10 Energy

10.2 Kinetic Energy and Gravitational Potential Energy

10.3 A Closer Look at Gravitational Potential Energy

- 1. On the axes below, draw graphs of the kinetic energy of
 - a. A 1000 kg car that uniformly accelerates from 0 to 20 m/s in 20 s.
 - b. A 1000 kg car moving at 20 m/s that brakes to a halt with uniform deceleration in 20 s.
 - c. A 1000 kg car that drives once around a 130-m-diameter circle at a speed of 20 m/s.

Calculate K at several times, plot the points, and draw a smooth curve between them.

2. Below we see a 1 kg object that is initially 1 m above the ground and rises to a height of 2 m. Anjay, Brittany, and Carlos each measure its position, but each of them uses a different coordinate system. Fill in the table to show the initial and final gravitational potential energies and ΔU as measured by our three aspiring scientists.

	$U_{\rm i}$	U_{f}	ΔU
Anjay			
Brittany			
Carlos			

- 3. A roller coaster car rolls down a frictionless track, reaching speed v_f at the bottom.
 - a. If you want the car to go twice as fast at the bottom, by what factor must you increase the height of the track?
 - b. Does your answer to part a depend on whether the track is straight or not? Explain.

4. Below are shown three frictionless tracks. A ball is released from rest at the position shown on the left. To which point does the ball make it on the right before reversing direction and rolling back? Point B is the same height as the starting position.

Exercises 5–7: Draw an energy bar chart to show the energy transformations for the situation described.

5. A car runs out of gas and coasts up a hill until finally stopping.

6. A pendulum is held out at 45° and released from rest. A short time later it swings through the lowest point on its arc.

$$K_{i} + U_{gi} = K_{f} + U_{gf}$$

$$0 - \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2$$

7. A ball starts from rest on the top of one hill, rolls without friction through a valley, and just barely makes it to the top of an adjacent hill.

10.4 Restoring Forces and Hooke's Law

8. A spring is attached to the floor and pulled straight up by a string. The string's tension is measured. The graph shows the tension in the string as a function of the spring's length L.

a. Does this spring obey Hooke's Law? Explain why or why not.

b. If it does, what is the spring constant?

9. Draw a figure analogous to Figure 10.16 in the textbook for a spring that is attached to a wall on the *right* end. Use the figure to show that F and Δs always have opposite signs.

10. A spring has an unstretched length of 10 cm . It exerts a restoring force F when stretched to a ler 11 cm .	igth of
a. For what length of the spring is its restoring force 3F?	
b. At what compressed length is the restoring force 2F?	
11. The left end of a spring is attached to a wall. When Bob pulls on the right end with a 200 N force stretches the spring by 20 cm. The same spring is then used for a tug-of-war between Bob and C Each pulls on his end of the spring with a 200 N force.	
a. How far does Bob's end of the spring move? Explain.	
b. How far does Carlos's end of the spring move? Explain.	

10.5 Elastic Potential Energy

12. A heavy object is released from rest at position 1 above a spring. It falls and contacts the spring at position 2. The spring achieves maximum compression at position 3. Fill in the table below to indicate whether each of the quantities are +, -, or 0 during the intervals $1\rightarrow 2$, $2\rightarrow 3$, and $1\rightarrow 3$.

31800°	ı
	2
	3

	1→2	2→3	1→3		
ΔK					
$\Delta U_{ m g}$	_				
$\Delta U_{ m s}$					

13. Rank in order, from most to least, the amount of elastic potential energy $(U_s)_1$ to $(U_s)_4$ stored in each of these springs.

Order:

Explanation:

- 14. A spring gun shoots out a plastic ball at speed v_0 . The spring is then compressed twice the distance it was on the first shot.
 - a. By what factor is the spring's potential energy increased?

b. By what factor is the ball's launch speed increased? Explain.

Exercises 15-16: Draw an energy bar chart to show the energy transformations for the situation described.

15. A bobsled sliding across frictionless, horizontal ice runs into a giant spring. A short time later the spring reaches its maximum compression.

+ 1	K _i	+	U_{gi}	+	$U_{\rm st}$	=	$K_{\mathbf{f}}$	+	U_{gf}	+	U_{if}
	_										
											- —
									_		
0-		+		+		=		+		+	
											_
									_		
	-										_
											- —
-											

16. A brick is held above a spring that is standing on the ground. The brick is released from rest, and a short time later the spring reaches its maximum compression.

10.6 Elastic Collisions

17. Ball 1 with an initial speed of 14 m/s has a perfectly elastic collision with ball 2 that is initially at rest. Afterward, the speed of ball 2 is 21 m/s.

a. What will be the speed of ball 2 if the initial speed of ball 1 is doubled?

b.	What w	vill be	the speed	of ball	2 if the	e mass o	of ball	1 is	doubled?

10.7 Energy Diagrams

- 18. The figure shows a potential-energy curve. Suppose a particle with total energy E_1 is at position A and moving to the right.
 - a. For each of the following regions of the x-axis, does the particle speed up, slow down, maintain a steady speed, or change direction?

A to B ______ B to C _____ D to E _____ E to F

- b. Where is the particle's turning point?
- c. For a particle that has total energy E_2 , what are the possible motions and where do they occur along the x-axis?

d. What position or positions are points of stable equilibrium? For each, would a particle in equilibrium at that point have total energy $\leq E_2$, between E_2 and E_1 , or $\geq E_1$?

e. What position or positions are points of unstable equilibrium? For each, would a particle in equilibrium at that point have total energy $\leq E_2$, between E_2 and E_1 , or $\geq E_1$?

- 19. A particle with the potential energy shown in the graph is moving to the right at x = 0 m with total energy E.
 - a. At what value or values of x is the particle's speed a maximum?

- b. At what value or values of x is the particle's speed a minimum?
- c. At what value or values of x is the potential energy a maximum?
- d. Does this particle have a turning point in the range of x covered by the graph? If so, where?
- 20. Below are a set of axes on which you are going to draw a potential-energy curve. By doing experiments, you find the following information:
 - A particle with energy E_1 oscillates between positions D and E.
 - A particle with energy E_2 oscillates between positions C and F.
 - A particle with energy E_3 oscillates between positions B and G.
 - A particle with energy E_4 enters from the right, bounces at A, then never returns.

Draw a potential-energy curve that is consistent with this information.

