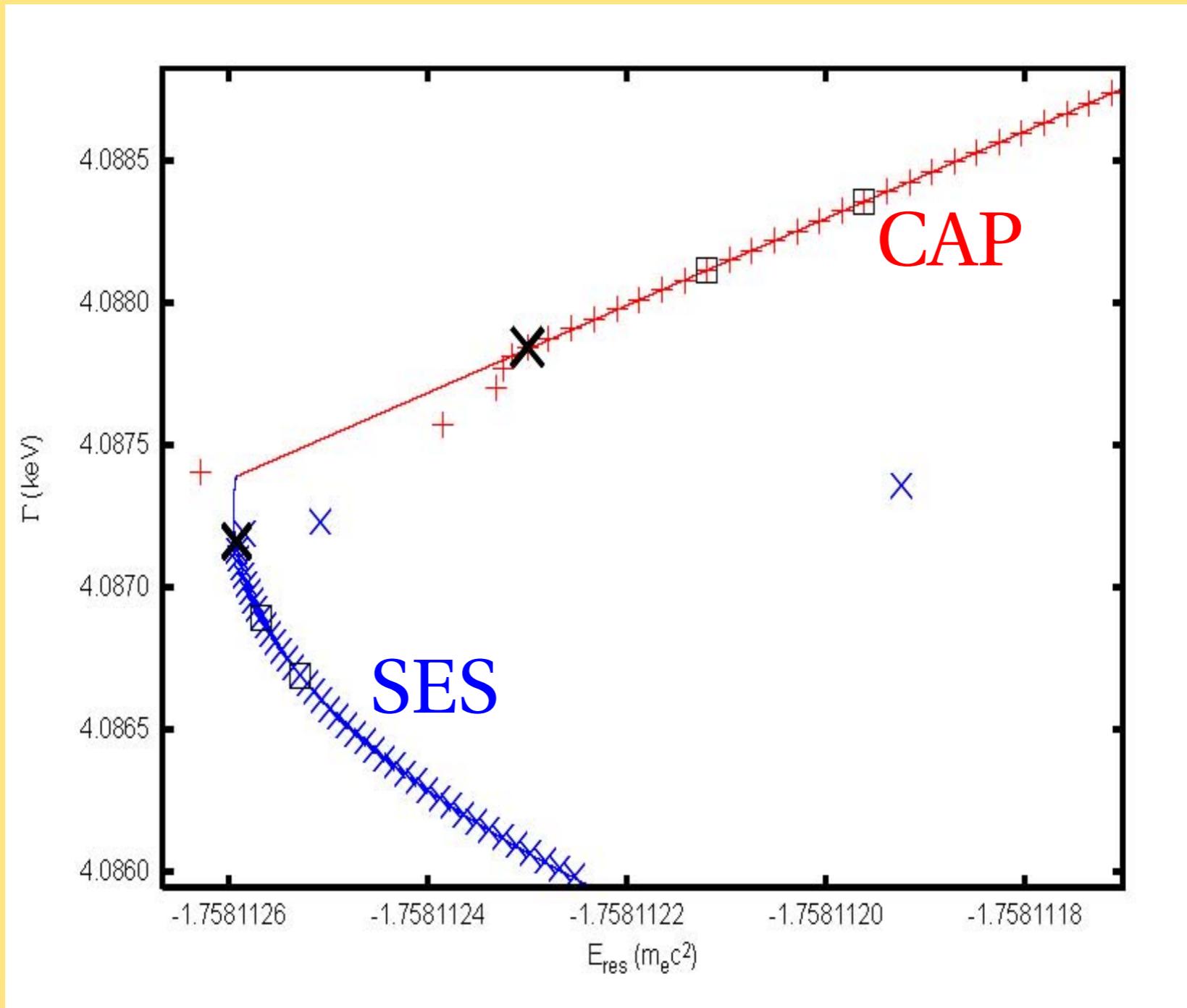
Example: PRA 76, 022503

$^{92}\text{U}^{238}$ - $^{98}\text{Cf}^{251}$ at 20 fm

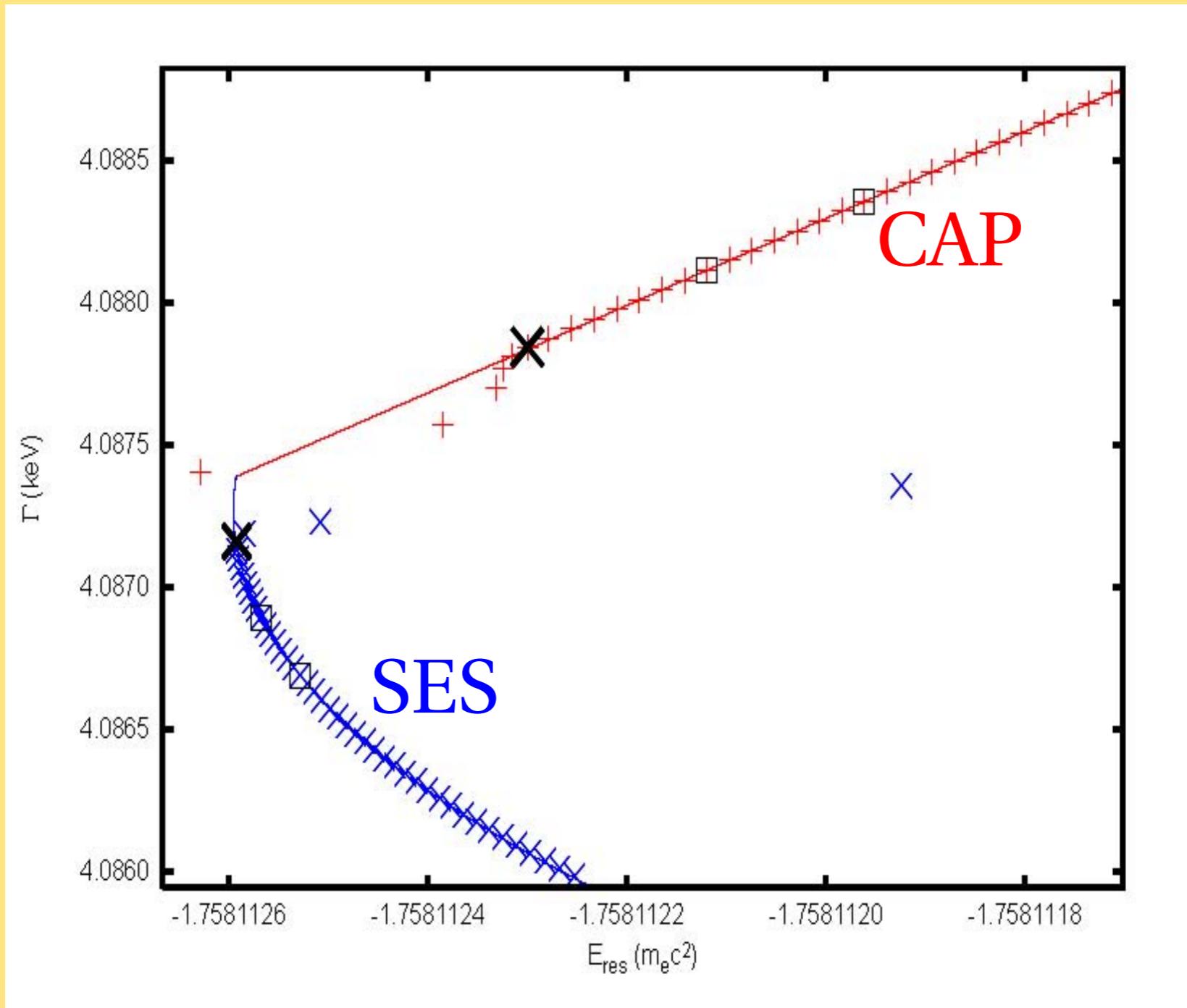


Example: PRA 76, 022503

$^{92}\text{U}^{238}$ - $^{98}\text{Cf}^{251}$ at 20 fm



Why do the complex trajectories go weird ?



Why do the complex trajectories go weird ?

Finite basis can't cope with large- r demand to represent the oscillatory tail (with minimal attenuation)

The real problem to solve...

The real problem to solve...

$$\frac{dg_\kappa}{dr} + \frac{\kappa}{r} g_\kappa = (E+1) f_\kappa - \sum_{\bar{\kappa}=\pm 1}^{\pm\infty} \langle \chi_{-\kappa,\mu} | V(r,R) | \chi_{-\bar{\kappa},\mu} \rangle f_{\bar{\kappa}} , \quad (3)$$

$$\frac{df_\kappa}{dr} - \frac{\kappa}{r} f_\kappa = - (E-1) g_\kappa + \sum_{\bar{\kappa}=\pm 1}^{\pm\infty} \langle \chi_{\kappa,\mu} | V(r,R) | \chi_{\bar{\kappa},\mu} \rangle g_{\bar{\kappa}} . \quad (4)$$

$\kappa = -(j + 1/2)$ a coupled-channel problem due to non-spherical $V(r, R)$

The real problem to solve...

$$\frac{dg_\kappa}{dr} + \frac{\kappa}{r} g_\kappa = (E + 1) f_\kappa - \sum_{\bar{\kappa}=\pm 1}^{\pm\infty} \langle \chi_{-\kappa, \mu} | V(r, R) | \chi_{-\bar{\kappa}, \mu} \rangle f_{\bar{\kappa}} , \quad (3)$$

$$\frac{df_\kappa}{dr} - \frac{\kappa}{r} f_\kappa = - (E - 1) g_\kappa + \sum_{\bar{\kappa}=\pm 1}^{\pm\infty} \langle \chi_{\kappa, \mu} | V(r, R) | \chi_{\bar{\kappa}, \mu} \rangle g_{\bar{\kappa}} . \quad (4)$$

$\kappa = -(j + 1/2)$ a coupled-channel problem due to non-spherical $V(r, R)$

some progress with CAP and SES algebraic methods

The real problem to solve...

$$\frac{dg_\kappa}{dr} + \frac{\kappa}{r} g_\kappa = (E+1) f_\kappa - \sum_{\bar{\kappa}=\pm 1}^{\pm\infty} \langle \chi_{-\kappa,\mu} | V(r,R) | \chi_{-\bar{\kappa},\mu} \rangle f_{\bar{\kappa}} , \quad (3)$$

$$\frac{df_\kappa}{dr} - \frac{\kappa}{r} f_\kappa = - (E-1) g_\kappa + \sum_{\bar{\kappa}=\pm 1}^{\pm\infty} \langle \chi_{\kappa,\mu} | V(r,R) | \chi_{\bar{\kappa},\mu} \rangle g_{\bar{\kappa}} . \quad (4)$$

$\kappa = -(j + 1/2)$ a coupled-channel problem due to non-spherical $V(r, R)$

some progress with CAP and SES algebraic methods

Now try to solve as a differential equation problem

more manageable

learn more about CAP and complex energy trajectories

The real problem to solve...

$$\frac{dg_\kappa}{dr} + \frac{\kappa}{r} g_\kappa = (E+1) f_\kappa - \sum_{\bar{\kappa}=\pm 1}^{\pm\infty} \langle \chi_{-\kappa,\mu} | V(r,R) | \chi_{-\bar{\kappa},\mu} \rangle f_{\bar{\kappa}} , \quad (3)$$

$$\frac{df_\kappa}{dr} - \frac{\kappa}{r} f_\kappa = - (E-1) g_\kappa + \sum_{\bar{\kappa}=\pm 1}^{\pm\infty} \langle \chi_{\kappa,\mu} | V(r,R) | \chi_{\bar{\kappa},\mu} \rangle g_{\bar{\kappa}} . \quad (4)$$

$\kappa = -(j + 1/2)$ a coupled-channel problem due to non-spherical $V(r, R)$

some progress with CAP and SES algebraic methods

Now try to solve as a differential equation problem

more manageable

learn more about CAP and complex energy trajectories

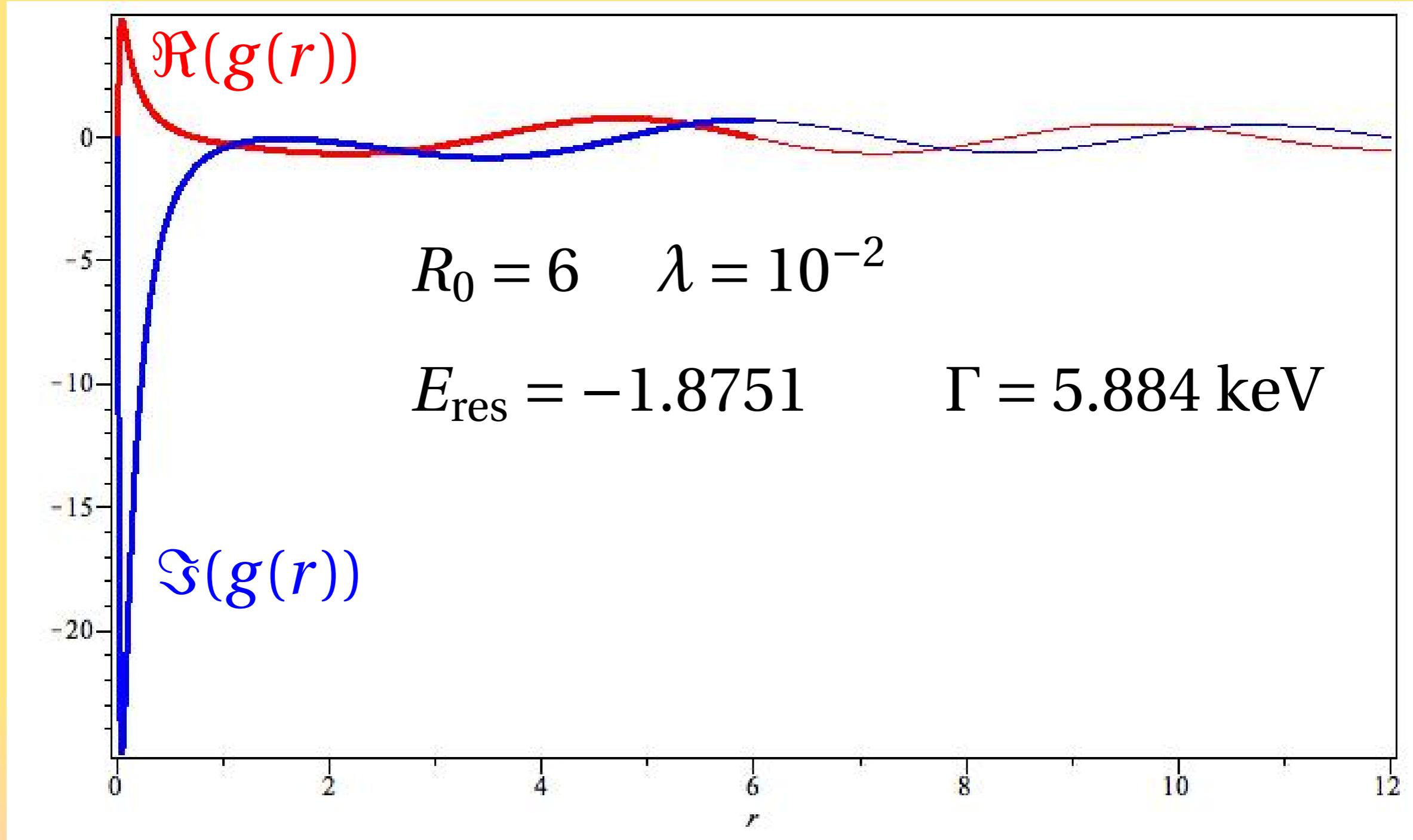
Implement multipole expanded $V(r, R)$

Supplement the mass terms with a scalar CAP

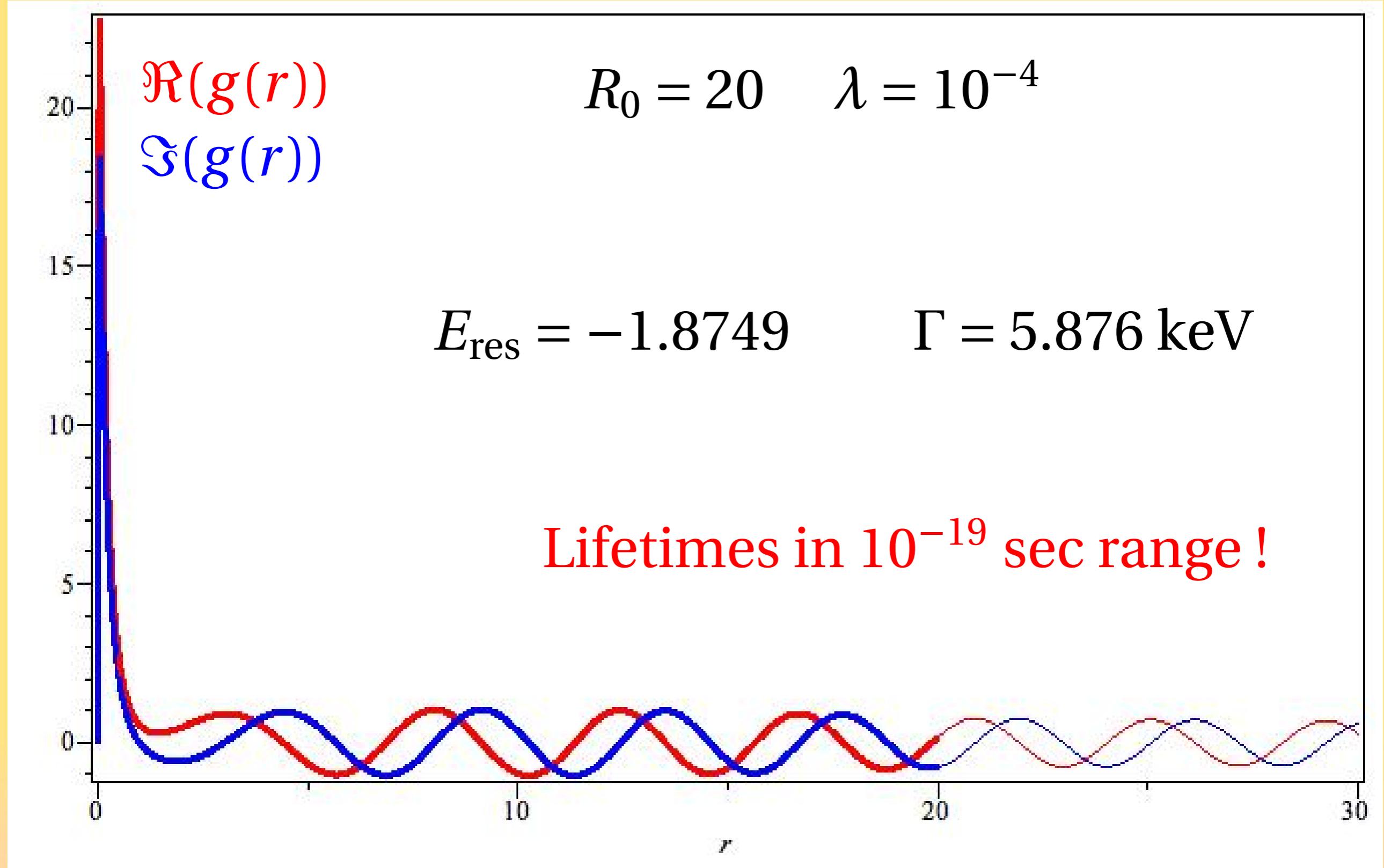
$$V_{\text{CAP}} = \lambda (r - 3)^2 i \quad \text{for } r > 3$$

U-Cf CM frame, $R = 20$ fm [$\kappa = -1$ only]

Introduce cut-off R_0 ; for $r > R_0$: $V(r) = V(R_0)$ and $V_{\text{CAP}}(r) = V_{\text{CAP}}(R_0)$



U-Cf CM frame, $R = 20$ fm [$\kappa = -1$ only]



Bare U-U collisions at the Coulomb barrier

Need sticky collisions to enhance spontaneous process

Do they exist ?

Bare U-U collisions at the Coulomb barrier

Need sticky collisions to enhance spontaneous process

Do they exist ? PRL 103, 042701 (2009) by Golabek and Simenel

TDHF calculation models nucleonic motion

Nuclear collision times as long as 4×10^{-21} s predicted

Bare U-U collisions at the Coulomb barrier

Need sticky collisions to enhance spontaneous process

Do they exist ? [PRL 103, 042701 \(2009\)](#) by Golabek and Simenel

TDHF calculation models nucleonic motion

Nuclear collision times as long as 4×10^{-21} s predicted

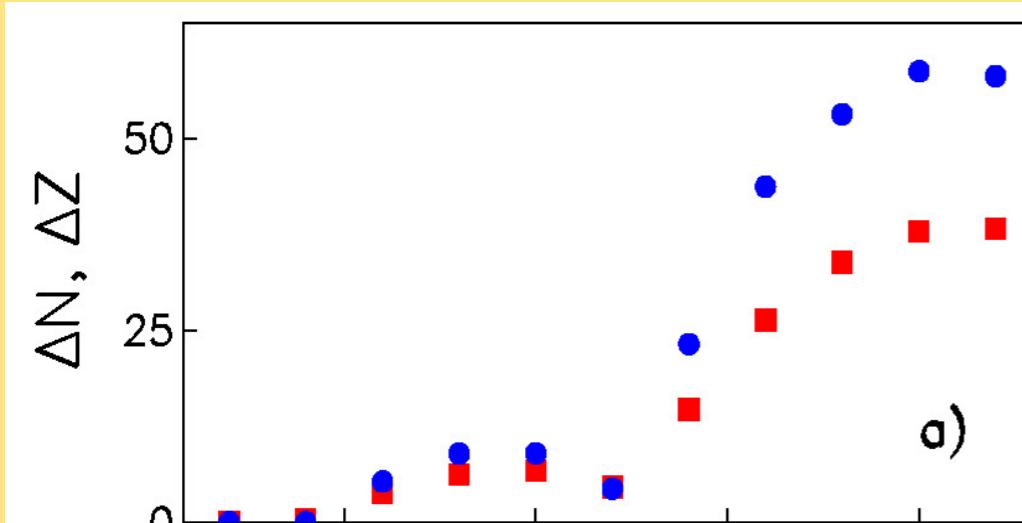
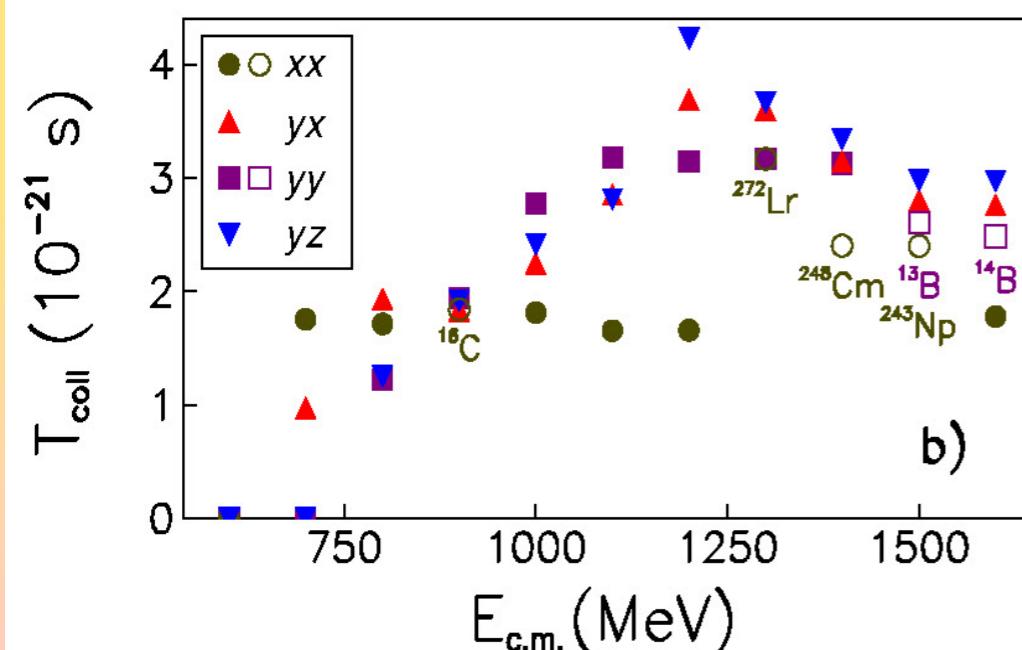
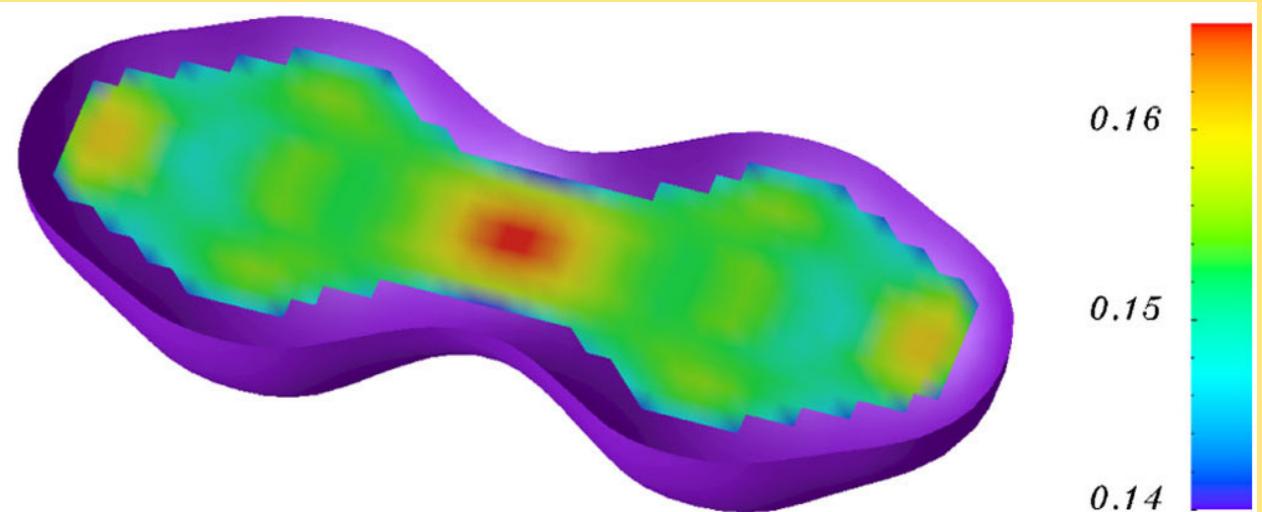


FIG. 3 (color online). Nucleon density (in fm^{-3}) in the collision plane is plotted when the density in the neck reaches its maximum in the xx configuration at $E_{c.m.} = 900$ MeV. The half-cut surface is an isodensity at $\rho_0/2$.

action plays a significant role is higher for such compact configurations.

At all energies, the yx , yy , and yz orientations exhibit roughly the same behavior, i.e., a rise and fall of T_{coll} with a maximum of $3 - 4 \times 10^{-21}$ s at $E_{c.m.} \sim 1200$ MeV. This

Collision calculation

- propagate all target eigenstates, $E_\nu < E_F$ and $E_\nu > E_F$
- inclusive e^+ spectrum: $\langle \bar{n}_q \rangle = \sum_{\nu > F} |a_{\nu,q}|^2$

\sum all t_{in} e^- vacancies; how much flows into $E_q < -1$ at t_f ?

Collision calculation

- propagate all target eigenstates, $E_\nu < E_F$ and $E_\nu > E_F$
- inclusive e^+ spectrum: $\langle \bar{n}_q \rangle = \sum_{\nu > F} |a_{\nu, q}|^2$
 \sum all t_{in} e^- vacancies; how much flows into $E_q < -1$ at t_f ?
- ‘poor man’s’ exclusive e^- (1S) & free e^+ :
restrict above sum to $\nu = 1S$

Collision calculation

- propagate all target eigenstates, $E_\nu < E_F$ and $E_\nu > E_F$
- inclusive e^+ spectrum: $\langle \bar{n}_q \rangle = \sum_{\nu > F} |a_{\nu,q}|^2$
 \sum all t_{in} e^- vacancies; how much flows into $E_q < -1$ at t_f ?
- ‘poor man’s’ exclusive e^- (1S) & free e^+ :
restrict above sum to $\nu = 1S$
- **true exclusive spectrum:**

$$\langle n_k \bar{n}_q \rangle = \langle n_k \rangle \langle \bar{n}_q \rangle + \left| \sum_{j > F} a_{j,k}^* a_{j,q} \right|^2$$

random + true correlations

Collision calculation

- propagate all target eigenstates, $E_\nu < E_F$ and $E_\nu > E_F$
- inclusive e^+ spectrum: $\langle \bar{n}_q \rangle = \sum_{\nu > F} |a_{\nu,q}|^2$

\sum all t_{in} e^- vacancies; how much flows into $E_q < -1$ at t_f ?

- ‘poor man’s’ exclusive e^- (1S) & free e^+ :
restrict above sum to $\nu = 1S$
- true exclusive spectrum:

$$\langle n_k \bar{n}_q \rangle = \langle n_k \rangle \langle \bar{n}_q \rangle + \left| \sum_{j>F} a_{j,k}^* a_{j,q} \right|^2$$

random + true correlations
(small) (most of it)

‘partial inclusive’ may overestimate true exclusive

Best shot at observing spontaneous pair process ?

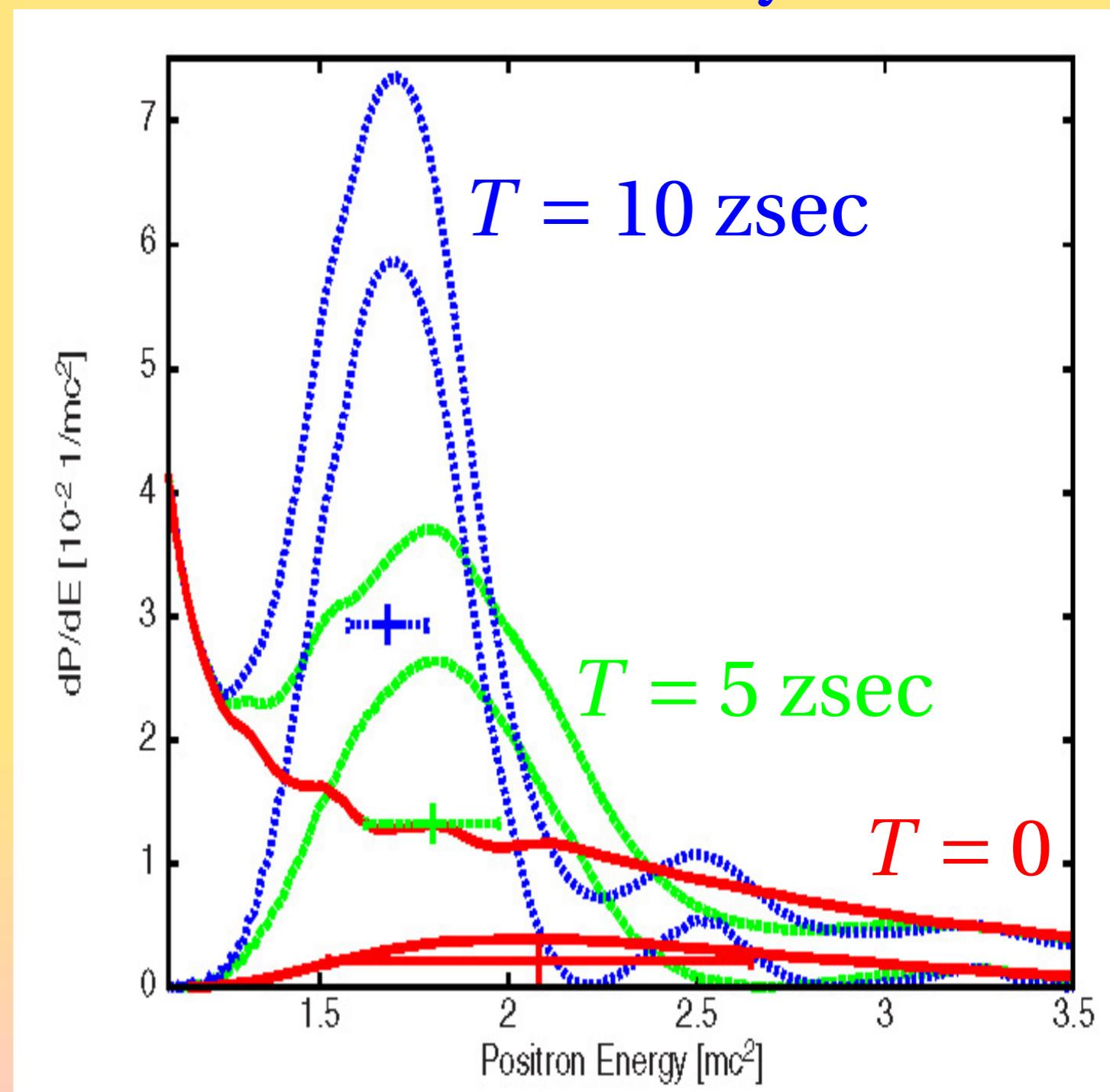
exclusive [bound e^- & free e^+] pair vs inclusive process

E. Ackad and M.H.: PRA 78, 062711 (2008)

$b = 0, 740$ MeV U-U TD-Dirac solution & analysis

Best shot at observing spontaneous pair process ?
exclusive [bound e^- & free e^+] pair vs inclusive process
E. Ackad and M.H.: PRA 78, 062711 (2008)
 $b = 0, 740$ MeV U-U TD-Dirac solution & analysis

top: inclusive
bottom: exclusive



Best shot at observing spontaneous pair process ?

exclusive [bound e^- & free e^+] pair vs inclusive process

E. Ackad and M.H.: PRA 78, 062711 (2008)

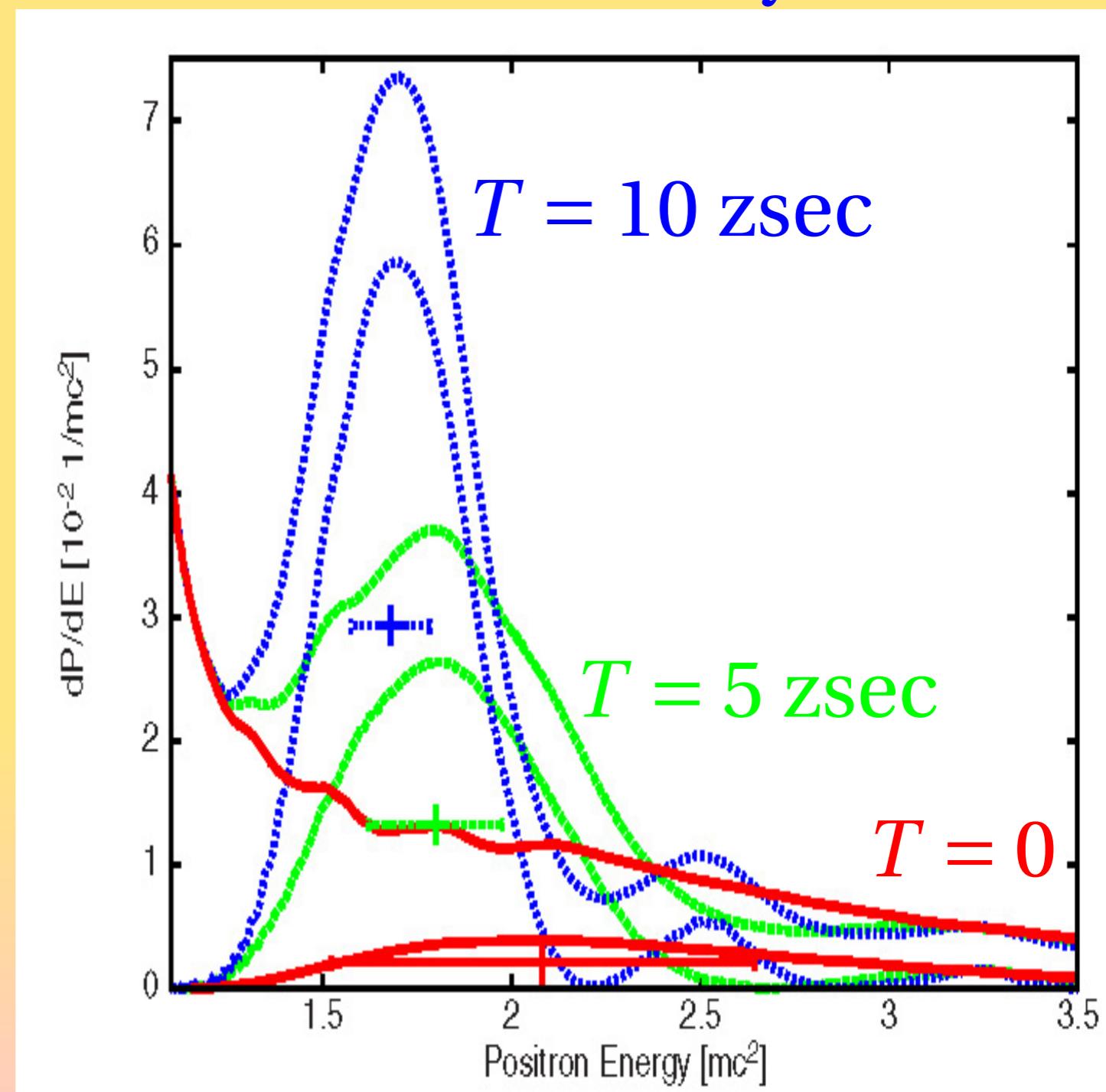
$b = 0, 740 \text{ MeV U-U TD-Dirac solution \& analysis}$

top: inclusive

bottom: exclusive

Exclusive means:

1S vacancy was filled,
and not depopulated
during 2nd half of the
collision



Best shot at observing spontaneous pair process ?
exclusive [bound e^- & free e^+] pair vs inclusive process
E. Ackad and M.H.: PRA 78, 062711 (2008)
 $b = 0, 740$ MeV U-U TD-Dirac solution & analysis

top: inclusive

bottom: exclusive

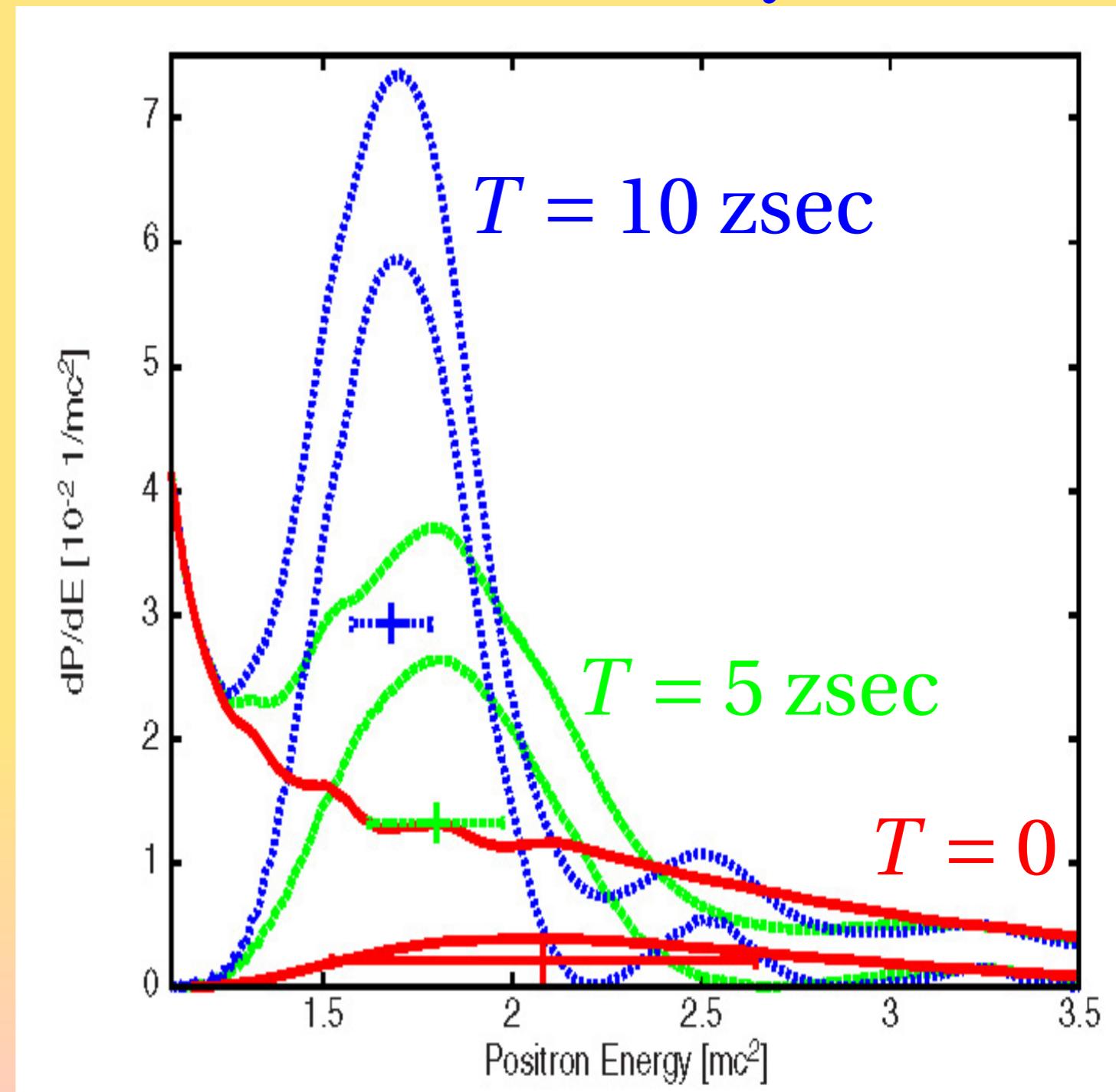
Exclusive means:

1S vacancy was filled,
and not depopulated
during 2nd half of the
collision

Width estimates:

$$\frac{\hbar}{T+T_0}$$

T_0 = diving time

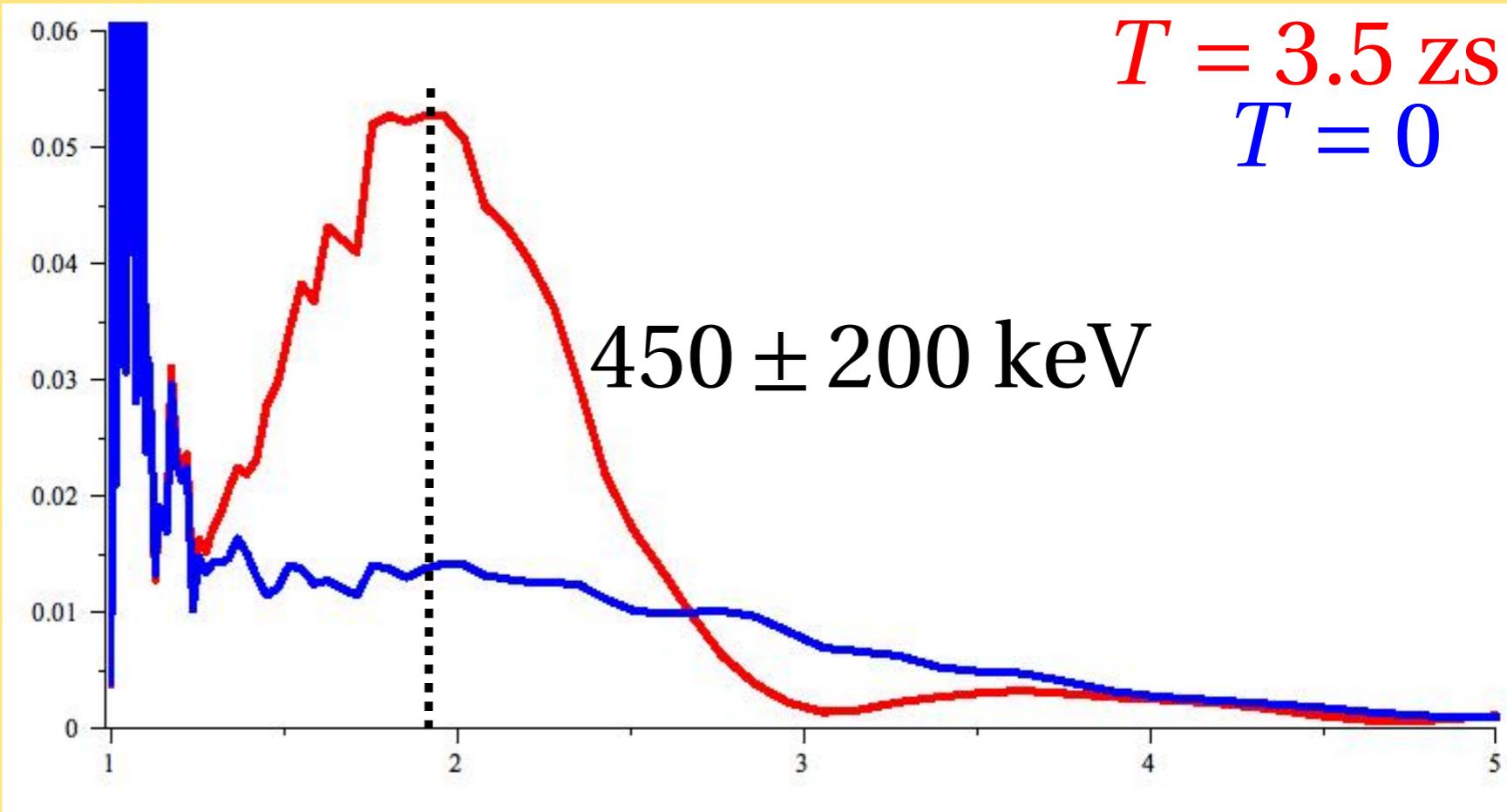


1200 MeV U-U: TDHF predicts $T = 3.5 \times 10^{-21}$ sec

inclusive e^+ :

$$\frac{dP}{dE}$$

$$\begin{aligned} T &= 3.5 \text{ zs} \\ T &= 0 \end{aligned}$$



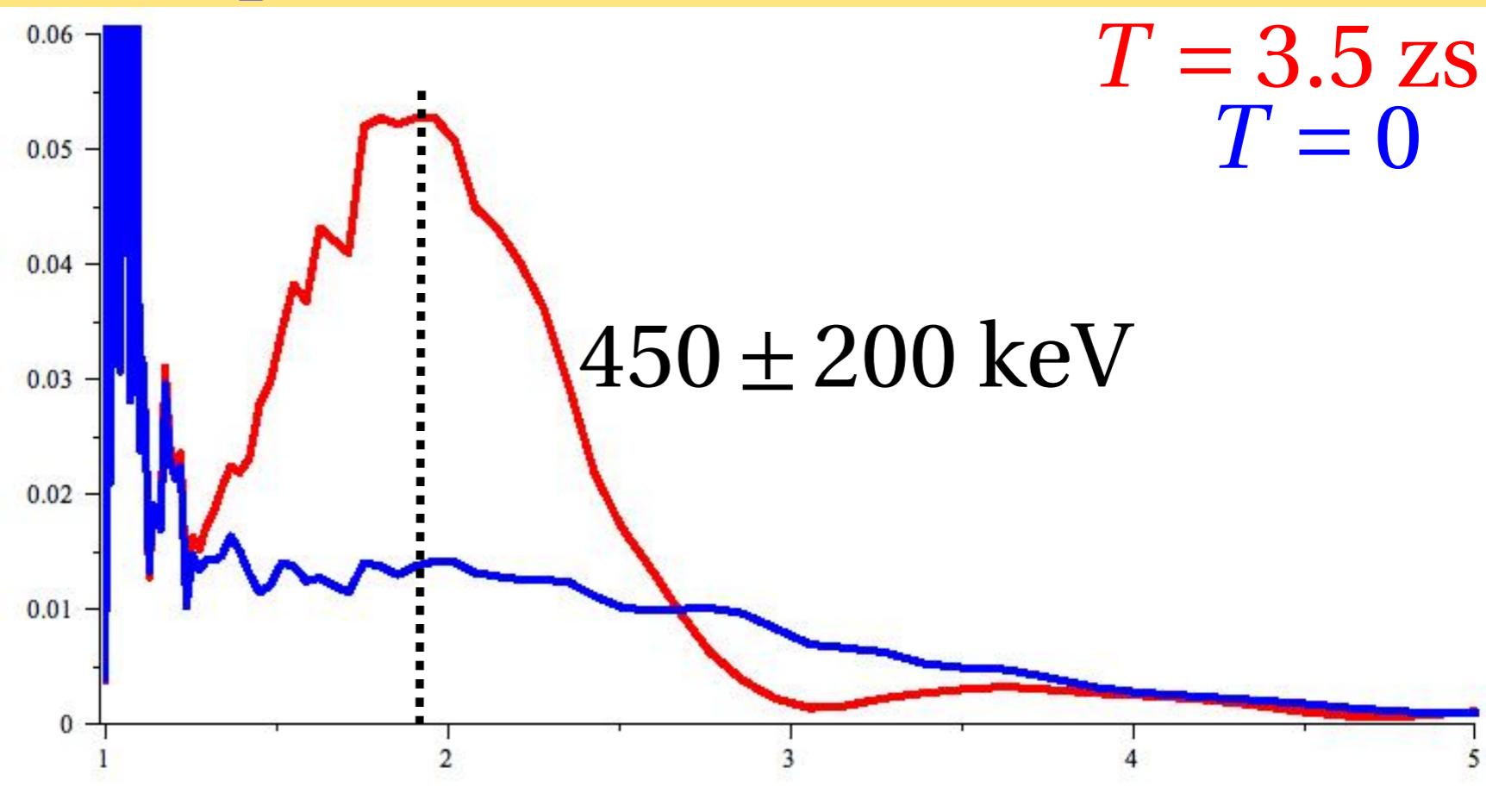
1200 MeV U-U: TDHF predicts $T = 3.5 \times 10^{-21}$ sec

inclusive e^+ :

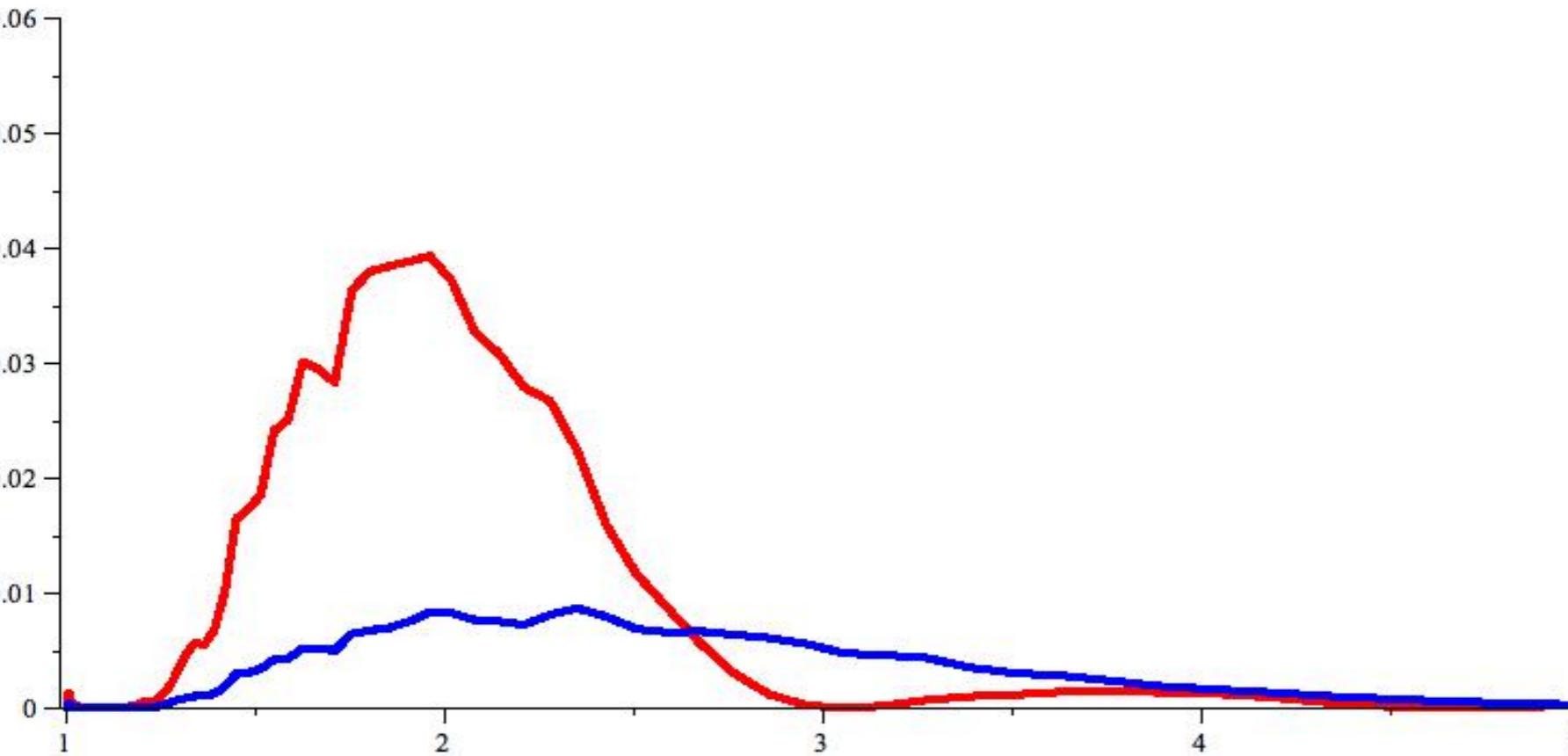
$$\frac{dP}{dE}$$

$$T = 3.5 \text{ zs}$$

$$T = 0$$



‘poor man’s’
exclusive
 $1S e^-$ & free e^+



1200 MeV U-U: TDHF predicts $T = 3.5 \times 10^{-21}$ sec

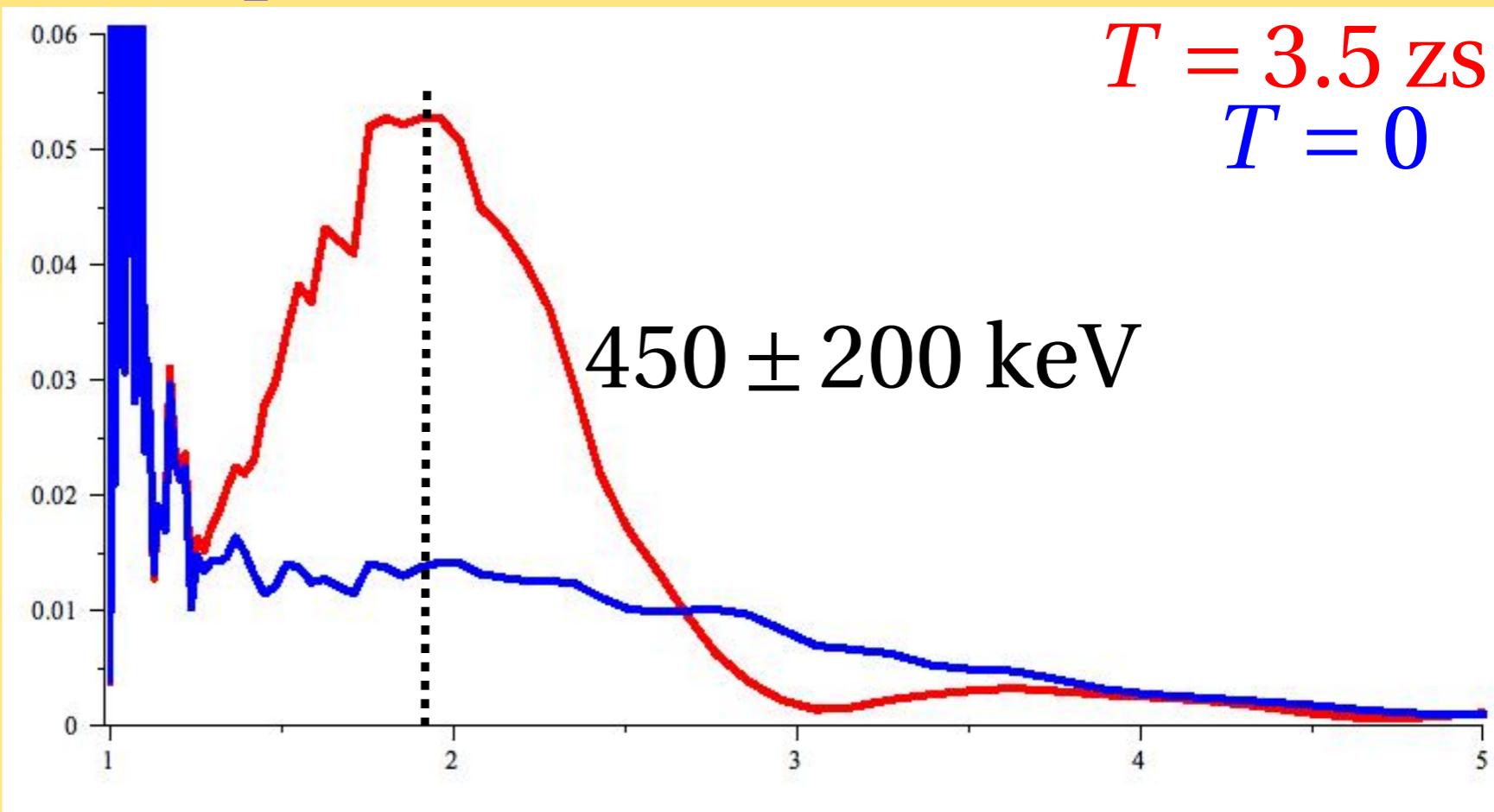
inclusive e^+ :

$$\frac{dP}{dE}$$

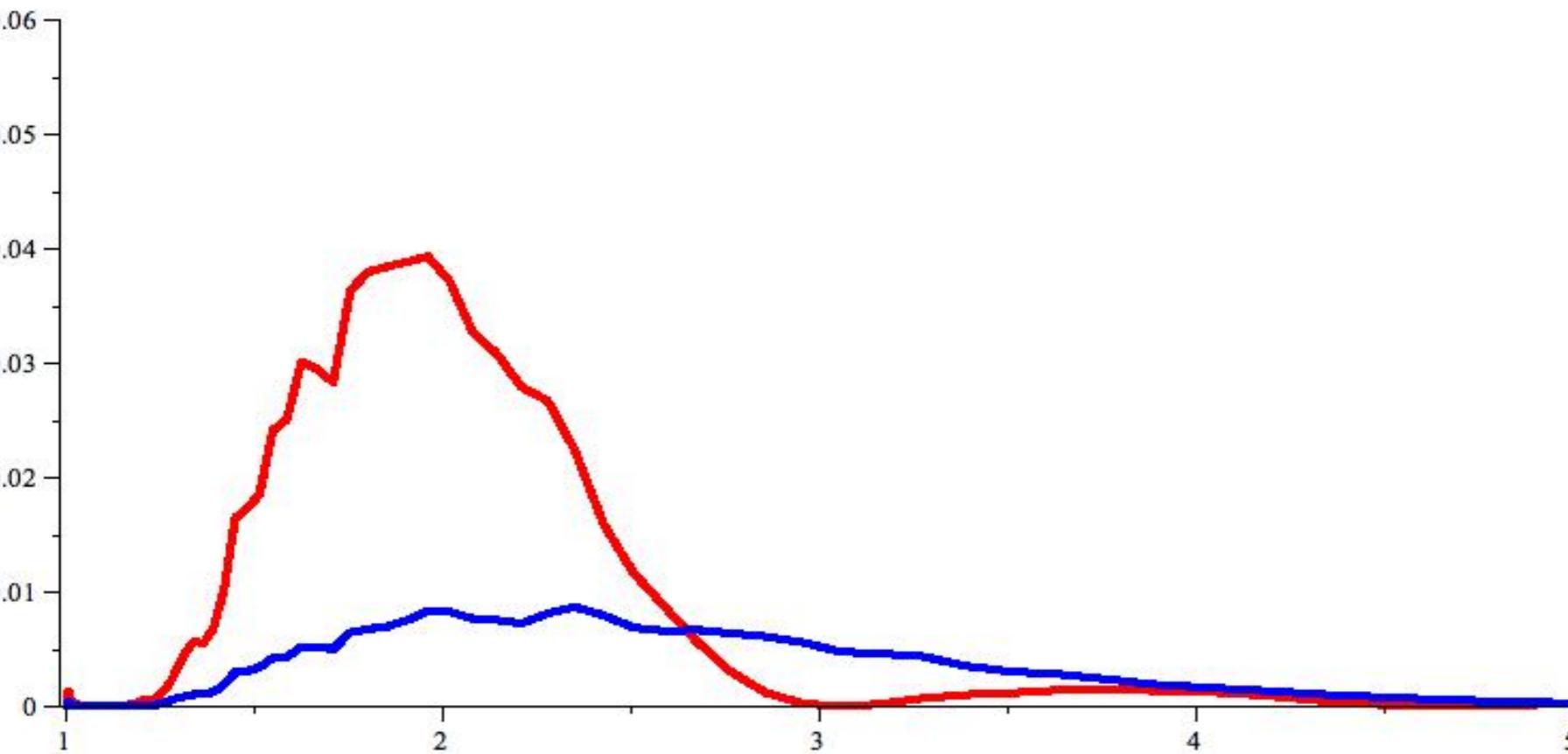
$$T = 3.5 \text{ zs}$$

$$T = 0$$

Why so broad ?



‘poor man’s’
exclusive
 $1S e^-$ & free e^+



1200 MeV U-U: TDHF predicts $T = 3.5 \times 10^{-21}$ sec

inclusive e^+ :

$$\frac{dP}{dE}$$

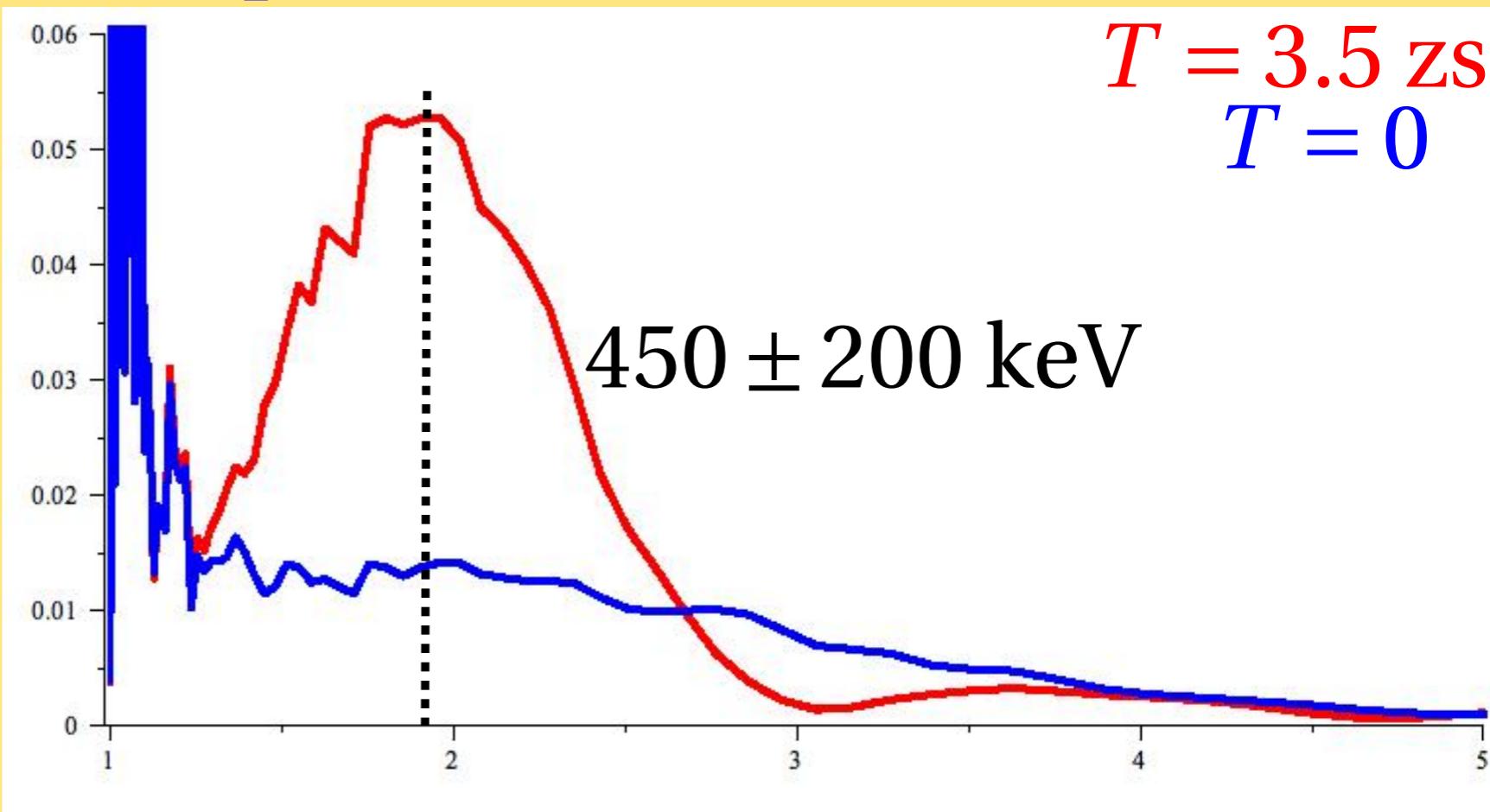
$$T = 3.5 \text{ zs}$$

$$T = 0$$

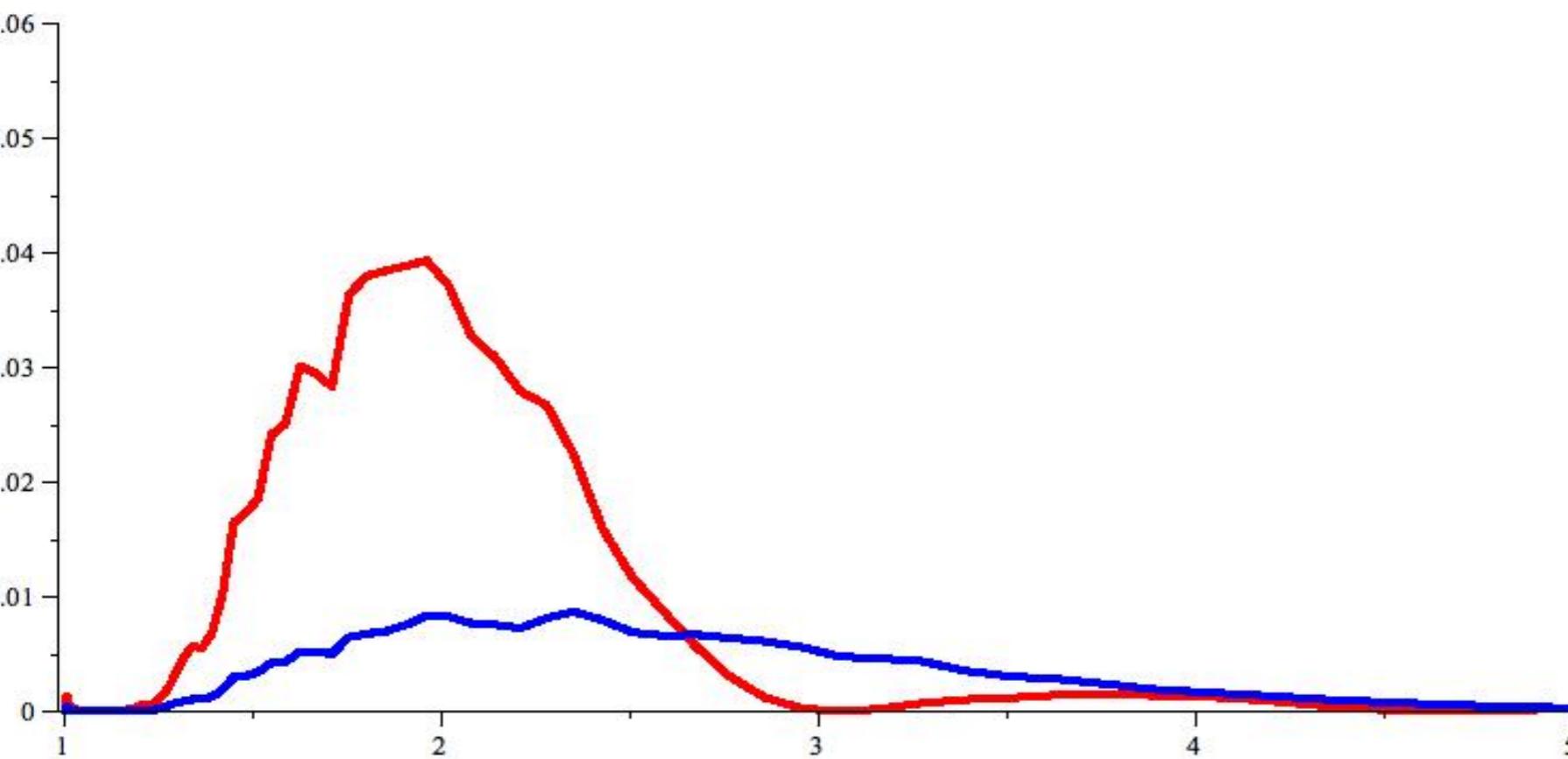
Why so broad ?

$$\tau \approx 100 T$$

+ dynamical BG

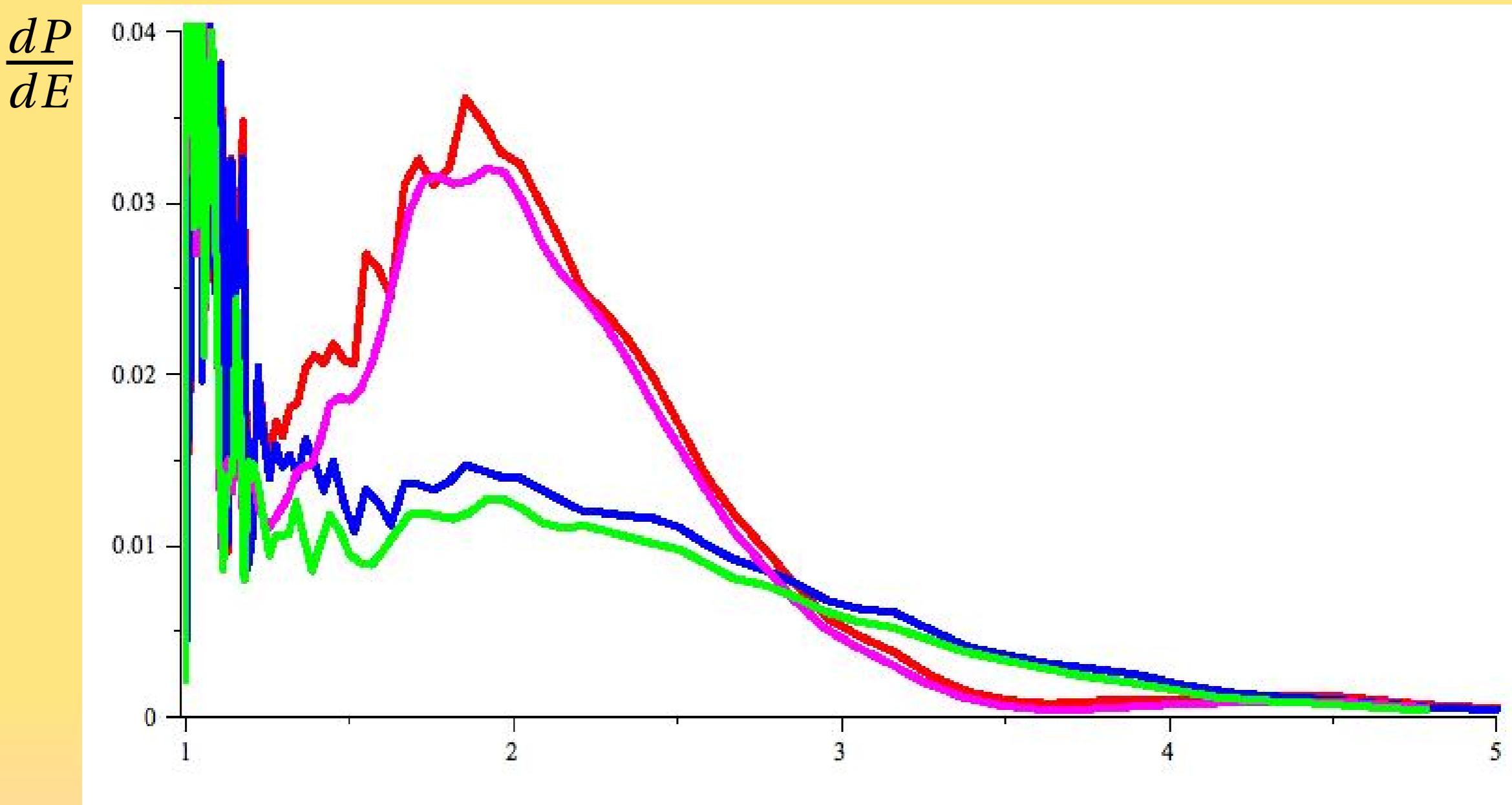


‘poor man’s’
exclusive
1S e^- & free e^+



Detail: how accurate?

900 MeV U-U, $T = 0$ and $T = 2.5$ zs, inclusive
 $N = 256$, two mFg basis parameter choices



Small- E noise: propagation of excited e^- vacancies is non-trivial

Large- N calculations are more stable

Conclusions

- 1) Pushing the envelope in resonance calculations
- 2) U^{92+} or U^{91+} collisions near $b = 0$ can do it
- 3) Nuclear theory: go to higher E_{CM}
will this raise the dynamical background? No!
- 4) exclusive [bound e^- & free e^+] spectrum is cleaner
experimental challenge ?
- 5) We calculated the inclusive e^+ spectrum by
propagating *all* discretized continuum states