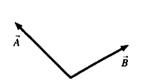
3


Vectors and Coordinate Systems

3.1 Vectors

3.2 Properties of Vectors

Exercises 1-3: Draw and label the vector sum $\vec{A} + \vec{B}$.

1.

2.

3.

4. Use a figure and the properties of vector addition to show that vector addition is associative. That is, show that

$$(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$$

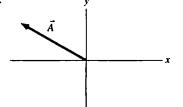
Exercises 5-7: Draw and label the vector difference $\vec{A} - \vec{B}$.

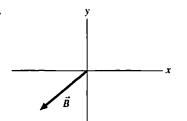

5.

6.

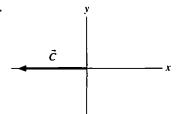
7.

8. Draw and label the vector $2\vec{A}$ and the vector $\frac{1}{2}\vec{A}$.

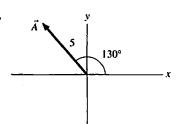

9. Given vectors \vec{A} and \vec{B} below, find the vector $\vec{C} = 2\vec{A} - 3\vec{B}$.


3.3 Coordinate Systems and Vector Components

Exercises 10–12: Draw and label the x- and y-component vectors of the vector shown.

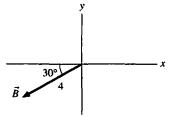

10.

11.



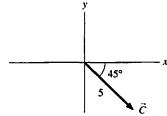
12.

Exercises 13–15: Determine the numerical values of the x- and y-components of each vector.


13.

 $A_x = \underline{\qquad}$

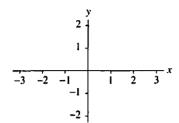
$$A_{v} =$$


14.

R., =

$$B_y =$$

15.



 $C_{r}=$

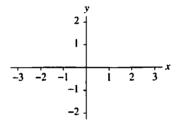
16.
$$A_x = 3$$
, $A_y = -2$

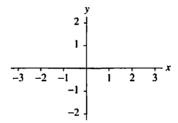
17.
$$B_x = -2$$
, $B_y = 2$

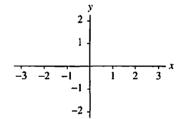
18.
$$C_x = 0$$
, $C_y = -2$

$$B =$$

$$C =$$

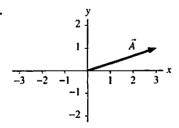

3.4 Vector Algebra

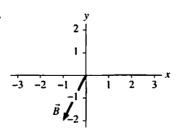

Exercises 19-21: Draw and label the vectors on the axes.

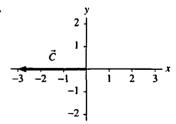

$$19. \vec{A} = -\hat{\imath} + 2\hat{\jmath}$$

$$20. \vec{B} = -2\hat{j}$$

$$21. \vec{C} = 3\hat{\imath} - 2\hat{\jmath}$$







Exercises 22–24: Write the vector in component form (e.g., $3\hat{i} + 2\hat{j}$).

22.

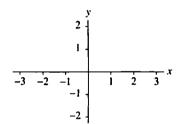
$$\vec{A} =$$

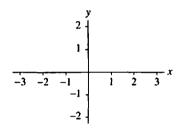
$$\vec{R} =$$

$$\vec{c}$$
 =

25. What is the vector sum $\vec{D} = \vec{A} + \vec{B} + \vec{C}$ of the three vectors defined in Exercises 22–24? Write your answer in *component* form.

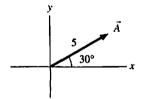
Exercises 26–28: For each vector:

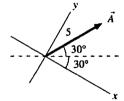

- Draw the vector on the axes provided.
- Draw and label an angle θ to describe the direction of the vector.
- Find the magnitude and the angle of the vector.

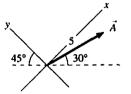

$$26. \vec{A} = 2\hat{i} + 2\hat{j}$$

$$27. \vec{B} = -2\hat{i} + 2\hat{j}$$

$$28. \vec{C} = 3\hat{i} + \hat{j}$$


$$\theta$$
 = _____


$$\theta =$$


$$\theta =$$

Exercises 29–31: Define vector $\vec{A} = (5, 30^{\circ} \text{ above the horizontal})$. Determine the components A_x and A_y in the three coordinate systems shown below. Show your work below the figure.

29.

$$A_x =$$

$$A_x = \underline{}$$

$$A_x = \underline{\hspace{1cm}}$$

$$A_y = \underline{\hspace{1cm}}$$