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Abstract We present a formulation of the Hamiltonian variational method for QED which
enables the derivation of relativistic few-fermion wave equation that can account, at least
in principle, for interactions to any order of the coupling constant. We derive a relativistic
two-fermion wave equation using this approach. The interaction kernel of the equation is
shown to be the generalized invariant M̃ matrix including all orders of Feynman diagrams.
The result is obtained rigorously from the underlying QFT for arbitrary mass ratio of the
two fermions. Our approach is based on three key points: a reformulation of QED, the
variational method, and adiabatic hypothesis. As an application we calculate the one-loop
contribution of radiative corrections to the two-fermion binding energy for singlet states with
arbitrary principal quantum number n, and ℓ = J = 0 . Our calculations are carried out in
the explicitly covariant Feynman gauge.

1. Introduction

The description of two-particle states (particularly bound states) in QFT such as quan-
tum electrodynamics, including relativistic effects, is an important problem. It is well known
that in the nonrelativistic limit this problem has been solved on the basis of the Shrödinger
equation. In the relativistic case we have the Dirac equation, which describes a one-fermion
particle system only. However the implementation of this equation for two-particle or multi-
particle system meets significant difficulties. It requires a relativistic manybody approach,
which is provided by QFT. However, the QFT implementation to relativistic few-particle
bound states is difficult. The usual method for treating two-body bound states in QFT is
by means of the Bethe-Salpeter equation. It has a number of shortcomings, among them,
a perturbative treatment of interactions, which is unsuitable for strongly coupled system.
Other difficulties are the appearance of relative time coordinates, which make it problematic
to interpret the Bethe-Salpeter amplitude as a traditional wave function. There are various
ways of avoiding the problem, such as, e.g., single-time reductions, but these are generally
non-rigorous approximations to the original problem in QFT.

Recently we applied the variational Hamiltonian formalism to the problem of two fermions
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interacting through the electromagnetic field [1,2]. We derived two-fermion relativistic wave
equations, classified all bound states and calculated the relativistic energy spectrum to fourth
order in the fine structure constant. The results were obtained for arbitrary mass ratio of
the particles. As a consequence, the fourth-order hyperfine splitting formulas were derived
for arbitrary quantum numbers and mass ratio. These formulas are in agreement with
experimental results for hydrogen and muonium, as well as with previous calculations.

In the present paper we develop the variational Hamiltonian formalism for two-fermion
systems to allow for the inclusion of effects of higher order, such as vertex corrections, vac-
uum polarization, and two-photon exchange. This can be achieved by using the variational
principle in combination with the adiabatic hypothesis. The two-fermion wave equations
are derived rigorously from underlying QFT for arbitrary mass ratio. The solution of these
equations allows one to calculate energy corrections to all orders on the basis of a two-body
approach. The method presented here can be easily generalized to three- and multi-particle
systems. It is important to note that the variational Hamiltonian formalism is applicable to
strongly coupled systems for which perturbation theory may be unreliable.

2. Reformulated QED

It has been pointed out in previous publications that various models in Quantum Field
Theory (QFT), including QED, can be reformulated, with the help of mediating-field Green’s
functions, into a form that is particularly convenient for the investigation of bound-state
problems and variational calculations [3,4]. This approach was applied to the study of
relativistic two-body eigenstates in the scalar Yukawa (Wick-Cutkosky) theory [5,6,7]. We
shall implement such an approach to two-fermion states in QED in this paper.

The Lagrangian for two fermionic fields interacting electromagnetically is (~ = c = 1)

L = ψ(x) (iγµ∂µ −m1 −Q1γ
µAµ(x))ψ(x) + φ(x) (iγµ∂µ −m2 −Q2γ

µAµ(x))φ(x)

−
1

4
(∂αAβ(x) − ∂βAα(x))

(
∂αAβ(x) − ∂βAα(x)

)
. (1)

The corresponding Euler-Lagrange equations of motion are the coupled Dirac-Maxwell equa-
tions,

(iγµ∂µ −m1)ψ(x) = Q1γ
µAµ(x)ψ(x), (2)

(iγµ∂µ −m2)φ(x) = Q2γ
µAµ(x)φ(x), (3)

and
∂µ∂

µAν(x) − ∂ν∂µA
µ(x) = jν(x), (4)

where
jν(x) = Q1ψ(x)γνψ(x) +Q2φ(x)γνφ(x). (5)

Equations (2)-(4) can be decoupled in part by using the well-known formal solution [6-10]
of the Maxwell equation (4), namely

Aµ(x) = A0
µ(x) +

∫
d4x′Dµν(x− x′)jν(x′), (6)
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where Dµν(x−x
′) is a Green’s function (or photon propagator in QFT terminology), defined

by
∂α∂

αDµν(x− x′) − ∂µ∂
αDαν(x− x′) = gµνδ

4(x− x′), (7)

and A0
µ(x) is a solution of the homogeneous (or “free field”) equation (4) with jµ(x) = 0.

Equation (7) does not define the covariant Green’s function Dµν(x − x′) uniquely. One
can always add a solution of the homogeneous equation (eq. (7) with gµν → 0). This allows
for a certain freedom in the choice of Dµν , as is discussed in standard texts (e.g. ref. [8,9]).
In practice, the solution of eq. (7), like that of eq. (4), requires a choice of gauge. However,
we do not need to specify one at this stage.

Substitution of the formal solution (6) into equations (2) and (3) yields the “partly
reduced” equations,

(iγµ∂µ −m1)ψ(x) = Q1γ
µ

(
A0
µ(x) +

∫
d4x′Dµν(x− x′)jν(x′)

)
ψ(x), (8)

(iγµ∂µ −m2)φ(x) = Q2γ
µ

(
A0
µ(x) +

∫
d4x′Dµν(x− x′)jν(x′)

)
φ(x). (9)

These are coupled nonlinear Dirac equations. To our knowledge no exact (analytic or nu-
meric) solution of equations (8)-(9) for classical fields have been reported in the literature,
though approximate (perturbative) solutions have been discussed by various authors, partic-
ularly Barut and his co-workers (see ref. [10,11] and citations therein). However, our interest
here is in the quantized field theory.

The partially reduced equations (8)-(9) are derivable from the stationary action principle

δS [ψ, φ] = δ

∫
d4xLR = 0 (10)

with the Lagrangian density

LR = ψ(x)
(
iγµ∂µ −m1 −Q1γ

µA0
µ(x)

)
ψ(x) + φ(x)

(
iγµ∂µ −m2 −Q2γ

µA0
µ(x)

)
φ(x)

−
1

2

∫
d4x′jµ(x′)Dµν(x− x′)jν(x) (11)

provided that the Green’s function is symmetric in the sense that

Dµν(x− x′) = Dµν(x
′ − x), Dµν(x− x′) = Dνµ(x− x′). (12)

The interaction part of (11) has a somewhat modified structure from that of the usual
formulation of QED. Thus, there are two interaction terms. The last term of (11) is a
“current-current” interaction which contains the photon propagator sandwiched between
the fermionic currents. We shall use this modified formulation together with a variational
approach to obtain relativistic two-fermion equations, and will study their bound-state so-
lutions.
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We consider the quantized theory in the Hamiltonian equal-time formalism. To this end
we write down the Hamiltonian density corresponding to the Lagrangian (11), namely

HR = H0+HI , HI = HI1 + HI2 , (13)

where

H0 = ψ†(x) (−i−→α · ∇ +m1β)ψ(x) + φ†(x) (−i−→α · ∇ +m2β)φ(x), (14)

HI1 =
1

2

∫
d4x′jµ(x′)Dµν(x− x′)jν(x), (15)

HI2 = Q1ψ(x) γµA0
µ(x)ψ(x) +Q2φ(x) γµA0

µ(x)φ(x), (16)

and where we have suppressed the kinetic-energy term of the free photon field. We quantize
the theory by imposing equal-time anticommutation rules for the fermion fields, namely

{
ψα(x, t), ψ

†
β(y, t)

}
=
{
φα(x, t), φ

†
β(y, t)

}
= δαβδ

3 (x − y) , (17)

and all others vanish. In addition, there are the usual commutation rules for the Aµ0 field,
and the commutation of the Aµ0 field operators with the ψ and φ field operators.

To specify our notation, we quote the Fourier decomposition of the field operators, namely

ψ(x) =
∑

s

∫
d3p

(2π)3/2

(
m1

ωp

)1/2 [
bpsu (p, s) e−ip1·x + d†

psv (p, s) eip1·x
]
, (18)

with p1 = pµ1 = (ωp,p), ωp =
√
m2

1 + p2 and

φ(x) =
∑

s

∫
d3p

(2π)3/2

(
m2

Ωp

)1/2 [
BpsU (p, s) e−ip2·x +D†

psV (p, s) eip2·x
]
, (19)

with p2 = pµ2 = (Ωp,p), Ωp =
√
m2

2 + p2. Note that the mass-m1 free-particle Dirac spinors
u (p, s), v (p, s), which satisfy (γµp̂1µ −m1)u (p, s) = 0 and (γµp̂1µ +m1) v (p, s) = 0, are
normalized such that

u† (p, s) u (p, σ) = v† (p, s) v (p, σ) =
ωp
m1

δsσ, (20)

u† (p, s) v (p, σ) = v† (p, s) u (p, σ) = 0.

Analogous properties apply to the mass-m2 spinors U , V . The creation and annihilation
operators b†, b of the (free) particles of mass m1, and d†, d for the corresponding antiparticles,
satisfy the usual anticommutation relations. The non-vanishing ones are

{
bps, b

†
qσ

}
=
{
dps, d

†
qσ

}
= δsσδ

3 (p − q) . (21)

Again, the analogous properties apply to the mass-m2 operators B†, B, D†, D. As a concrete
example, we can think of the mass-m1 particles as electrons, and the mass-m2 particles as
muons, though any pairs of charged fermions could be considered.
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3. Variational principle and adiabatic hypothesis

The Hamiltonian formalism of QFT is based on the covariant eigenvalue equation

P̂ µ |ψ〉 = P µ |ψ〉 , (22)

where P̂ µ =
(
Ĥ, P̂

)
is the energy-momentum operator, P µ = (E,P) is the corresponding

energy-momentum eigenvalue, with E2 −P2=M2, where M is the invariant mass of the sys-
tem. The µ = 0 component of (22) cannot be solved for realistic theories, and approximation
methods must be used. We shall develop an approximation method in this section, based
on the variational principle

δ
(
〈ψh| Ĥh (t) −E |ψh〉t=t0

)
= 0, (23)

which is equivalent to the µ = 0 component of (22), so to this end, we shall consider the
expectation value. The subscript h is used to stress that the equation is written in the
Heisenberg representation, which relates to the Schrödinger picture as |ψh〉 = eiĤs(t−t0) |ψs〉.

It is well known that variational solutions are only as good as the trial states that are
used. Thus, it is important that the trial states possess as many features of the exact solution
as possible. For our purpose it is convenient to rewrite equation (23) in the interaction
representation

δ
(
〈ψi (t)| Ĥi (t) − E |ψi (t)〉t=t0

)
= 0, (24)

where the operator Ĥi (t) = Ĥ0i (t) + ĤIi (t) consists on two parts, which represent the

free-field and interacting-field Hamiltonians respectively. Note that Ĥ0i (t) = Ĥ0i is time-
independent.

Using the time-evolution operator Û we can express states in the form

|ψi(t)〉 = Û(t, t1) |ψi(t1)〉 , 〈ψi(t)| = 〈ψi(t2)| Û
†(t, t2), (25)

The time-evolution operator Û satisfies the familiar differential equation,

ĤIi(t)Û(t, t0) = i
∂

∂t
Û(t, t0), (26)

with the boundary conditions Û(t0, t0) = I, where I is the unit operator. Equation (26) has
the iterative solution

Û (t, t0) = Û (1) (t, t0) + Û (2) (t, t0) + Û (3) (t, t0) + ..., (27)

where
Û (1) (t, t0) = I, (28)

Û (2) (t, t0) = −i

∫ t

t0

dt1

∫
d3x1ĤIi (x1) , (29)
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Û (3) (t, t0) =
(−i)2

2

∫ t

t0

dt1

∫ t

t0

dt2

∫
d3x1d

3x2T
(
ĤIi (x1) ĤIi (x2)

)
, (30)

and ĤI is defined by (13), (15) and (16).
Substitution of (25) into (24) yields

δ
(
〈ψi(t2)| Û

†(t, t2)
(
Ĥi (t) − E

)
Û(t, t1) |ψi(t1)〉t=t0

)
= 0. (31)

Using the properties of the Û operator, Û †(t, t2) = Û(t2, t), and ÛI(t2, t)ÛI(t, t1) = ÛI(t2, t1)
we obtain for t2 > t1

δ
(
〈ψi(t2)|T

(
Û(t2, t1)

(
Ĥ0i −E

))
+ T

(
Û(t2, t1)ĤIi (t)

)
|ψi(t1)〉t=t0

)
= 0, (32)

where T is the time-ordering operator. The first term in (32) is

〈ψi(t2)| T
(
Û(t2, t1)

(
Ĥ0i −E

))
|ψi(t1)〉t=t0 = 〈ψi(t1)| Ĥ0i − E |ψi(t1)〉 , (33)

since Ĥ0i is a time-independent operator, and 〈ψi(t2)| Û(t2, t1) = 〈ψi(t1)|. The second term
in (32) can be rearranged as follows,

〈ψi(t2)| T
(
Û(t2, t1)ĤIi (t)

)
|ψi(t1)〉t=t0 = 〈ψi(t1)| Û

−1(t2, t1)T
(
Û(t2, t1)ĤIi (t)

)
|ψi(t1)〉t=t0

(34)
If |ψi(t2)〉 and |ψi(t1)〉 are stationary states, they must coincide to within an arbitrary phase
factor eiθ, which does not affect any physical values. Hence

Û(t2, t1) |ψi(t1)〉 = |ψi(t2)〉 = eiθ |ψi(t1)〉 , (35)

where
eiθ = 〈ψi(t1)| Û(t2, t1) |ψi(t1)〉 . (36)

Thus

〈ψi(t1)| Û
−1(t2, t1) = e−iθ 〈ψi(t1)| =

〈ψi(t1)|

〈ψi(t1)| Û(t2, t1) |ψi(t1)〉
, (37)

and we obtain

〈ψi(t2)|T
(
Û(t2, t1)ĤIi (t)

)
|ψi(t1)〉t=t0 =

〈ψi(t1)|T
(
Û(t2, t1)ĤIi (t)

)
|ψi(t1)〉t=t0

〈ψi(t1)| Û(t2, t1) |ψi(t1)〉
. (38)

It is known [12], [13] that the numerator of (38) can be written as a product of two factors,
which correspond to all connected and disconnected diagrams. The factor, which represents
the disconnected diagrams, is identical with the denominator 〈ψi(t1)| Û(t2, t1) |ψi(t1)〉, and
therefore equation (32) takes the final form,

δ
(
〈ψi(t1)| Ĥ0i − E |ψi(t1)〉 + 〈ψi(t1)| T

(
Û(t2, t1)ĤIi (t)

)
|ψi(t1)〉t=t0

)
= 0, (39)
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which involves connected diagrams only. This equation is just another form of (24) and does
not contain anything new with respect to it. However, equation (39) is convenient for the
implementation of adiabatic switching [12], [13], in which case we put t1 = −∞. We assume

that the Hamiltonian ĤIi (t) depends on an interaction constant α, hence we can switch this
interaction on by the following anzatz

α(t) = α
(
(1 − η) e−ε|t−t0| + η

)
, (40)

where ε and η are small positive quantities. At time t = −∞ the coupling constant α (−∞) =
αη is very small (“bait” interaction), and becomes the full interaction at t = t0. This means
that at t = −∞ the state |ψi(−∞)〉 is an eigenstate of a weakly interacting system, and by

process of adiabatic switching, it becomes a stationary state |ψi(t0)〉 = Û(t0,−∞) |ψi(−∞)〉
of the fully interacting system. This is the content of the adiabatic hypothesis. It is evident
that the state |ψi(−∞)〉, in a sense, contains only minimal information about the interaction
in the system, however it should include the main features of the “bait” interaction such as
kinematical properties and symmetry of the system. The adiabatic hypothesis permits the
use of simple trial states that take into account the key physical properties of the system.

4. Trial state and two-fermion system

The simplest Fock-space trial state, that can be written down in the rest frame (P = 0,
E = M), for a two-fermion system is

|ψtrial〉 =
∑

s1s2

∫
d3pFs1s2(p)b†

ps1
D†

−ps2 |0〉 , (41)

where b†
ps1 and D†

−ps2 are creation operators for fermions of masses m1 and m2 respectively,
and |0〉 is the trial vacuum state such that bps1 |0〉 = Dps2 |0〉 = 0. The Fs1s2 are four
adjustable functions, that are chosen so that (41) is, as we show in section 5, an eigenstate
of the relativistic total angular momentum operator, its projection, and parity. We shall use
this trial state to implement equation (39), which we write in the form (t1 = −∞, t2 = +∞,
and t0 = 0)

δ
(
〈ψtrial| Ĥ0i − E |ψtrial〉 + 〈ψtrial|T

(
Û(+∞,−∞)ĤIi (t)

)
|ψtrial〉t=0

)
= 0. (42)

In practice Û(+∞,−∞) is represented by the series (27), however any finite number of terms

of the series may be included. In lowest order (Û = I) equation (42) reduces to

δ
(
〈ψtrial| Ĥ0i − E + ĤIi (t) |ψtrial〉t=0

)
= 0. (43)

This equation was used in earlier works [1], [2] (with the trial state (41) and the interacting

Hamiltonian ĤIi = ĤI1i (15)) to obtain bound-state energy spectra to order α4 for all states
of positronium- and muonium-like systems. In this work we shall go beyond this order.
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Note that only the term ĤI1, eq. (15), of the interaction part of the Hamiltonian con-

tributes in eq. (43), since 〈ψtrial| ĤI2i (t) |ψtrial〉 = 0 with the choice (41) of trial state. That

is, the simple trial state (41) does not sample the ĤI2i interaction term, which means that
processes that involve the emission or absorbtion of radiation (i.e., physical photons) are
not accomodated. To do so would require a modification of the trial atate (41). However,
this will not be considered in the present paper, which thereby deals with equations for pure
bound states (or elastic scattering).

The matrix elements (42) to implement the variational principle needed are

〈ψtrial| : Ĥ0 −E : |ψtrial〉 =
∑

s1s2

∫
d3pF ∗

s1s2
(p)Fs1s2(p) (ωp + Ωp −M) (44)

and

〈ψtrial| : T
(
Û(+∞,−∞)ĤIi (t)

)
: |ψtrial〉t=0 (45)

= 〈ψtrial| :

∫
d4xT

((
Û (1)(+∞,−∞) + Û (2)(+∞,−∞) + ...

)
ĤIi (x) δ (t)

)
: |ψtrial〉

= −
q1q2m1m2

(2π)3

∑

σ1σ2s1s2

∫
d3pd3q√
ωpωqΩpΩq

F ∗
s1s2

(p)Fσ1σ2
(q) (−i)M̃s1s2σ1σ2

(p,q) ,

where M̃s1s2σ1σ2
(p,q) is the generalized invariant M -matrix

M̃s1s2σ1σ2
(p,q) = M(1)

s1s2σ1σ2
(p,q) + M(2)

s1s2σ1σ2
(p,q) + .., (46)

which includes effects in all orders of the interaction, and where the sum contains all Feynman
diagrams, reducible and irreducible. Some details of the calculations of (45) to order M(2)

are presented in Appendix A.
The variational principle (42) leads to the following equation

∑

s1s2

∫
d3p (ωp + Ωp − E)Fs1s2(p)δF ∗

s1s2
(p) (47)

−
m1m2

(2π)3

∑

σ1σ2s1s2

∫
d3pd3q√
ωpωqΩpΩq

Fσ1σ2
(q) (−i) M̃s1s2σ1σ2

(p,q) δF ∗
s1s2(p) = 0.

We now discuss the structure of the M̃- matrix on the basis of the expansion (27) for

Û , and restrict our consideration to one-loop level only. In lowest order, Û = Û (1) = I, we
obtain

M(1)
s1s2σ1σ2

(p,q) ≡ Mope
s1s2σ1σ2

(p,q) (48)

= −u (p, s1) (−iQ1γ
µ)u (q, σ1) iDµν(p− q)V (−q, σ2) (−iQ2γ

ν)V (−p, s2) ,

where Mope
s1s2σ1σ2

(p,q) is the usual invariant matrix element corresponding to the one-photon
exchange Feynman diagram obtained and considered in [2]. This expression involves the
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Fourier transform of the Green’s function (eq. (7)), namely

Dµν(x− x′) =

∫
d4k

(2π)4
Dµν(k)e

−ik(x−x′). (49)

The Green’s function Dµν(p− q) consists of two parts

Dµν(p− q) =
1

2
(Dµν(p1 − q1) +Dµν(q2 − p2)) , (50)

where Dµν(p1 − q1) and Dµν(q2 − p2) are the Green’s functions of particles with masses m1

and m2 respectively. Note that the four-vectors p1, p2, q1 and q2 are defined as in formulae
(18), (19). For a fermion-antifermion system like positronium we obtain [1] the additional

virtual-annihilation term (Q1 = Q2 ≡ e) for M
(1)
s1s2σ1σ2

:

Mann
s1s2σ1σ2

(p,q) = u (p, s1) (−ieγµ) v (−p, s2) iDµν (ωp) v (−q, σ2) (−ieγν) u (q, σ1) . (51)

The terms of next order in the coupling require the inclusion of the operator Û (2), eq. (29),
and can be written in the form

M(2)
s1s2σ1σ2

≡
∑

i=1,2

(
Mvaci

s1s2σ1σ2
+ Mveri

s1s2σ1σ2
+ M

mass′i
s1s2σ1σ2

+ M
mass′′i
s1s2σ1σ2

)
+ M2γ

s1s2σ1σ2
, (52)

where the index i = 1, 2 corresponds to masses m1 and m2 respectively. One-loop level ra-
diative corrections include second-order vacuum polarization Mvac, vertex corrections Mver,
and the fermion self-energy Mmass. Their explicit form is given by

M(2)vac1
s1s2σ1σ2

(p,q) (53)

= −u (p, s1) (−iQ1γ
µ) u (q, σ1) iDµν (p− q)Πνα (p1 − q1) ×

×iDαβ (p− q)V (−q, σ2)
(
−iQ2γ

β
)
V (−p, s2) ,

M(2)ver1
s1s2σ1σ2

(p,q) (54)

= −u (p, s1) (−iQ1)Λ
α (p1, q1)u (q, σ1) iDαβ (p− q)V (−q, σ2)

(
−iQ2γ

β
)
V (−p, s2) ,

M(2)mass′
1

s1s2σ1σ2
(p,q) (55)

= −u (p, s1)Σ (p1)Sψ (p1) (−iQ1γ
α)u (q, σ1) iDαβ (p− q)V (−q, σ2)

(
−iQ2γ

β
)
V (−p, s2) ,

M(2)mass′′
1

s1s2σ1σ2
(p,q) (56)

= −u (p, s1) (−iQ1γ
α)Sψ (p1)Σ (p1)u (q, σ1) iDαβ (p− q)V (−q, σ2)

(
−iQ2γ

β
)
V (−p, s2) ,

where the standard definitions of the Π, Λ and Σ functions apply (we display functions and
operators for the ψ field only), namely

Πνα (p1 − q1) = −iQ2
1

∫
d4k

(2π)4Tr [γνSψ (k + p1 − q1) γ
αSψ (k)] , (57)
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for the vacuum polarization function,

Λα (p1, q1) = −iQ2
1

∫
d4k

(2π)4γ
νSψ (k + p1) γ

αSψ (k + q1) γ
µDµν (k) , (58)

for the vertex function, and

Σ (p1) = Q2
1

∫
d4k

(2π)4Dµν (k) γµSψ (p1 − k) γν , (59)

for the self-energy function. The fermion propagator is the usual form

iSψ (x′1 − x′) = 〈0| Tψ(x′1)ψ(x′) |0〉 . (60)

Its Fourier transform is defined by

iSψ (x′1 − x′) =

∫
d4k

(2π)4 e
−ik(x′1−x′)Sψ (k) =

∫
d4k

(2π)4 e
−ik(x′1−x′) i (γ

µkµ +mI)

k2 −m2 + i0
. (61)

The two-photon exchange matrix element includes box and crossed-box matrix element

M2γ
s1s2σ1σ2

(p,q) = Mbox
s1s2σ1σ2

(p,q) + Mc−box
s1s2σ1σ2

(p,q) , (62)

where

Mbox
s1s2σ1σ2

(p,q) (63)

= −

∫
d4k

2π
u (p, s1)

(
−iQ1Γ

µα
ψ (p1 − k)

)
u (q, σ1) iDµναβV (−q, σ2)

(
−iQ2Γ

βν
φ (p2 − k)

)
V (−p, s2) ,

Mc−box
s1s2σ1σ2

(p,q) (64)

= −

∫
d4k

2π
u (p, s1)

(
−iQ1Γ

µα
ψ (p1 − k)

)
u (q, σ1) iDµναβV (−q, σ2)

(
−iQ2Γ

νβ
φ (q2 + k)

)
V (−p, s2) .

In the above we used the notation

Dµναβ = Dµν (k) (Dαβ (p1 − q1 − k) +Dβα (p2 − q2 − k)) , (65)

Γµαψ (p1 − k) = γµSψ (p1 − k) γα, (66)

Γβνφ (p2 − k) = γβSφ (p2 − k) γν , (67)

Γνβφ (q2 + k) = γνSφ (q2 + k) γβ. (68)

The one-loop renormalization scheme in our formalism is considered in Appendix B.
Note that the M-matrix arises naturally in this formalism, i.e., M is not put in by hand,

nor does its derivation require additional Fock-space terms in the variational trial state (41),
as is the case in previous formulations (e.g. [14], [15]).
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It is of interest to show that in the non-relativistic case the variational equation (47)
reduces to the Schrödinger equation. Indeed, in the non-relativistic limit, the functions Fs1s2
can be written as

Fs1s2(p) = F (p)Λs1s2 , (69)

where the non-zero elements of Λij for total spin singlet (S = 0) states are Λ12 = −Λ21 = 1√
2
,

while for the spin triplet (S = 1) states the non-zero elements are Λ11 = 1 for ms = +1,
Λ12 = Λ21 = 1√

2
for ms = 0, and Λ22 = 1 for ms = −1. We use the notation that the

subscripts 1 and 2 of Λ correspond to ms = 1/2 and ms = −1/2 (or ↑ and ↓) respectively.
Substituting (69) into (47), multiplying the result by Λs1s2 and summing over s1 and s2,
gives the eigenvalue equation, which determines the two-particle energy E

(ω(p) + Ω(p) − E)F (p) =
1

(2π)3

∫
d3qK(p,q)F (q), (70)

where
K(p,q) = −i

∑

s1s2σ1σ2

Λs1s2M
(1)
s1s2σ1σ2

(p,q) Λσ1σ2
. (71)

To lowest-order in (|p| , |q|) / (m1, m2) (i.e. in the non-relativistic limit), the kernel (71)
reduces to K = q1q2/ |p− q|2, and so (70) reduces to the (momentum-space) Schrödinger
equation (

p2

2mr
− ε

)
F (p) =

Q1Q2

(2π)3

∫
d3q

1

|p − q|2
F (q), (72)

where ε = E − (m1 +m2) and mr = m1m2/ (m1 +m2) is the reduced mass. This verifies
that the relativistic two-fermion equation (47) has the required non-relativistic limit.

5. Partial-wave decomposition and classification of states

In the relativistic case we shall not complete the variational procedure in (47) at this
stage to obtain final equations for the four functions Fs1s2 , because they are not independent
in general. We require that the trial state must be an eigenstate of the relativistic total
angular momentum operator, its projection, and parity, i.e.,




Ĵ2

Ĵ3

P̂


 |ψtrial〉 =



J (J + 1)

mJ

P


 |ψtrial〉 . (73)

The total angular momentum operator is defined by the expression

Ĵ =

∫
d3xψ† (x) (L̂ + Ŝ)ψ (x) +

∫
d3xφ† (x) (L̂ + Ŝ)φ (x) , (74)

where L̂ is the orbital angular momentum and Ŝ - the spin operator: L̂ = x̂ × p̂ and

Ŝ = 1
2
−̂→σ . Using the field operators ψ (x) and φ (x) in the form (18), (19), we obtain after
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some calculations the expression for operator Ĵ. Explicit forms for the operators Ĵ2, Ĵ3 are
given in papers [1], [2].

For a particle-antiparticle system charge conjugation invariance represents an additional
requirement, i.e., we wish to construct the eigenvalues of

Ĉ
∣∣e+e−

〉
= C

∣∣e+e−
〉
. (75)

However, this does not apply to the unequal mass case m1 6= m2. The functions Fs1s2(p) can
be written in the general form

Fs1s2(p) =
∑

ℓs1s2

∑

ms1s2

f
ℓs1s2ms1s2
s1s2 (p)Y

ms1s2
ℓs1s2

(p̂), (76)

where Y
ms1s2
ℓs1s2

(p̂) are the usual spherical harmonics. Here and henceforth we will use the

notation p = |p| etc. (four-vectors will be written as pµ). The orbital indices ℓs1s2and ms1s2

and the radial functions f
ℓs1s2ms1s2
s1s2 (p) depend on the spin variables s1 and s2. Substitution

of (76) into (41) and then into (73) leads to two categories of relations among the adjustable
functions Fs1s2(p).

Mixed-spin states

In this case ℓs1s2 ≡ ℓ = J and the general solution of the system (79) is

Fs1s2(p) = C1F
(sg)
s1s2

(p) + C2F
(tr)
s1s2

(p), (77)

where C1 and C2 are arbitrary constants. F
(sg)
s1s2(p) and F

(tr)
s1s2(p) are functions, which corre-

spond to pure singlet states with total spin S = 0 and triplet states with S = 1 respectively.
The singlet functions have the form

F (sg)
s1s2(p) = C(sg)ms1s2fJ(p)Y

ms1s2
J (p̂). (78)

where the Clebsch-Gordan (C-G) coefficients C(sg)ms1s2 are: C(sg)m11 = C(sg)m22 = 0, C(sg)m12 =
−C(sg)m21 = 1. For the quantum numbers ms1s2 one obtains: m11 = m22 = 0 and m12 =

m21 = mJ . The spin and radial variables separate in the sense that the factors f
(sg)J
s1s2 (p) have

a common radial function fJ(p).
The triplet functions have the form

F (tr)
s1s2(p) = C

(tr)Jms
JmJ

fJ(p)Y
ms1s2
J (p̂), (79)

where C
(tr)Jms
JmJ

are the C-G coefficients for S = 1, and

m11 = mJ − 1, m12 = m21 = mJ , m22 = mJ + 1. (80)

We need to note that (78) is true for the singlet states J ≥ 0, while (79) is true for the
triplet states J ≥ 1. Thus, the coefficient C2 in (77) is zero when J = 0. In other words, for
J = 0, only the pure singlet state arises. For a system-like positronium the requirement (75)
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decouples the singlet and triplet states for all J . Indeed, the charge conjugation eigenstates
are

|sg〉 =
∑

s1s2

C
(sg)ms1s2
JmJ

∫
d3p fJ(p)Y mJ

J (p̂)b†
ps1
d†−ps2 |0〉 (81)

with C = (−1)J for the pure singlet states, and

|tr〉 =
∑

s1s2

C
(tr)ms1s2
JmJ

∫
d3p fJ(p)Y mJ

J (p̂)b†
ps1
d†−ps2 |0〉 (82)

with C = (−1)J+1 for the pure triplet states, as it discussed in Appendix A.
The states (81) and (82) diagonalize the Hamiltonian (13). Thus, for positronium-like

systems, the states can be characterized by the spin quantum number S, and the mixed
states (77) separate into singlet states (parastates S = 0) and triplet states (orthostates
S = 1). For distinct particles (m1 6= m2) C is not conserved and there is no separation
into pure singlet and triplet states in general. Thus for arbitrary mass ratio we need to
diagonalize the expectation value of the QFT Hamiltonian ∆Ĥ = Ĥ − ĤNR −M , in the
basis of the states |sg〉, |tr〉 with (78) and (79) respectively for J 6= 0. This can be achieved
by the following linear transformation

[
|sgq〉
|trq〉

]
= U

[
|sg〉
|tr〉

]
, (83)

where U is a unimodular matrix U11 = U22 ≡ a, U12 = −U21 ≡ −b, the components of which
are, evidently, defined by the dynamics of the system. The new states, which diagonalize
the expectation value of Ĥ, shall be called quasi-singlet | sgq〉 and quasi-triplet | trq〉 states

|sgq〉 =
∑

s1s2

C
(ss)Jms1s2
JmJ

∫
d3p fJ(p)Y mJ

J (p̂)b†
ps1D

†
−ps2 |0〉 ,

(84)

|trq〉 =
∑

s1s2

C
(st)Jms1s2
JmJ

∫
d3p fJ(p)Y mJ

J (p̂)b†
ps1
D†

−ps2 |0〉 ,

where the coefficients C
(ss)Jms1s2
JmJ

and C
(st)Jms1s2
JmJ

satisfy the following condition

∑

ν1ν2mJ

(
C

(ss)Jmν
JmJ

)2

=
∑

ν1ν2mJ

(
C

(st)Jmν
JmJ

)2

= 2 (2J + 1) . (85)

Note that these coefficients differ from C-G coefficients, due to the nature of the coupling.
These coupled quasi-states arise only for J > 0. For J = 0 pure S = 0 states occur. Quasi-
singlet and quasi-triplet states are both characterized by the same quantum numbers J , mJ

and P = (−1)J+1. Due to the unimodularity of the matrix U we can identify quasi-singlet
and quasi-triplet states by quasi-spin (like isospin) t = 1/2 with t3 = ∓1/2, which is a
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new quantum number. However, for our purpose it is more convenient to use the value
s = t3 + 1/2, which gives s = ss = 0 or s = st = 1 for quasi-singlet and quasi-triplet states
respectively. In this case the labels ss and st reflect better the meaning of the indicated
quasi-states. As was shown in [2], for positronium the quasi-states become true singlet and
triplet states with different charge conjugation quantum numbers. It is useful to note for
subsequent calculations that the coefficients C1 and C2 in (77) are C1 = a, C2 = −b for
quasi-singlet states s = ss = 0, and C1 = b, C2 = a for quasi-triplet states s = st = 1.

The triplet ℓ-mixing states

These states occur for ℓs1s2 ≡ ℓ = J ∓ 1. The adjustable functions have the form

Fs1s2(p) = C
(tr)(J−1)ms
JmJ

fJ−1(p)Y
ms1s2
J−1 (p̂) + C

(tr)(J+1)ms
JmJ

fJ+1(p)Y
ms1s2
J+1 (p̂), (86)

where the coefficients C
(tr)(J∓1)ms
JmJ

are precisely the C-G coefficients. Expression (86) involves
two radial functions fJ−1(p) and fJ+1(p) which correspond to ℓ = J −1 and ℓ = J +1. This
reflects the fact that the orbital angular momentum is not conserved and ℓ is not a good
quantum number. The system in these states is characterized by J, mJ , and P = (−1)J .
In spectroscopic notation 2S+1LJ , these states are a mixture of 3 (J − 1)J , and 3 (J + 1)J
states. The exception is the state with J = 0, for which the orbital angular momentum is
conserved. Indeed, for J = 0 the function fJ−1(p) does not exist (see Appendix A), thus
the function Fs1s2(p) is defined only by the second term in (86). Note that ℓ-mixing states
appear for principal quantum number n ≥ 3 only.

For practical applications it is convenient to express pure states through the Dirac’s Γ
matrices, namely

Fs1s2 (p) =

3∑

i=1

f ℓ(p)ups1Γ
ℓ
i (p̂)V−ps2 . (87)

The form of Γℓi (p̂) depends on the particular states and the index i corresponds to three
cases: i = 1, when mℓ = mJ − 1, i = 2, when mℓ = mJ , and i = 3, when mℓ = mJ + 1. It is
given below for the following cases:

Pure Singlet States ℓ = J, J ≥ 0, P = (−1)J+1

ΓJi (p̂) ≡ Γℓ (p̂) = γ5Y mJ
J (p̂) , (88)

that is

|ψtrial〉 =
∑

s1s2

∫
d3p fJ(p)Y mJ

J (p̂)ups1γ
5V−ps2b

†
ps1D

†
−ps2

|0〉 (89)

Pure Triplet States ℓ = J, J > 0, P = (−1)J+1

When mℓ = mJ − 1

ΓJ1 (p̂) =
1

2

(
m1m2

(ωp +m1) (Ωp +m2)

)1/2(
(J +mJ) (J −mJ + 1)

J (J + 1)

)1/2

×
(
γ1 + iγ2 − i

(
σ01 + iσ02

))
Y mJ−1
J (p̂) , (90)
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when mℓ = mJ ,

ΓJ2 (p̂) = −

(
m1m2

(ωp +m1) (Ωp +m2)

)1/2
mJ

(J (J + 1))1/2

(
γ3 − iσ03

)
Y mJ
J (p̂) , (91)

and mℓ = mJ + 1,

ΓJ3 (p̂) =
1

2

(
m1m2

(ωp +m1) (Ωp +m2)

)1/2(
(J −mJ) (J +mJ + 1)

J (J + 1)

)1/2

×
(
γ1 − iγ2 − i

(
σ01 − iσ02

))
Y mJ+1
J (p̂) . (92)

Pure Triplet States ℓ = J − 1, J ≥ 1, P = (−1)J

When mℓ = mJ − 1

ΓJ−1
1 (p̂) = −

1

2

(
m1m2

(ωp +m1) (Ωp +m2)

)1/2(
(J +mJ − 1) (J +mJ)

J (2J − 1)

)1/2

×
(
γ1 + iγ2 − i

(
σ01 + iσ02

))
Y mJ−1
J−1 (p̂) , (93)

when mℓ = mJ

ΓJ−1
2 (p̂) = −

(
m1m2

(ωp +m1) (Ωp +m2)

)1/2(
(J −mJ) (J +mJ)

J (2J − 1)

)1/2 (
γ3 − iσ03

)
Y mJ
J−1 (p̂) ,

(94)
and mℓ = mJ + 1

ΓJ−1
3 (p̂) =

1

2

(
m1m2

(ωp +m1) (Ωp +m2)

)1/2(
(J −mJ − 1) (J −mJ)

J (2J − 1)

)1/2

×
(
γ1 − iγ2 − i

(
σ01 − iσ02

))
Y mJ+1
J−1 (p̂) . (95)

Pure Triplet States ℓ = J + 1, J ≥ 0, P = (−1)J

When mℓ = mJ − 1

ΓJ+1
1 (p̂) = −

1

2

(
m1m2

(ωp +m1) (Ωp +m2)

)1/2(
(J −mJ + 1) (J −mJ + 2)

(J + 1) (2J + 3)

)1/2

×
(
γ1 + iγ2 − i

(
σ01 + iσ02

))
Y mJ−1
J+1 (p̂) , (96)

when mℓ = mJ

ΓJ+1
2 (p̂) =

(
m1m2

(ωp +m1) (Ωp +m2)

)1/2(
(J −mJ + 1) (J +mJ + 1)

(J + 1) (2J + 3)

)1/2 (
γ3 − iσ03

)
Y mJ
J+1 (p̂) ,

(97)
and mℓ = mJ + 1

ΓJ+1
3 (p̂) =

1

2

(
m1m2

(ωp +m1) (Ωp +m2)

)1/2(
(J +mJ + 2) (J +mJ + 1)

(J + 1) (2J + 3)

)1/2

×
(
γ1 − iγ2 − i

(
σ01 − iσ02

))
Y mJ+1
J+1 (p̂) . (98)
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6. The relativistic radial equations for two-fermion systems

It is not possible to write one universal two-fermion radial wave equation, because the
adjustable functions have different form for different states. Thus, it was important to
classify all states of the system before deriving final radial equations. Now we return to the
variational equation (47) from which we derive the radial equations for different states. We
start with a particle-antiparticle system.

6.1. Two-fermion wave equations for positronium-like systems

It follows from the above analysis, that three sets of radial equations arise for this case.
Singlet states ℓ = J, J ≥ 0, P = (−1)J+1, C = (−1)J the radial equation is

(2ωp − E) fJ(p) =
m2

N (2π)3

∫
q2dq

ωpωq
K (p, q) fJ(q), (99)

with the kernel

K (p, q) = −i
3∑

i,j=1

∑

s1s2σ1σ2mJ

∫
dp̂dq̂ uqσ1

ΓJi (q̂) v−qσ2
M̃s1s2σ1σ2

(p,q) v−ps2Γ
′J
j (p̂) ups1,

(100)
and the normalization factor (we assume that the radial functions fJ(p) have been normal-
ized)

N =

∫
d3p̂

3∑

i=1

∑

s1s2

ups1Γ
J
i (p̂)V−ps2V −ps2Γ

′J
i (p̂) ups1 (101)

=

∫
d3p̂

3∑

i=1

Tr

[
Γ′J
i (p̂)

γαpα +m

2m
ΓJi (p̂)

γαp̃α −m

2m

]
,

where Γ′
i is the matrix Γi of eq. (88), but with complex conjugate spherical functions,

Y mi∗
ℓ (p̂). The four-vector p̃α is defined as p̃α = (Ep,−p).

Triplet states ℓ = J, J ≥ 0, P = (−1)J+1, C = (−1)J+1

For these states the radial equation formally coincides with (99), however the form of the
ΓJi matrix must be taken from (90)-(92).
Triplet states ℓ = J ± 1, P = (−1)J , C = (−1)J

In this case the variational equation (47) leads to a system of coupled equations for the
two independent radial functions fJ−1(p) and fJ+1(p):

(2ωp − E) F (p) =
m2

(2π)3

∫
q2dq

ωpωq
K (p, q) F (q) , (102)

where

F (p) =

[
NJ−1fJ−1(p)
NJ+1fJ+1(p)

]
, (103)
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and

K (p, q) =

[
K11 (p, q) K12 (p, q)
K21 (p, q) K22 (p, q)

]
. (104)

The kernels Kmn are

Kmn (p, q) = −i
3∑

i,j=1

∑

σ1σ2s1s2mJ

∫
dp̂ dq̂ uqσ1

Γℓni (q̂) v−qσ2
M̃s1s2σ1σ2

(p,q) v−ps2Γ
′ℓm
j (p̂) ups1,

(105)
Here ℓ1 = J−1, ℓ2 = J+1. The Γℓni matrices are defined by (93)-(98). The system (102)

reduces to a single equation for J = 0 since fJ−1(p) = 0 in that case. The normalization
constants NJ±1 are defined by (101) with corresponding matrices ΓJ±1

i (99)-(104).

6.2. Two-fermion wave equations for muonium-like systems

After completing the variational procedure we obtain the following results:
For the states with ℓ = J = 0, P = −1 the radial equation is

(ωp + Ωp −E) fJ(p) =
m1m2

N (2π)3

∫
q2dq√

ωpωqΩpΩq

K (p, q) fJ(q), (106)

where the kernel K (p, q) is defined by

K (p, q) = −
i

4π

∑

s1s2σ1σ2

∫
dp̂dq̂uqσ1

γ5 (q̂) v−qσ2
M̃s1s2σ1σ2

(p,q) v−ps2γ
5 (p̂)ups1. (107)

The normalization factor is

N =
1

4π

∫
d3p̂Tr

[
γ5γ

αpα1 +m1

2m1
γ5γ

αp̃α2 −m2

2m2

]
. (108)

For quasi-singlet and quasi-triplet states (J ≥ 1) we have the system of two equations

(ωp + Ωp −E) F (p) =
m1m2

(2π)3

∫
q2dq√

ωpωqΩpΩq

K (p, q) F (q) , (109)

where

F (p) =

[
N (sg)f (sg)J(p)
N (tr)f (tr)J(p)

]
, (110)

and

K (p, q) =

[
K11 (p, q) K12 (p, q)
K21 (p, q) K22 (p, q)

]
. (111)

The kernels Kmn (p, q) are

Kmn (p, q) = −i
∑

σ1σ2s1s2mJ

∫
d3p̂ d3q̂ uqσ1

Γn (q̂)V−qσ2
M̃s1s2σ1σ2

(p,q)V −ps2Γ
′m (p̂) ups1.

(112)
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Here we used the following notation

Γ1 (p̂) = ΓJ (p̂) , Γ′1 (p̂) = Γ′J (p̂) , (113)

Γ2 (p̂) =

3∑

i=1

ΓJi (p̂) , Γ′2 (p̂) =

3∑

i=1

Γ′J
i (p̂) .

The normalization factors are

N (sg),(tr) =

∫
d3p̂

3∑

i=1

Tr

[
Γ′J
i (p̂)

γαpα1 +m1

2m1

ΓJi (p̂)
γαp̃α2 −m1

2m1

]
. (114)

For the triplet states with ℓ = J∓1, we have two independent radial functions fJ−1(p) and fJ+1(p).
Thus the variational equation (53) leads to a system of coupled equations for fJ−1(p) and fJ+1(p)

(ωp + Ωp −E) F (p) =
m1m2

(2π)3

∫
q2dq√

ωpωqΩpΩq

K (p, q) F (q) , (115)

where

F (p) =

[
NJ−1fJ−1(p)
NJ+1fJ+1(p)

]
, (116)

and

K (p, q) =

[
K11 (p, q) K12 (p, q)
K21 (p, q) K22 (p, q)

]
. (117)

The kernels Kmn are

Kmn (p, q) = −i

3∑

i,j=1

∑

σ1σ2s1s2mJ

∫
dp̂ dq̂ uqσ1

Γℓni (q̂)V−qσ2
M̃s1s2σ1σ2

(p,q)V −ps2Γ
′ℓm
j (p̂) ups1,

(118)
where ℓ1 = J − 1, ℓ2 = J + 1. The normalization factors are defined by analogy with (114).
The system (115) reduces to a single equation for fJ+1(p) when J = 0, since fJ−1(p) = 0 in
that case.
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7. Radiative corrections to O (α5) for arbitrary mass ratio

The relativistic radial equations derived above cannot be solved analytically, so an ap-
proximation method (numerical, variational, or perturbative) must be used. We shall use
first-order perturbation theory to calculate O (α5) corrections to the energy for some states.

As mentioned above, at the one-loop level radiative corrections include vacuum polar-
ization, fermion self-energy and vertex corrections. We calculate their contribution to the
energy shift of singlet states with ℓ = J = 0. These states are described by the radial
equations (99) and (106) for positronium- and muonium-like systems respectively. Since the
solution of (106) reduces to that of (99) for two equal masses, we concentrate on equation
(106) only. The energy eigenvalues En,J can be calculated from the equation

En,J

∫ ∞

0

dp p2fJ(p)fJ(p) =

∫ ∞

0

dp p2 (ωp + Ωp) f
J(p)fJ(p)

−
m1m2

N (2π)3

∫ ∞

0

p2q2dpdq√
ωpΩpωqΩq

K(p,q)fJ(p)fJ(q), (119)

which follows from (106). For radiative corrections to O (α5) we take fJ(p) to be the non-
relativistic hydrogen wave functions in (119) and obtain the result

∆ε
(
α5
)

= En,J − (m1 +m2) +
α2mr

2n2
− ∆ε

(
α4
)

(120)

= −
m1m2

N (2π)3

∑

i=1,2

∫ ∞

0

p2q2dpdq√
ωpΩpωqΩq

(Kveri(p,q) + Kvaci(p,q) + Kmassi(p,q)) fJ(p)fJ(q),

where mr = m1m2/ (m1 +m2) is the reduced mass, ∆ε (α4) are energy corrections to O (α4)
derived in [2]. The kernels in (120) correspond to the radially reduced form (107) of the
second order matrix elements (53)-(56). They are, explicitly (µψ = α/4πm1):

Kver1 (p, q) =
Q1Q2µψ
64πm2

1m
2
2

∫
dp̂ dq̂Dµν (p− q) (121)

×Tr
[(
γλp1λ +m1

)
Λµ (p1 − q1)

(
γλq1λ +m1

)
γ5
(
γλq̃2λ −m2

)
γν
(
γλp̃2λ −m2

)
γ5
]
,

Kvac1 (p, q) =
Q1Q2µψ
64πm2

1m
2
2

∫
dp̂ dq̂Dµν (p− q)Πνα (p1 − q1) (122)

×Tr
[(
γλp1λ +m1

)
γµ
(
γλq1λ +m1

)
γ5
(
γλq̃2λ −m2

)
γυ
(
γλp̃2λ −m2

)
γ5
]
,

Kmass′
1 (p, q) =

Q1Q2µψ
64πm2

1m
2
2

∫
dp̂ dq̂Dµν (p− q) (123)

×Tr
[(
γλp1λ +m1

)
Σ (p1)Sψ (p1) γ

µ
(
γλq1λ +m1

)
γ5
(
γλq̃2λ −m2

)
γν
(
γλp̃2λ −m2

)
γ5
]
.

The contribution of the kernels Kver2 , Kvac2 is obvious, and follows from the symmetry
with respect to m1 and m2. As will be shown, the contribution of Kmass′

1 , Kmass′′
1 , Kmass′

2 ,
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and Kmass′′
2 is zero. The renormalization of the functions Λµ (p1 − q1) (64), Πνα (p1 − q1)

(57), and Σ (p1) (59) implies that they should be replaced by the following expressions (the
justification is discussed in Ref. [16]),

Λµ (p1 − q1) →
iα

4πm1
σµν (p1 − q1)ν , (124)

Πνα (p1 − q1) → −gνα
α

15πm2
1

(p1 − q1)
4 , (125)

Σ (p1) → 0. (126)

After that the calculations are straightforward and we obtain the non-vanishing kernel con-
tributions

Kver1 (p, q) = −α28π (2m1 −m2)

m2
1m2

δJ,0, (127)

Kvac1 (p, q) =
32πα2

15m2
1

δJ,0. (128)

To calculate energy corrections we use the nonrelativistic hydrogenic momentum-space radial
wave function fJ(p) (ref. [17], eq.125). The corrections are given by

∆εver1 =
α5mr

n3

2 (2m1 −m2)m2

π (m1 +m2)
2 δJ,0, (129)

∆εvac1 = −
4α5mr

15πn3

m2
r

m2
1

δJ,0, (130)

These results agree with Ref. [18].
It should be noted that a similar treatment of positronium and muonium has been con-

sidered by Zhang and Koniuk [16, 19]. They used postulated equations with an inserted

invariant M̃ matrix. These authors show that the inclusion of single-loop diagrams yields
positronium energy eigenstates which are accurate to O (α5, α5 lnα). In the present varia-
tional treatment the equations and results are derived from first principles.

8. Concluding remarks

We have shown that the variational method can be formulated in a way that allows one
to derive relativistic few-body equations, which can include interactions to any order of the
coupling constant. The method is based on a reformulation of QED, in which covariant
Green’s functions are used to solve partially the underlying Euler-Lagrange equations of mo-
tion. This leads to a Hamiltonian which contains the Green’s function sandwiched between
fermion currents directly (equations (14)-(16)). The eigenvalue equation P̂ µ |ψ〉 = P µ |ψ〉,

where P̂ µ =
(
Ĥ, P̂

)
is the energy momentum operator of the QFT is formulated variation-

ally, δ
(
〈ψ| Ĥ −E |ψ〉t=t0

)
= 0. Time evolution operators are used to recast the problem in
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such a way that Feynman diagrams of any order can arise in the kernels that describe the
interparticle interaction (eq.(39)).

We illustrate the utility of this formulation by deriving relativistic momentum-space
wave equations for two-fermion systems like muonium and positronium. These equations
(47), which become (99), (102) for particle-antiparticle systems, and (106), (109), (115) for
muonium like systems, describe the behavior of the two-fermion systems in principle to all
orders of the coupling constant for arbitrary mass ratio. For bound states of the two-fermion
system the trial states are chosen to be eigenstates of the total angular momentum operators
Ĵ2, Ĵ3 and parity, and also of charge conjugation for particle-antiparticle systems. A general
relativistic reduction of the wave equations to radial form is given for arbitrary masses of the
two fermions. For given J there is a single radial equation for total spin zero singlet states
(106), but for other states there are, in general, coupled equations, (109) for mixed-spin
states, and (115) for triplet ℓ-mixing states. We have shown how the classification of the
states follows naturally from the system of eigenvalue equations (73), given our trial state
(41).

We use the derived radial equations to obtain approximate perturbative solutions for
the two-fermion binding energy to O (α5) in the fine-structure constant for all singlet states
with total angular momentum quantum number J = ℓ = 0. Results for other states can be
obtained in an analogous manner.

The method presented here can be generalized for systems of three or more fermions.
This shall be the subject of a forthcoming work.
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Appendix A: Matrix elements for high-order corrections

To classify the corrections we write out the Hamiltonian density ĤIi (x) in explicit form

ĤIi (x) = ĤIψ (x) + ĤIφ (x) + ĤIψφ (x) + ĤIφψ (x) , (131)

where

ĤIψ (x) =
Q2

1

2

∫
d4x′ ψ(x′)γµψ(x′)Dµν(x− x′)ψ(x)γνψ(x), (132)

ĤIφ (x) =
Q2

2

2

∫
d4x′ φ(x′)γµφ(x′)Dµν(x− x′)φ(x)γνφ(x), (133)

ĤIψφ (x) =
Q1Q2

2

∫
d4x′ ψ(x′)γµψ(x′)Dµν(x− x′)φ(x)γνφ(x), (134)

ĤIφψ (x) =
Q1Q2

2

∫
d4x′ φ(x′)γµφ(x′)Dµν(x− x′)ψ(x)γνψ(x), (135)

First, we consider the element T
(
ĤIψ (x1) ĤIψφ (x) δ (t)

)
. It is not difficult to show that

〈ψtrial|

∫
d4x1d

4xT
(
ĤIψ (x1) ĤIψφ (x) δ (t)

)
|ψtrial〉 (136)

=
Q3

1Q2

4

∫
d4x1d

4x′1d
4x′d4xDµν (x1 − x′1)Dαβ(x− x′)δ (t)

×2 〈ψtrial|




: ψ(x′1)γ
µψ(x′1)Tr (iSψ (x′ − x1) γ

νiSψ (x1 − x′) γα)φ(x)γβφ(x) :

+ : ψ(x1)γ
νiSψ (x1 − x′) γαiSψ (x′ − x′1) γ

µψ(x′1)φ(x)γβφ(x) :

+ : ψ(x′1)γ
µiSψ (x′1 − x1) γ

νiSψ (x1 − x′) γαψ(x′)φ(x)γβφ(x) :

+ : ψ(x′)γαiSψ (x′ − x1) γ
νiSψ (x1 − x′1) γ

µψ(x′1)φ(x)γβφ(x) :


 |ψtrial〉 ,

where we used the symmetry of the Green’s function Dµν (x1 − x′1) = Dνµ (x′1 − x1) and the
standard expression for the fermion propagator (60). Using the Fourier transform (18), (19),
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(49), (61) we obtain

〈ψtrial|

∫
d4x1d

4xT
(
ĤIψ (x1) ĤIψφ (x) δ (t)

)
|ψtrial〉 (137)

= −
Q3

1Q2

2

m1m2

(2π)6

∑

s′
1
s′
2
s1s2

∫
d3p1d

3p2d
3p′

1d
3p′

2(
ωp1ωp′1Ωp2Ωp′

2

)1/2
∫
d4k

2π
×

×F ∗
s′
1
s′
2

(p′
1,p

′
2)Fs1s2 (p1,p2) δ (p′

1 − p1 + p2 − p′
2) ×

×




Dµν (p′1 − p1)Dαβ (p′1 − p1)×
×u (p′

1, s
′
1) γ

µu (p1, s1)Tr [Sψ (k − p′1) γ
νSψ (k − p1) γ

α]V (p2, s2) γ
βV (p′

2, s
′
2)×

+Dµν (k)Dαβ (p′1 − p1)×

×




u (p′
1, s

′
1) γ

νSψ (k + p′1) γ
αSψ (k + p1) γ

µu (p1, s1)V (p2, s2) γ
βV (p′

2, s
′
2)

+u (p′
1, s

′
1) γ

µSψ (p′1 − k) γνSψ (p′1) γ
αu (p1, s1)V (p2, s2) γ

βV (p′
2, s

′
2)

+u (p′
1, s

′
1) γ

αSψ (p1) γ
νSψ (k + p1) γ

µu (p1, s1)V (p2, s2) γ
βV (p′

2, s
′
2)







The calculation of matrix elements is presented here in an arbitrary frame. In the rest frame
the adjustable functions Fs1s2 (p1,p2) reduce to Fs1s2 (p1) δ (p1 + p2).

The next term ĤIψ (x1) ĤIφψ (x) yields a similar result, but with the Green’s function

Dαβ (p′1 − p1) replaced byDαβ (p′2 − p2). Finally, the terms ĤIψ (x1) ĤIψφ (x)+ĤIψ (x1) ĤIφψ (x)

and ĤIψφ (x1) ĤIψ (x) + ĤIφψ (x1) ĤIφ (x) give the same contribution and can be combined
together in the form

〈ψtrial|

∫
d4x1d

4xT

((
ĤIψ (x1) ĤIψφ (x) + ĤIψ (x1) ĤIφψ (x)

+ĤIψφ (x1) ĤIψ (x) + ĤIφψ (x1) ĤIφ (x)

)
δ (t)

)
|ψtrial〉

= −
m1m2

(2π)3

∑

s′
1
s′
2
s1s2

∫
d3p1d

3p2d
3p′

1d
3p′

2(
ωp1ωp′1Ωp2Ωp′

2

)1/2F
∗
s′
1
s′
2

(p′
1,p

′
2)Fs1s2 (p1,p2) δ (p′

1 − p1 + p2 − p′
2) (−i) ×

×

(
M

(2)vac1
s′
1
s′
2
s1s2

(p1,p
′
1,p2,p

′
2) + M

(2)ver1
s′
1
s′
2
s1s2

(p1,p
′
1,p2,p

′
2)

+M
(2)mass′

1

s′
1
s′
2
s1s2

(p1,p
′
1,p2,p

′
2) + M

(2)mass′′
1

s′
1
s′
2
s1s2

(p1,p
′
1,p2,p

′
2)

)
, (138)

where M
(2)vac1
s′
1
s′
2
s1s2

, M
(2)ver1
s′
1
s′
2
s1s2

, M
(2)mass′

1

s′
1
s′
2
s1s2

, M
(2)mass′′

1

s′
1
s′
2
s1s2

are defined by (53)-(56).

Similarly we can show that the next terms contribute to the two-photon exchange process

〈ψtrial|

∫
d4x1d

4xT

((
ĤIψφ (x1) ĤIψφ (x) + ĤIψφ (x1) ĤIφψ (x)

+ĤIφψ (x1) ĤIψφ (x) + ĤIφψ (x1) ĤIφψ (x)

)
δ (t)

)
|ψtrial〉

= −
q1q2m1m2

2 (2π)6

∑

s′
1
s′
2
s1s2

∫
d3p1d

3p2d
3p′

1d
3p′

2(
ωp′

1
ωp1Ωp2Ωp′

2

)1/2 δ (p2 − p1 + p′
1 − p′

2) ×

×F ∗
s′
1
s′
2

(p′
1,p

′
2)Fs1s2 (p1,p2) (−i)M2γ

s′
1
s′
2
s1s2

(p1,p
′
1,p2,p

′
2) ,

where M2γ
s′
1
s′
2
s1s2

is defined by (63)-(64).
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Appendix B: The one-loop renormalization scheme

It is well known that the vacuum polarization function (57) can be written as

Πνα (p′1 − p1) =
[
(p′1 − p1)

ν
(p′1 − p1)

α
− (p′1 − p1)

2
gνα
]

Π (p′1 − p1) , (139)

where
Π (p′1 − p1) = Π (0) + Π (p′1 − p1) , (140)

Π1 (0) = −
iQ2

1

12π4

∫
d4k

(k2 −m1 + iε)2 , (141)

Π (p′1 − p1) = −
Q2

1

2π2

∫ 1

0

dzz (1 − z) ln

[
1 −

(p′1 − p1)
2 z (1 − z)

m2
1

]
. (142)

The infinite sum

iD′
µβ (p′1 − p1, p

′
2 − p2) (143)

= iDµβ (p′1 − p1, p
′
2 − p2) +Dµν (p′1 − p1)Πνα (p′1 − p1) iDαβ (p′1 − p1, p

′
2 − p2)

+Dµν (p′1 − p1)Π
να (p′1 − p1)Dαδ (p′1 − p1)Πδσ (p′1 − p1) iDσβ (p′1 − p1, p

′
2 − p2)

+...,

gives the dressed Green’s function, if the vacuum polarization is due to the first particle.
The bare Green’s function Dµβ (p′1 − p1, p

′
2 − p2) is defined by (50) and, in Feynman gauge,

has the form

Dµβ (p′1 − p1, p
′
2 − p2) = gµβ

(
1

− (p′1 − p1)
2 +

1

− (p′2 − p2)
2

)
. (144)

Dropping terms like (p′1 − p1)
ν (p′1 − p1)

α (they contribute zero when they are contracted
into the final or initial currents) we obtain

iD′
µβ (p′1 − p1, p

′
2 − p2) (145)

⇒
(
1 −Π (p′1 − p1) + Π2 (p′1 − p1) − Π3 (p′1 − p1) + ..

)
iDµβ (p′1 − p1, p

′
2 − p2)

=
1

1 + Π (p′1 − p1)
iDµβ (p′1 − p1, p

′
2 − p2)

If we take into account polarization due to the second particle we obtain

iD′
µβ (p′1 − p1, p

′
2 − p2) (146)

=
1

1 + Π (p′1 − p1)
iDµβ (p′1 − p1, p

′
2 − p2)

1

1 + Π (p′2 − p2)

=
1

1 + Π1 (0) + Π (p′1 − p1)
iDµβ (p′1 − p1, p

′
2 − p2)

1

1 + Π2 (0) + Π (p′2 − p2)

24



Then we define
1

Z
(1)
3

= 1 + Π1 (0) ,
1

Z
(2)
3

= 1 + Π2 (0) , (147)

and obtain

iD′
µβ (p′1 − p1, p

′
2 − p2) =

Z
(1)
3

1 + Z
(1)
3 Π (p′1 − p1)

iDµβ (p′1 − p1, p
′
2 − p2)

Z
(2)
3

1 + Z
(2)
3 Π (p′2 − p2)

.

(148)
Introducing the renormalized quantities

ΠR (p′1 − p1) = Z
(1)
3 Π (p′1 − p1) , (149)

ΠR (p′2 − p2) = Z
(2)
3 Π (p′2 − p2) ,

expression (160) can be written as

iD′
µβ (p′1 − p1, p

′
2 − p2) =

Z
(1)
3 Z

(2)
3

(1 + ΠR (p′1 − p1)) (1 + ΠR (p′2 − p2))
iDµβ (p′1 − p1, p

′
2 − p2)

(150)

Constants Z
(1)
3 and Z

(2)
3 shall be absorbed by renormalization of charges. In the lowest order

of expansion, the dressed Green’s function (150) is

iD′
µβ (p′1 − p1, p

′
2 − p2) = Z

(1)
3 Z

(2)
3 (1 − ΠR (p′1 − p1) − ΠR (p′2 − p2)) iDµβ (p′1 − p1, p

′
2 − p2)

(151)
Note, that in the nonrelativistic limit the ΠR- functions take on the form

ΠR (p′1 − p1) =
α (p′1 − p1)

2

15πm2
1

, ΠR (p′2 − p2) =
α (p′2 − p2)

2

15πm2
2

. (152)

Next, we consider the vertex function

Γα (p′1, p1) = γα + Λα (p′1, p1) , (153)

where Λα can be written in the form

Λα (p′1, p1) = F1 (p′1, p1) γ
α + F2 (p′1, p1)

iσαβ (p′1 − p1)β
2m1

, (154)

where the scalar function F1 (p′1, p1) diverges, while F2 (p′1, p1) is finite. Therefor,

Γα (p′1, p1) (155)

= γα + F1 (p′1, p1) γ
α + F2 (p′1, p1)

iσαβ (p′1 − p1)β
2m1

= (1 + F1 (p′1, p
′
1)) γ

α + (F1 (p′1, p1) − F1 (p′1, p
′
1)) γ

α + F2 (p′1, p1)
iσαβ (p′1 − p1)β

2m1

.
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Then we define a value
1

Z1
= 1 + F1 (p′1, p

′
1) , (156)

which will be absorbed by the renormalized charge

Q1R = Q1
1

Z1
(157)

The renormalization of the self-energy can be treated similarly.
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