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Calculations of high-harmonic spectra from hydrogen atoms driven by strong two-color orthogonal fields with

wavelengths 800 and 400 nm are presented. The azimuthal symmetry of the electron dynamics is broken by
the two-color orthogonal fields, and therefore the fully three-dimensional time-dependent Schrodinger equation
is solved by using the generalized pseudospectral method. The cycle-averaged collision angles as a function of
phase delay between the orthogonal fields are evaluated from the harmonic spectra. The results are in qualitative

agreement with a recent experiment with helium atoms. Furthermore, the timing and direction of recollisions
during the high-harmonic generation are analyzed in the time-frequency domain to extract electron trajectory
information on subcycle time scales. Comparison with recent model calculations is also made.
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I. INTRODUCTION

In recent years, a new type of measurement has been
introduced in the field of high-harmonic generation (HHG)
with potential applications for laser tomography [1-4]. In these
experiments, two mutually orthogonal laser fields of different
frequencies (colors) and intensities are used to ionize atoms
or molecules. An intense fundamental field is supplemented
by a perpendicular and weaker secondary field with doubled
frequency, so that the motion of the ionized electrons is
preferentially along the direction of the fundamental field.
Ionized electrons may recollide efficiently with parent ions to
produce high-harmonic radiation [5].

The situation is different from when a circularly polarized
laser field is applied, where electrons are driven at equal
strength and frequency in the two orthogonal directions; in
this case, they tend to permanently ionize rather than recollide.
The circularly polarized driving laser is useful for the study
of above-threshold ionization, as it eliminates the rescattered
electrons that can contaminate the analysis of pure ionization
[6-8]. For laser tomography applications, however, one relies
on high-harmonic spectra for structural information of the
source atoms or molecules, and therefore a linearly polarized
field has traditionally been used to promote recollisions, in
combination with the molecular alignment technique [9]. The
HHG in two-color orthogonal fields is an alternative approach
and useful particularly for the tomography of atoms because it
isimpossible to orient the atoms as is done for linear molecules.
In order to record the multidimensional structure, electrons
must recollide with parent ions at many different angles, not
just along one direction as in the linearly polarized laser
field. Two-color orthogonal fields induce the multidimensional
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recollisions that are necessary for the tomography measure-
ment. In this context, the issue of tunneling time has also been
addressed very recently [10,11].

In this paper, electron dynamics in two-color orthogonal
fields are investigated using numerical solutions of the time-
dependent Schrodinger equation (TDSE) for the hydrogen
atom. In particular, we evaluate the angle of recollisions
from hydrogen high-harmonic spectra on the basis of forming
ratios of even- and odd-order harmonic yield, in analogy to
the measurements in Ref. [1] with helium and neon atoms.
We extend the generalized pseudospectral (GPS) method
[12] to discretize the TDSE in three dimensions, since it
is computationally less expensive and more accurate than
finite difference methods. There are some published numerical
studies of laser-atom interactions in three dimensions, dealing
mainly with elliptically polarized fields [6,13,14], but only
few with two-color orthogonal fields [15]. Our calculated
recollision angles as a function of time delay between the
two fields qualitatively agree with the experiment for helium
atoms in Ref. [1].

One of our purposes is to complement the calculation based
on the strong-field approximation (SFA) which accompanied
the experiment in Ref. [3] and showed that the relative
phase between the two orthogonal fields can be used to
control the electron trajectories at the single-atom level.
We analyze harmonic spectra in the time-frequency domain
using the Gabor transform [16] to gain insight into the
trajectory interference in two-color orthogonal fields. This
time-frequency analysis also provides theoretical support
for the time-resolved measurement of electron dynamics using
the HHG driven by two-color orthogonal fields [10]. The
time information extracted from the Gabor transforms of the
hydrogen harmonic spectra shows features similar to those
obtained by Zhao and Lein [11] for their model helium
atom.
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The paper is organized as follows. First, we describe
our theoretical methods in Sec. II. In Sec. II A, the GPS
calculation of the TDSE for the hydrogen atom is introduced.
The three-dimensional (3D) time-evolution scheme and the
evaluation of harmonic spectra for the two-color orthogonal
fields are explained in Secs. II B and II C, respectively. The
determination of collision angles according to a prescription
given in Ref. [1] is summarized in Sec. IID, and Sec. IE
introduces a method to calculate time-resolved collision angles
using the Gabor transform of harmonic fields. Section III
comprises our results. In Sec. Il A, we examine ionization
rates of the hydrogen atom in two-color orthogonal fields
in comparison with linearly and circularly polarized laser
fields for three different peak intensities. Sample harmonic
spectra of the hydrogen atom driven by a 20-cycle, two-
color (800 4 400 nm) orthogonal field of fundamental-field
intensity 1 x 10" W cm—2 are presented in Sec. I1I B, and the
corresponding collision angles as a function of phase delay
between the two orthogonal fields are shown in Sec. III C. The
spectra in Sec. III B are studied further in the time-frequency
domain using the Gabor transform in Sec. IIID. Last, the
time-resolved collision angles for selected phase delays are
evaluated also by using the Gabor transform and discussed in
Sec. IIT E. Section IV concludes the paper. Atomic units (h =
m, = e = 1) are used throughout, unless specified otherwise.

II. THEORETICAL METHODS

A. Generalized pseudospectral method for the hydrogen atom

This section summarizes the GPS method for the hydrogen
atom, originally developed in Ref. [12]. The wave function
of the hydrogen atom is expanded using spherical harmonics
Y] (0,¢) as
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YyEn =) @Yﬁ(e,@, ()

t,m

where £ = 0,1,2,...,N, and |m| < £. The radial coordinate
r € [0,rmax] is mapped into the interval x € [—1,1] as
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where L is an arbitrary constant. Then, the radial function
Ry (r,t) in Eq. (1) is interpolated at the Legendre-Lobatto
collocation points:
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where Py’ is the first derivative of the Nth-order Legendre
polynomial Py. Furthermore, we introduce the following
discretized wave function:
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Its normalization condition (without the presence of absorbing
boundaries) is simply
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The stationary Hamiltonian for ¢;"(x;) is given by
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(6)

The symmetrized matrix form of H(£) is given in Ref. [12].

B. Atom-laser interaction in the two-color orthogonal fields

The electric-field vector for two-color orthogonal fields is
given by

E(t) = E,,(t)[i cos(w,t) + f((% cos(Qw,t + ,3))], (7

where E,(t) is an envelope function, and $ is the phase delay
between the fundamental and the secondary fields. For all
calculations in this work, the envelope function is E,(t) =
E, cos’(rt/T) centered around ¢ = 0 and has a duration of
T = 20 optical cycles. The absorbing boundary is set to start
at five times the classical electron oscillation radius E, /a),,z.
The strength of the secondary field (along the x axis) is kept
at a half of the fundamental field (along the z axis), to be
consistent with the experiments in Refs. [1] and [3]. This
leads to a 4:1 ratio for the driving-laser intensity between the
two orthogonal directions. The corresponding time-dependent
potential is therefore

V(F.1) = E,(t)r[ cos 6 cos(w,t)
+ % sin @ cos ¢ cosw,t + ,3)]. )

The ¢ dependence in V (7,t) means that it mixes different
m states, as well as € states. Our strategy in this case is to apply
the time-dependent evolution operator in the (6,¢) space rather
than the (¢,m) space using a split-operator technique:

(pz};l’(xj/’t_'_Al) ~ e—iHo(K)At/ZS—l(E/,m/)e—iv(;,l‘"rA/z)At
X SO e TNy, (9)

where S denotes the spherical harmonic transform [17], i.e.,
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and provides the change in representation. Here {¢, } is a set
of uniform grid points along the azimuthal angles:

b= 2 =012, 2N (11)
M_ZN[—‘FI I’L_757~"7 )
whereas a set of discretized polar angles {6, }, given by
TA
9}\:_ (A=071527‘-'5NE)7 (12)
Ny

is mapped using a transformation y, = cos 6, onto the set of
Legendre-Gauss collocation points:

{y 1 Pn+1(n2) = O} 13)

The inverse transform S~! takes {o(x,0,.,¢,,1)} back into the
(€,m) space.
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For calculations using 800 + 400 nm driving lasers, the
number of points along the radial direction is chosen in the
range N = 250-450, depending on the intensities considered
(0.5-2 x 10'* W cm~2), and the maximum angular momen-
tum is set by Ny, = 63. The time step is At = 0.2.

C. Evaluation of harmonic spectra

From Ehrenfest’s theorem, the z component of the acceler-
ation operator is given by [18]

a, = —[H,[H,z]] = [H,;—r] cos 8, (14)

where H is the full Hamiltonian including the laser interaction.
To obtain its expectation value (a,) at each time step, we find
expressions of the matrix elements (£ + 1,m|a,|€m) in terms
of the reduced matrix elements (£ + 1||a;||£), as outlined in
Ref. [19]. The result is

m Zz 1 m x m
(az) = Y ¢ (m - W>Re[<ﬂe+l(xj)‘ﬂe )],

lm,j
(15)

where

(16)
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The terms proportional to the fundamental field were dropped
in Eq. (15) because they do not contribute to high-harmonic
spectra. Similarly, the x component of the acceleration
operator is

a, = —[H,[H,x]] = |:H’38_ri| sin6 cos ¢. 17

Therefore, its expectation value is evaluated from the matrix
elements (¢ + 1,m =+ 1|a,|€m) as

62 1 1 m,_m% m+1
(ay) = L}; (Tx,) - m)z Re[) o] “(x;)eh (x))
i, (e ey ()], (18)

where

m_\/(ﬁ+m+l)(ﬁ+m+2) (19
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Once the time sequence of accelerations (a,,)(t,B) is

obtained from solutions of the TDSE, the high-harmonic
spectra are found as

D(w,B) = |d,(w,B)* + | (@, )], (20)

where the respective components of the acceleration expecta-
tion values are transformed using

1 1

az,x(wvﬂ) = tf — f, E

/fdt e a )@, p). (21

D. Recollision angles

It is known that a two-color, orthogonal driving laser
produces both odd- and even-order high-harmonic fields [1-3].
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The nth harmonic field can be expressed in terms of dipole
transition matrix elements A, and A, along the two orthogonal
axes as [20]

E, x A2+ Ak — e " (A2 — AR). (22)

The first two terms in Eq. (22) are induced by the first half of
each driving-laser cycle, and the last two terms by the second
half cycle. The negative sign for A, in the last term is due to the
doubled frequency in the secondary field. It then follows that
Eotd X A2, Eewen 0 AR, (23)
Thus, odd- and even-order harmonics generated by the
two-color orthogonal driving fields are polarized exclusively
along the fundamental and the secondary field vectors,
respectively. Based on this fact, the recollision angles of
ionized electrons with the parent ions (Het and Ne™) can be
inferred from harmonic spectra in Ref. [1] according to

o Teven(w, B)
|brec (@, B)| = arctan <‘l To@.B) >, (24)

where Iogq = |Eoqal> and lewen = | Eeven|?>. Note that the
adjacent harmonics are interpolated to obtain continuous
spectra separately for even- and odd-order harmonics
before taking their intensity ratio. In Sec. III C, we present the
recollision angles evaluated using Eq. (24) for hydrogen atoms.

E. Time-frequency representation of harmonic fields

In Sec. III D, we examine Gabor transforms of harmonic
spectra to study the timing of the recollision process in HHG
driven by the two-color orthogonal fields. The Gabor transform
is a time-frequency representation of a harmonic field, defined
by [16]

2

G.x(t.w,p) = ‘/dt'ei‘”t/ (a:)(t.B)Eg(t' —1)| , (25)

where

exp [ — 12/20,%]
V2ro, .

The sweeping function E(¢) needs to be sufficiently short to

resolve the subcycle structure in the harmonic field. We set the

full width at half maximum in Eq. (25) to o, = (3w,)”" for

this purpose [16]. Moreover, in analogy to Eq. (24), we then
calculate the time-resolved recollision angles as

_ Gx(w’tﬂﬁ)
[Orec(w,1,8)| = arctan( ,—Gz(a),t,,B) ) 27

In Sec. III E, the time-resolved recollision angles for fixed
phase delays are investigated.

Eg(1) = (26)

III. RESULTS

A. Ionization rates

The norm of the wave function becomes less than unity dur-
ing the integration of the TDSE due to the absorbing boundary
that is placed at the end of the radial grid. These absorbed parts
of the wave function can be interpreted as representing true
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FIG. 1. (Color online) Change in the norm of the hydrogen-atom
wave function driven by two-color (800 + 400 nm) orthogonal,
linearly polarized (800 nm), and circularly polarized (800 nm) laser
fields, respectively, for the peak fundamental-field intensities of (a)
5x10 W cm™2, (b) 1x10'™ W cm™2, and (c) 2x10'* W ¢cm~2. For
all cases, the driving pulse contains 20 optical cycles (800 nm).

ionization, i.e., we can infer the total ionization probability
from the change in the norm of the wave function. In Fig. 1,
we plot the change in the norm during the time evolution
when driven by two-color (800 4+ 400 nm) orthogonal fields
defined by Eq. (7), for three different peak envelope intensities:
Eg =5x 103, 1 x 10", and 2 x 10" W cm™2, and for
two different phase delays: g = 0 and 7 /2, respectively. In
addition, we compare with TDSE solutions for linearly and
circularly polarized 800-nm laser fields, given by

E(t) = E,(t)[Zsin(w,t) + & Xcos(w,1)], (28)

where ¢ =0 and 1 for linear and circular polarization,
respectively. We keep the same peak value E, of the envelope
function as for the two-color orthogonal fields.
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The results in Figs. 1(b) and 1(c) are as expected, i.e.,
the atoms are ionized most by the circularly polarized fields
and least by the linearly polarized fields, while the ionization
rates for the two-color orthogonal fields lie in between. The
lowest-intensity calculations in (a), however, predict more
ionization in the two-color orthogonal fields than in the
circularly polarized field. This implies that the 400-nm field,
even though having only a quarter of the intensity of the
800-nm field, can become rather effective in ionizing electrons
in the weak-field regime. This is understandable since a lower
order in perturbation theory is required for ionization when the
photon energy is doubled. In fact, harmonic spectra of helium
atoms in Ref. [1] exhibit stronger even-order harmonics than
odd-order ones in the plateau region, also indicating that the
400-nm field is quite capable of ionizing electrons when the
binding force is comparably strong as the driving field, as
in helium atoms. The phase delay g in the secondary fields
seems to enhance the ionization in (a) and (b), but not for
the highest-intensity calculations in (c). The difference due
to the phase delay $ is as large as ~10% in (c) during the
time evolution, indicating the importance of 8 in two-color
orthogonal fields.

B. High-harmonic spectra

Figure 2 shows high-harmonic spectra generated by the
800 + 400 nm orthogonal fields of peak envelope intensity
E2 =1 x 10" W cm™2 for four different phase delays (8 = 0,
/4, w/2, and 37 /4). The vertical line indicates the position
of the semiclassical cutoff in the linearly polarized 800-nm
field of the same peak intensity, i.e., I, + 3.17U,, where I,
is the ionization potential of the atom, and U, = E,? /(4wy?)
is the ponderomotive energy of the driving field [5]. The most
striking feature in Fig. 2 is that the spectra evaluated from
{(a;) and {(a,) exclusively appear at odd- and even-integer
multiples of w,, respectively. This is due to the symmetry
of interaction and holds true for any symmetry of the bound
state [20]; cf. Egs. (22) and (23). The intensities of the odd-
and even-order harmonic spectra in 2(c) and 2(d) are equally
strong in the plateau region, despite the fact that the peak
driving-laser intensity in the x direction is four times smaller
than in the z direction. This means that electrons contributing
to these plateau harmonics are deflected by roughly 45° before
returning to the atom, according to Eq. (24).

It is not obvious why even-order harmonics manage to have
the same amount of intensities as odd-order ones in Fig. 2
and also in the experiments [1] and [3]. The ponderomotive
energy U, associated with the secondary field (along the x
axis) alone would be only 1/16 of the fundamental field, but the
x component of the acceleration vector can be equally large as
the z component according to our calculation. In fact, the even-
order harmonics measured in Ref. [1] were much stronger than
the odd-order ones in the plateau region regardless of atomic
species, helium or neon. In a semiclassical picture one can
argue that a perhaps unexpected amount of direction change
occurs along the electron trajectories. Additional studies based
on the SFA [21], or the classical-trajectory analysis [22,23],
are desirable in order to have a more intuitive understanding
of the electron dynamics involved in the HHG driven by the
two-color orthogonal fields.
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Harmonic Order

FIG. 2. (Color online) Hydrogen spectra driven by a 20-cycle,
two-color (800 + 400 nm) orthogonal fields with (a) no phase delay
B=0),b)B=nr/4,(c)B=m/2,and(d) 8 =37/4. Thea, and a,
contributions are shown separately; cf. Eq. (20). The peak intensity
of the driving laser pulse is 1 x 10'* W cm~2 along the 7 axis and a
quarter of that amount along the x axis. The vertical line indicates the
location of the semiclassical cutoff for the linearly polarized 800-nm
driving laser of peak intensity 1 x 10'* W cm™2.

The spectral peaks in Figs. 2(a) and 2(b) are not as pro-
nounced as in Figs. 2(c) and 2(d), indicating some interference
from degenerate electron trajectories [24]. In Ref. [3], it was
demonstrated in an experiment with argon atoms that the phase
delay between the two orthogonal fields could be used to select
the electron trajectory at the single-atom level, without the
macroscopic propagation effect. In Sec. III D, we use the Gabor
transform to elucidate this point.

A significant change in the overall shape of harmonics and
in the position of the cutoff was observed in the experimental
data of Ref. [1] for helium and neon atoms when the phase

PHYSICAL REVIEW A 88, 063419 (2013)

delay was varied between 8 = 0 and 7 /2. Our single-electron
results in Fig. 2(b) do not suggest such an effect. This
difference can be due to the macroscopic propagation and
multielectron effects that are not included in our present calcu-
lation. We also note that the spatiotemporal profiles of the two
orthogonal laser fields used in the experiment are not matching
perfectly [20], i.e., may not correspond perfectly to the present
calculation. We also note that the intensity ratio between the
two fields was quoted as 3:1 in Ref. [20] rather than 4:1 [1].

C. Cycle-averaged recollision angles

Figure 3 displays collision angles as a function of phase
delay between the two-color orthogonal fields, derived from
the harmonic spectra (such as shown in Fig. 2) using
Eq. (24). It represents the theoretical equivalent to the reported
experimental recollision angles in Ref. [1] for helium and
neon atoms. Note that the measurements only covered phase
delays 0 < B < /2, whereas our phase delay extends up to
7. One can also compare this plot with Fig. 3(b) in Ref. [10]
or Fig. 1(b) in Ref. [11], where the intensity ratio of even/odd
harmonic spectra for helium atoms is shown. There is clearly
a common trend in these plots, namely, the region of large
recollision angles protrudes to higher harmonic order between
B =m/4 and /2. When comparing with the path-integral
calculation in Ref. [20], we find that our data in Fig. 3 capture
some features of the experimental results for helium atoms in
Ref. [1] more closely; e.g., the large (~80°) return angle for
low-order harmonics is present in our calculations but not in
the simulation of Ref. [20].

Our results for the hydrogen atom do not predict a
dramatic change in the spectral intensities or in the cutoff
frequency for various phase delays, in contrast to the finding
of Ref. [1]. Whether our finding is specific to atomic hydrogen
needs to be investigated. In the future, we intend to extend
our calculation to multielectron atoms using time-dependent
density-functional theory [25].

In addition, the effect of propagation needs to be addressed;
in Ref. [1], the measured harmonic spectra contain purely

80

Harmonic Order

0 n/4 /2 3n/4 T
Phase Delay

(deg)

FIG. 3. (Color online) Recollision angles as a function of har-
monic frequency (in units of the fundamental-field frequency w,)
and phase delay between the two-color orthogonal fields, derived
from hydrogen harmonic spectra using Eq. (24). The driving laser
parameters are the same as in Fig. 2.
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structural information not affected by electron-path interfer-
ences, because the short trajectories were macroscopically
chosen by the focus of a gas jet. The single-atom calculation
can achieve this goal by adjusting the relative phase g, but then
B becomes no longer a variable to control electron dynamics.
The complete understanding of experimental results requires
a multielectron atom calculation coupled with Maxwell’s
equations to account for the variation of gas density along
the laser beam [18].

D. Gabor analysis

In Ref. [3], it was found that the short-trajectory con-
tributions dominate the high-harmonic spectra generated by
two-color orthogonal fields when the nodes of the fundamental
and secondary fields are set to coincide. In this section, we
study the harmonic spectra in Figs. 2(a) and 2(c) by using the
Gabor transform to shed some light on this question.

Figure 4 shows the return energy of a free electron driven
by an 800-nm, linearly polarized field of peak intensity
1 x 10" W cm~2 along the z axis, according to Newton’s
second law:

7 = —E,(t) cos(w,t). (29)

The electron is released with zero initial velocity from the
origin (z = 0) at various ionization times, and its return energy
(shown in units of w,) is evaluated when it returns to the origin
as the sum of kinetic energy and the ionization potential (I, =
13.6eV) thatithad overcome. The results in Fig. 4 demonstrate
that two degenerate trajectories occur periodically during each
half cycle of the driving laser field; the ionization time in the
rising (falling) side of the return energy corresponds to the
long (short) trajectory in the SFA theory, whose recollision
time is always in the falling (rising) side of the return energy

0.08

0.06
ey
N 0.04 >
k< &
o 002 ®
Q k)
S o
E 0 ¢
g 5
- o)
0.02 o

-0.04

-0.06

Time (cycle)

FIG. 4. (Color online) Open (closed) circles show the return
energy of a free electron driven by an 800-nm linearly polarized
field of peak intensity 1 x 10'* W cm™2 as a function of ionization
(recollision) time, according to Eq. (29). For clarity, only those
solutions that are released in the first half cycle after the pulse peak
are shown. The energy is expressed in units of fundamental-field fre-
quency w,. Also shown with different lines are the components of the
two-color orthogonal fields (800 + 400 nm, 1/0.25 x 10'* W cm™2)
with different phase delays: 8§ = 0 and 77 /2.
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in Fig. 4. The maximum return energy attained around the
peak of a driving laser pulse (~21w,) is the semiclassical
cutoff 1, + 3.17U,, (cf. Fig. 2). Also shown in Fig. 4 is each
of the two orthogonal fields for 8 = 0 and /2. Note that the
z component of the mutually orthogonal laser fields coincides
with the linearly polarized field that was used to solve Eq. (29).
In the supporting SFA theory of the experiment in Ref. [3] it
was argued that the time when the electron is created in the
continuum (i.e., ionization time) is relatively unchanged by
the presence of the secondary field.

To find the recollision time of an electron according to the
TDSE, we show in Fig. 5 the Gabor transform (25) of the high-
harmonic spectra given in Figs. 2(a) and 2(c), corresponding to
the phase delays of B = 0 and 7 /2, respectively. The timing of
recollisions on the z axis inferred from the Gabor transform G,
(top panels) generally agrees with the classical recollision time
in a linearly polarized field predicted by Eq. (29) (shown with
closed circles in both Figs. 4 and 5), except that only the short
trajectories appear when S = 7 /2. The differences between
the quantum and the classical calculations are likely due to the
initial conditions and the lack of binding potential assumed
for the classical trajectories. The timing of recollisions on the
x axis indicated by G, (bottom panels) is periodic in each
half cycle of the fundamental field when 8 = 7 /2, but not
when 8 = 0; this behavior cannot be explained in terms of a
one-dimensional approach such as Eq. (29).

The SFA calculation in Ref. [3] was based on the assump-
tion that short trajectories give the main contribution to the
harmonic spectrum when the ionization of the long trajectories
happens before the peak of the secondary field; an ionized
electron would then see the rising secondary field, making the
recollision in the long trajectory less probable. This is when the
nodes of the two orthogonal fields coincide, i.e., 8 = 7 /2 in
our case. The agreement between our calculation and Ref. [3]
is encouraging and lends support to the applicability of the
SFA for two-color orthogonal fields.

E. Time-resolved recollision angles

From the Gabor transforms in Fig. 5, we calculated the time-
resolved recollision angles of an ionized electron in two-color
orthogonal fields by using Eq. (27). Figure 6 shows |6;ec(w,?)|
(with respect to the fundamental-field direction) for § =0
and /2. Note that only those data points with G, > 10713
are used to calculate Eq. (27). As a general trend for both
cases, the recollision angles are larger in the plateau region
than beyond the cutoff (~21w,), which is consistent with the
cycle-averaged measurement using helium atoms in Ref. [1].
This agreement is expected because both the hydrogen and
helium atoms are spherically symmetric.

Figure 6(a) for § = 0 shows irregular profiles in the plateau
region, indicating multiple electron trajectories with large
recollision angles. However, electrons contributing to the
cutoff harmonics are all colliding with no deflection from the
fundamental axis. On the other hand, Fig. 6(b) for § = /2
exhibits fairly regular recollision angles occurring periodically
in each half cycle of the fundamental field. The short trajectory
is deflected by the secondary field by 30—45°, while the rest of
trajectories are suppressed for the phase delay § = m/2; this
coherent behavior was reflected in the clean spectra displayed
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FIG. 5. (Color online) Gabor transform (25) of the harmonic spectra in Fig. 2(a) for 8 = 0 (left) and Fig. 2(c) for 7 /2 (right). The top
panels are for the harmonic field polarized along the z axis, and the bottom panels are for the harmonic fields polarized along the x axis. The
closed circles indicate the return energy of a free electron moving in a linearly polarized field along the z axis as a function of recollision time,

according to Eq. (29).

in Fig. 2(c). Itis also interesting that the return angles for cutoff
harmonics are relatively large (10-20°) in Fig. 6(b) compared
to Fig. 6(a). This means that, when there are no degenerate

Harmonic order
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FIG. 6. (Color online) Recollision angle as a function of time
and harmonic frequency (in units of w,), derived from the Gabor
transforms in Fig. 5 using Eq. (27) for a phase delay of (a) 8 = 0 or
(b) B = 7/2.

electron paths (as verified from clean harmonic spectra, e.g.,
beyond the cutoff in Fig. 2), the electron trajectories associated
with each phase delay follow different directions that repeat in
every half cycle of the fundamental field. The cycle-averaged
measurements should therefore be able to deliver the structural
information of target atoms by controlling the phase delays, as
demonstrated in Ref. [1].

IV. CONCLUSIONS

We studied HHG driven by strong two-color orthogonal
fields based on the numerical solution of the 3D TDSE for the
hydrogen atom. Our calculations lend support to the analysis of
recollision angles reported in Ref. [1]. Furthermore, the time-
frequency representation of the harmonic spectra was used to
find the timing and direction of the recollision process in the
chosen two-color orthogonal fields. We confirmed the finding
in Ref. [3] that the short-trajectory contributions dominate the
high-harmonic spectra at the single-atom level when the nodes
of the fundamental and secondary fields are set to coincide. Our
result is also in qualitative agreement with recent publications
about the electron tunneling time for helium atoms [10,11].
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